Riesz Representation Theorem. Let $\Lambda(f)$ be a bounded linear functional on $C(X)$ the space of continuous functions on a compact metric space X. Then there is a signed measure μ on the Borel σ-field \mathcal{B} of X, such that

$$
\Lambda(f)=\int_{X} f(x) d \mu
$$

This is done in several steps. Λ is non-negative if for every $f \geq 0, \Lambda(f) \geq 0$.
First we need a result called partition of unity. We will deal only with functions that satisfy $0 \leq f \leq 1$. We always assume it is so.

Lemma. Let X be compact metric space. Let $\left\{G_{i}\right\}$ be a finite collection open sets with $\cup_{i=1}^{n} G_{i} \supset C$ where C is a closed set. Then there are nonnegative continuous functions h_{i} with its support contained in G_{i} such that $\sum_{i=1}^{n} h_{i}=1$ on C.

Proof. For each $x \in C$ there is some open set G_{i} that contains x, and therefore a ball $B(x, \delta(x))$ around x of radius $\delta(x)$ whose closure $\overline{B(x, \delta(x))}$ is contained in G_{i}. Such balls provide a covering of C and we extract a finite sub cover. Each ball is contained in some G_{i} and we divide them in to n groups depending on which G_{i} it is contained in. If there are several possibilities choose any one.. Let their unions be W_{i} with closures $\bar{W}_{i} \subset G_{i}$. There are functions g_{i} that are 1 on W_{i} with support contained in G_{i}. We define

$$
h_{1}=g_{1}, h_{2}=g_{2}\left(1-g_{1}\right), \cdots, h_{n}=g_{n}\left(1-g_{1}\right) \cdots\left(1-g_{n-1}\right)
$$

Then

$$
h_{1}+h_{2}+\cdots+h_{n}=1-\left(1-g_{1}\right) \cdots\left(1-g_{n}\right)
$$

Since some $g_{i}=1$ at every point of C we are done.

1. Any bounded Λ can be written as $\Lambda^{+}-\Lambda^{-}$where $\lambda^{ \pm}$are both non-negative.

Proof. For $f \geq 0$, define

$$
\begin{aligned}
\Lambda^{+}(f) & =\sup _{0 \leq g \leq f} \Lambda(g) \\
\Lambda^{+}\left(f_{1}+f_{2}\right) & =\Lambda^{+}\left(f_{1}\right)+\Lambda^{+}\left(f_{2}\right)
\end{aligned}
$$

For $c>0$

$$
\Lambda^{+}(c f)=c \Lambda^{+}(f)
$$

For arbitrary f we write $f=(f+C)-C$ and $\Lambda^{+}(f)=\Lambda^{+}(f+C)-\Lambda^{+}(C)$. It is well defined does not depend on C.

One defines $\Lambda^{-}(f)=\Lambda^{+}(f)-\Lambda(f)$ so that for $f \in C(X), \Lambda(f)=\Lambda^{+}(f)-\Lambda^{-}(f)$. It is easy to verify that for $f \geq 0, \Lambda^{-}(f) \geq 0$ because $\Lambda^{+}(f) \geq \Lambda(f)$.

$$
\begin{aligned}
\left\|\Lambda^{+}\right\|+\left\|\Lambda^{-}\right\| & =\Lambda^{+}(1)+\Lambda^{-}(1) \\
& =\Lambda^{+}(1)+\Lambda^{+}(1)-\Lambda(1) \\
& =\sup _{0 \leq f \leq 1} \Lambda(f)+\sup _{0 \leq g \leq 1} \Lambda(g)-\Lambda(1) \\
& =\sup _{0 \leq f \leq 1} \Lambda(f)+\sup _{0 \leq g \leq 1} \Lambda(g-1) \\
& =\sup _{0 \leq f \leq 1} \Lambda(f)+\sup _{0 \leq g \leq 1}|\Lambda(-g)| \\
& =\sup _{\substack{0 \leq f \leq 1 \\
0 \leq g \leq 1}} \Lambda(f-g)=\sup _{0 \leq|f| \leq 1} \Lambda(f)=\|\Lambda\|
\end{aligned}
$$

The problem now is reduced to proving that a non-negative linear functional which is bounded by $\Lambda(1)$ has the representation in terms of a non-negative measure μ.

$$
\Lambda(f)=\int_{X} f(x) d \mu
$$

2. For any open set G we define

$$
\mu(G)=\sup _{\substack{0 \leq f \leq 1 \\ \text { support } \\ f \subset G}} \Lambda(f)
$$

Support f is $\overline{\{x: f(x) \neq 0\}}$.
Remark. We could take the sup over the larger class of f with $f=0$ on G^{c}. Then $\{x: f(x) \leq \epsilon\}$ will be a closed set in G. And $g=(f-\epsilon)^{+}$with $\Lambda(g) \geq \Lambda(f)-\epsilon$ can replace f. The supremum will be the same.
3. For any set E we define

$$
\mu(E)=\inf _{\substack{G \supset E \\ G \text { open }}} \mu(G)
$$

4 We say $E \in \Sigma$ if

$$
\mu(E)=\sup _{\substack{C \subset E \\ C \text { closed }}} \mu(C)
$$

5. If $\left\{E_{i}\right\}$ is any countable collection of subsets of X

$$
\mu\left(\cup_{i=1}^{\infty} E_{i}\right) \leq \sum_{i=1}^{\infty} \mu\left(E_{i}\right)
$$

Proof. Let us first show that if G_{1}, G_{2} are open

$$
\mu\left(G_{1} \cup G_{2}\right) \leq \mu\left(G_{1}\right)+\mu\left(G_{2}\right)
$$

Given $\epsilon>0$, there is a function $g_{\epsilon}(x), 0 \leq g_{\epsilon} \leq 1$, with support C_{ϵ} contained in $G_{1} \cup G_{2}$ with $\Lambda\left(g_{\epsilon}\right) \geq \mu(G)-\epsilon$. There are two non negative functions h_{1}, h_{2} with their supports contained in G_{1} and G_{2} with $h_{1}+h_{2}=1$ on $C_{\epsilon} . g_{\epsilon}=g_{\epsilon} h_{1}+g_{\epsilon} h_{2}$.

$$
\mu\left(G_{1}\right)+\mu\left(G_{2}\right) \geq \Lambda\left(g_{\epsilon} h_{1}\right)+\Lambda\left(g_{\epsilon} h_{2}\right)=\Lambda\left(g_{\epsilon}\right) \geq \mu\left(G_{1} \cup G_{2}\right)-\epsilon
$$

We can assume that $\sum_{i} \mu\left(E_{i}\right)<\infty$. Pick open sets $V_{i} \supset E_{i}$ such that $\mu\left(V_{i}\right) \leq \mu\left(E_{i}\right)+\epsilon 2^{-i}$. Let $V=\cup_{i} V_{i}$. Let f be such that the support D of f is contained in V and $\Lambda(f) \geq \mu(V)-\epsilon$. Since D is compact and contained in V it is contained in $\cup_{i=1}^{n} V_{i}$ for some finite n.

$$
\Lambda(f) \leq \mu\left(\cup_{i=1}^{n} V_{i}\right) \leq \sum_{i=1}^{n} \mu\left(E_{i}\right)+\epsilon \leq \sum_{i=1}^{\infty} \mu\left(E_{i}\right)+\epsilon
$$

Since this is true for every f with support contained in V

$$
\Lambda(E) \leq \Lambda(V) \leq \sum_{i=1}^{\infty} \mu\left(E_{i}\right)+\epsilon
$$

ϵ is arbitrary.
6. If C is a closed set then

$$
\mu(C)=\inf \{\Lambda(f): 0 \leq f \leq 1, f=1 \text { on } C\}
$$

Proof. Since

$$
\mu(C)=\inf \{\mu(V): V \text { open } ; V \supset C\}
$$

We need to show two things.
Given any f, such that $f=1$ on C, for any $\epsilon>0,\{x: f(x)>1-\epsilon\}$ is an open set $V_{\epsilon} \supset C$. If g is any function supported in $V_{\epsilon},(1-\epsilon) g \leq f$ or $\Lambda(g) \leq(1-\epsilon)^{-1} \Lambda(f)$. Since $\mu\left(V_{\epsilon}\right)=\left\{\sup \Lambda(g):\right.$ support $\left.g \subset V_{\epsilon}\right\}$ it follows that $\mu\left(V_{\epsilon}\right) \leq(1-\epsilon)^{-1} \Lambda(f)$.

In the reverse direction given $V \supset C$ by Urysohn's lemma there is an f that is 1 on C with support inside V. Then $\Lambda(f) \leq \mu(V)$.
7. If G is open

$$
\mu(G)=\sup _{\substack{C \subset G \\ C \text { closed }}} \mu(C)
$$

Proof. Since

$$
\mu(G)=\sup \{\Lambda(g): 0 \leq g \leq 1 ; \text { support } g \subset G\}
$$

We need to show two things.
G is an open set and $0 \leq g \leq 1$ is a function supported on a closed subset C of G. If $f=1$ on C, then $f \geq g$ and $\Lambda(f) \geq \Lambda(g)$. If $W \supset C$ is any open set there is an f that is 1 on C and supported in W. Makes $\mu(W) \geq \Lambda(g)$. True for every $W \supset C$. Follows that $\mu(C) \geq \Lambda(g)$.

Conversely if $C \subset G$ is any closed subset of G, there is a function $g, 0 \leq g \leq 1$ with support contained in G and

$$
\Lambda(g) \geq \mu(G)-\epsilon \geq \mu(C)-\epsilon
$$

8. If $\left\{E_{i}\right\}$ are in Σ and pairwise disjoint $E=\cup_{i=1}^{\infty} E_{i} \in \Sigma$ and

$$
\mu(E)=\sum_{i=1}^{\infty} \mu\left(E_{i}\right)
$$

Proof. Let C_{1} and C_{2} be closed sets that are disjoint. There is a function $f, 0 \leq f \leq 1$, $f=1$ on C_{1} and 0 on C_{2}. Let g equal 1 on $C_{1} \cup C_{2}$ with $\Lambda(g) \leq \mu\left(C_{1} \cup C_{2}\right)+\epsilon$. $\Lambda(g f) \geq \mu\left(C_{1}\right)$ and $\Lambda(g(1-f)) \geq \mu\left(C_{2}\right)$. Adding $\mu\left(C_{1} \cup C_{2}\right)+\epsilon \geq \Lambda(g) \geq \mu\left(C_{1}\right)+\mu\left(C_{2}\right)$ Letting $\epsilon \rightarrow 0, \mu\left(C_{1} \cup C_{2}\right) \geq \Lambda(g) \geq \mu\left(C_{1}\right)+\mu\left(C_{2}\right)$. We already have the other half.

Since $E_{i} \in \Sigma$ there are closed sets $D_{i} \subset E_{i}$ with $\mu\left(D_{i}\right) \geq \mu\left(E_{i}\right)-\epsilon 2^{-i} .\left\{D_{i}\right\}$ are pairwise disjoint as well.

$$
\mu(E) \geq \mu\left(\cup_{i=1}^{n} E_{i}\right) \geq \mu\left(\cup_{i=1}^{n} D_{i}\right)=\sum_{i=1}^{n} \mu\left(D_{i}\right) \geq \sum_{i=1}^{n}\left[\mu\left(E_{i}\right)-\epsilon \sum 2^{-i}\right]
$$

with $n \rightarrow \infty$ and $\epsilon \rightarrow 0$

$$
\mu(E) \geq \sum_{i=1}^{\infty} \mu\left(E_{i}\right)
$$

We have the other half. Easy to check that $E \in \mathcal{M} . G_{i} \supset E_{i} \supset D_{i}, \mu\left(G_{i}\right)-\mu\left(C_{i}\right) \leq$ $\epsilon 2^{-i}$.Then $\cup_{i=1}^{\infty} G_{i} \supset \cup_{i=1}^{\infty} E_{i} \supset \cup_{i=1}^{n} D_{i}$.
9. For any $E \in \Sigma$ and any $\epsilon>0$ there is an open set G and a closed set C such that $C \subset E \subset G$ and $\mu(G-C) \leq \epsilon$.

Proof. From our definitions we can find C and G such that $C \subset E$ and $E \subset G$ and

$$
\mu(C) \geq \mu(E)-\frac{\epsilon}{2} ; \quad \mu(G)-\mu(E) \leq-\frac{\epsilon}{2}
$$

$G=C \cup(G-C)$ is a disjoint union and both are in $\Sigma . \mu(G)=\mu(C)+\mu(G-C)$. Therefore $\mu(G-C) \leq \epsilon$.
10. Σ is a Field.

Proof. If $E_{1}, E_{2} \in \Sigma$, for any $\epsilon>0$ can find $C_{1}, C_{2}, G_{1}, G_{2}$ such that $C_{i} \subset E_{i} \subset G_{i}$ and $\mu\left(G_{i}-C_{i}\right)<\frac{\epsilon}{2} .\left(\left(G_{1} \cup G_{2}\right)-\left(C_{1} \cup C_{2}\right)\right) \subset\left(\left(G_{1}-C_{1}\right) \cup\left(G_{2}-C_{2}\right)\right) . \mu\left(\left(G_{1}-C_{1}\right) \cup\left(G_{2}-C_{2}\right)\right) \leq$ ϵ. $\left(E_{1} \cup E_{2}\right) \in \Sigma$. Similarly intersection and complementation.
11. Σ is sigma field and μ is a measure on Σ.

Proof. Done.
12. $\int f d \mu=\Lambda(f)$

Proof. It is enough to prove $\Lambda(f) \leq \int f d \mu$. We can add constants to both sides $\Lambda(1)=$ $\mu(X)$. Can assume $f \geq 0$. Divide by a constant $0 \leq f \leq 1$.

Let $\epsilon>0$ be given. Let $\left\{0=y_{0}<y_{1}<\cdots<y_{n}=1\right\}$ be the interval $[0,1]$ divided into n equal parts such that $\frac{1}{n}<\epsilon$. Let $E_{i}=\left\{x: y_{i-1}<f(x) \leq y_{i}\right\}$. We can include $f^{-1}(0)$ in $E_{1} . E_{i}$ are disjoint sets, $X=\cup_{i} E_{i}$. There are open sets $G_{i} \supset E_{i}$ with $\mu\left(G_{i}\right)<\mu\left(E_{i}\right)+\frac{\epsilon}{n}$ and $f(x) \leq y_{i}+\epsilon$. Since $\left\{G_{i}\right\}$ is a covering of X, there is a partition of unity $\left\{h_{i}\right\}$ with $\sum_{i} h_{i}=1$, and h_{i} supported inside G_{i}. We have $f=\sum_{i} h_{i} f$. Note that $\Lambda\left(h_{i}\right) \leq \mu\left(G_{i}\right) \leq \mu\left(E_{i}\right)+\frac{\epsilon}{n}$.

$$
\begin{aligned}
\Lambda(f) & =\sum_{i=1}^{n} \Lambda\left(h_{i} f\right) \leq \sum_{i=1}^{n}\left(y_{i}+\epsilon\right) \Lambda\left(h_{i}\right) \leq \sum_{i=1}^{n}\left(y_{i}-\epsilon+2 \epsilon\right)\left[\mu\left(E_{i}\right)+\frac{\epsilon}{n}\right]+2 \epsilon \\
& \leq \sum_{i=1}^{n}\left(y_{i}-\epsilon\right) \mu\left(E_{i}\right)+2 \epsilon+\epsilon(1+\epsilon) \leq \int f d \mu+3 \epsilon+\epsilon^{2}
\end{aligned}
$$

Dual of L_{p} spaces. Let (Ω, Σ, μ) be a measure space where μ is a finite measure on the σ-field Σ of subsets of Ω. \mathcal{X} be the Banach space $L_{p}(\Omega, \Sigma, \mu)$ of Σ measurable functions that satisfy $\int_{\Omega}|f(\omega)|^{p} d \mu<\infty$ with the norm

$$
\|f\|_{p}=\left[\int_{\Omega}|f(\omega)|^{p} d \mu\right]^{\frac{1}{p}}
$$

for $1 \leq p<\infty$. Let $\Lambda(f)$ be a bounded linear functional on $L_{p}(\Omega, \Sigma, \mu)$. If $1<p<\infty$

$$
\Lambda(f)=\int f g d \mu
$$

for some $g \in L_{q}(\Omega, \Sigma, \mu)$ where $\frac{1}{p}+\frac{1}{q}=1$. $\|\Lambda\|=\|g\|_{q}$. If $p=1, q=\infty$ and it is still true that

$$
\Lambda(f)=\int f g d \mu
$$

but $g \in L_{\infty}(\Omega, \Sigma, \mu) . L_{\infty}$ consists of functions g that are essentially bounded, i.e. there is a bound M such that $\mu[\omega:|g(\omega)|>M]=0 .\|g\|_{\infty}$ is the smallest M that works. $\|\Lambda\|=\|g\|_{\infty}$. Since

$$
\left|\int f g d \mu\right| \leq\|f\|_{p}\|g\|_{q}
$$

for conjugate pairs p, q the functions g in L_{q} do define bounded linear functionals with the correct bound. We concentrate now on the converse. Since μ is a finite measure, $\mathbf{1}_{A}(\omega) \in L_{p}$. Define

$$
\begin{array}{r}
\lambda(A)=\Lambda\left(\mathbf{1}_{A}(\omega)\right) \\
\|\lambda(A) \mid \leq C\| \mathbf{1}_{A}\left(\omega \|_{p}\right.
\end{array}
$$

$$
\sup _{A \in \Sigma}|\lambda(A)| \leq C \sup _{A \in \Sigma} \| \mathbf{1}_{A}\left(\omega \|_{p}=C[\mu(\Omega)]^{\frac{1}{p}}\right.
$$

To prove λ is a countably additive signed measure, we need to check that for a countable collection of pairwise disjoint sets A_{i}, with $\cup_{i=1}^{\infty} A_{i}=A$, we have

$$
\left\|\left(\sum_{i=1}^{n} \mathbf{1}_{A_{i}}(\omega)\right)-\mathbf{1}_{A}(\omega)\right\|_{p} \rightarrow 0
$$

The difference is the indicator of the set $\cup_{i=n+1}^{\infty} A_{i}$ whose measure tends to 0 and so does its L_{p} norm for $1 \leq p<\infty . \lambda(A)$ is a signed measure. $\lambda \ll \mu$. There is a Radon-Nikodym derivative.

$$
\Lambda\left(\mathbf{1}_{A}\right)=\lambda(A)=\int_{A} g d \mu
$$

with $g \in L_{1} . \quad \Lambda(f)=\int f g d \mu$ for simple functions and then for bounded measurable functions. Take $f=($ sign $g)|g|^{q-1} \mathbf{1}_{|g| \leq M}$. Then f is bounded and $p q=p+q$

$$
\begin{gathered}
\int|f|^{p} d \mu=\int_{|g| \leq M}|g|^{p q-p} d \mu=\int_{|g| \leq M}|g|^{q} d \mu \\
\Lambda(f)=\int_{|g| \leq M}|g|^{q} d \mu \leq C\left[\int_{|g| \leq M}|g|^{q} d \mu\right]^{\frac{1}{p}} \\
{\left[\int_{|g| \leq M}|g|^{q} d \mu\right]^{\frac{1}{q}} \leq C}
\end{gathered}
$$

Let $M \rightarrow \infty . g \in L_{q}$ and $\|g\|_{q} \leq C$
If $p=1,|\lambda(A)| \leq C \mu(A) . g=\frac{d \lambda}{d \mu} .|g| \leq C$ a.e. or $\|g\|_{\infty} \leq C$.
ℓ_{p} spaces. The space of sequences $\xi=\left\{a_{n}\right\}: n \geq 1$.

$$
\|\xi\|_{p}=\left[\sum_{i=1}^{\infty}\left|a_{n}\right|^{p}\right]^{\frac{1}{p}}
$$

The Dual of ℓ_{p} is $\ell_{q} . p q=p+q .\|\xi\|_{\infty}=\sup _{n}\left|a_{n}\right|$.

