
Riesz Representation Theorem. Let Λ(f) be a bounded linear functional on C(X) the
space of continuous functions on a compact metric space X .Then there is a signed measure
µ on the Borel σ-field B of X , such that

Λ(f) =

∫

X

f(x)dµ

This is done in several steps. Λ is non-negative if for every f ≥ 0, Λ(f) ≥ 0.

First we need a result called partition of unity. We will deal only with functions that
satisfy 0 ≤ f ≤ 1. We always assume it is so.

Lemma. Let X be compact metric space. Let {Gi} be a finite collection open sets with
∪n
i=1Gi ⊃ C where C is a closed set. Then there are nonnegative continuous functions hi

with its support contained in Gi such that
∑n

i=1
hi = 1 on C.

Proof. For each x ∈ C there is some open set Gi that contains x, and therefore a ball
B(x, δ(x)) around x of radius δ(x) whose closure B(x, δ(x)) is contained in Gi. Such balls
provide a covering of C and we extract a finite sub cover. Each ball is contained in some
Gi and we divide them in to n groups depending on which Gi it is contained in. If there
are several possibilities choose any one.. Let their unions be Wi with closures W i ⊂ Gi.
There are functions gi that are 1 on Wi with support contained in Gi. We define

h1 = g1, h2 = g2(1− g1), · · · , hn = gn(1− g1) · · · (1− gn−1)

Then

h1 + h2 + · · ·+ hn = 1− (1− g1) · · · (1− gn)

Since some gi = 1 at every point of C we are done.

1. Any bounded Λ can be written as Λ+ − Λ− where λ± are both non-negative.

Proof. For f ≥ 0, define

Λ+(f) = sup
0≤g≤f

Λ(g)

Λ+(f1 + f2) = Λ+(f1) + Λ+(f2)

For c > 0

Λ+(cf) = cΛ+(f)

For arbitrary f we write f = (f + C) − C and Λ+(f) = Λ+(f + C) − Λ+(C). It is
well defined does not depend on C.

One defines Λ−(f) = Λ+(f)− Λ(f) so that for f ∈ C(X), Λ(f) = Λ+(f)−Λ−(f). It
is easy to verify that for f ≥ 0, Λ−(f) ≥ 0 because Λ+(f) ≥ Λ(f).
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‖Λ+‖+ ‖Λ−‖ = Λ+(1) + Λ−(1)

= Λ+(1) + Λ+(1)− Λ(1)

= sup
0≤f≤1

Λ(f) + sup
0≤g≤1

Λ(g)− Λ(1)

= sup
0≤f≤1

Λ(f) + sup
0≤g≤1

Λ(g − 1)

= sup
0≤f≤1

Λ(f) + sup
0≤g≤1

|Λ(−g)|

= sup
0≤f≤1

0≤g≤1

Λ(f − g) = sup
0≤|f |≤1

Λ(f) = ‖Λ‖

The problem now is reduced to proving that a non-negative linear functional which is
bounded by Λ(1) has the representation in terms of a non-negative measure µ.

Λ(f) =

∫

X

f(x) dµ

2. For any open set G we define

µ(G) = sup
0≤f≤1

support f⊂G

Λ(f)

Support f is {x : f(x) 6= 0}.

Remark. We could take the sup over the larger class of f with f = 0 on Gc. Then
{x : f(x) ≤ ǫ} will be a closed set in G. And g = (f − ǫ)+ with Λ(g) ≥ Λ(f) − ǫ can
replace f . The supremum will be the same.

3. For any set E we define
µ(E) = inf

G⊃E

G open

µ(G)

4 We say E ∈ Σ if
µ(E) = sup

C⊂E

C closed

µ(C)

5. If {Ei} is any countable collection of subsets of X

µ(∪∞
i=1Ei) ≤

∞
∑

i=1

µ(Ei)

Proof. Let us first show that if G1, G2 are open

µ(G1 ∪G2) ≤ µ(G1) + µ(G2)
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Given ǫ > 0, there is a function gǫ(x), 0 ≤ gǫ ≤ 1, with support Cǫ contained in G1 ∪ G2

with Λ(gǫ) ≥ µ(G) − ǫ. There are two non negative functions h1, h2 with their supports
contained in G1 and G2 with h1 + h2 = 1 on Cǫ. gǫ = gǫh1 + gǫh2.

µ(G1) + µ(G2) ≥ Λ(gǫh1) + Λ(gǫh2) = Λ(gǫ) ≥ µ(G1 ∪G2)− ǫ

We can assume that
∑

i µ(Ei) < ∞. Pick open sets Vi ⊃ Ei such that µ(Vi) ≤ µ(Ei)+ǫ2−i.
Let V = ∪iVi. Let f be such that the support D of f is contained in V and Λ(f) ≥ µ(V )−ǫ.
Since D is compact and contained in V it is contained in ∪n

i=1Vi for some finite n.

Λ(f) ≤ µ(∪n
i=1Vi) ≤

n
∑

i=1

µ(Ei) + ǫ ≤
∞
∑

i=1

µ(Ei) + ǫ

Since this is true for every f with support contained in V

Λ(E) ≤ Λ(V ) ≤

∞
∑

i=1

µ(Ei) + ǫ

ǫ is arbitrary.

6. If C is a closed set then

µ(C) = inf{Λ(f) : 0 ≤ f ≤ 1, f = 1 on C}

Proof. Since
µ(C) = inf{µ(V ) : V open ;V ⊃ C}

We need to show two things.

Given any f , such that f = 1 on C, for any ǫ > 0, {x : f(x) > 1 − ǫ} is an open set
Vǫ ⊃ C. If g is any function supported in Vǫ, (1− ǫ)g ≤ f or Λ(g) ≤ (1− ǫ)−1Λ(f). Since
µ(Vǫ) = {supΛ(g) : support g ⊂ Vǫ} it follows that µ(Vǫ) ≤ (1− ǫ)−1Λ(f).

In the reverse direction given V ⊃ C by Urysohn’s lemma there is an f that is 1 on C with
support inside V . Then Λ(f) ≤ µ(V ).

7. If G is open
µ(G) = sup

C⊂G

Cclosed

µ(C)

Proof. Since
µ(G) = sup{Λ(g) : 0 ≤ g ≤ 1; support g ⊂ G}

We need to show two things.

G is an open set and 0 ≤ g ≤ 1 is a function supported on a closed subset C of G. If
f = 1 on C, then f ≥ g and Λ(f) ≥ Λ(g). If W ⊃ C is any open set there is an f that is
1 on C and supported in W . Makes µ(W ) ≥ Λ(g). True for every W ⊃ C. Follows that
µ(C) ≥ Λ(g).
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Conversely if C ⊂ G is any closed subset of G, there is a function g, 0 ≤ g ≤ 1 with
support contained in G and

Λ(g) ≥ µ(G)− ǫ ≥ µ(C)− ǫ

8. If {Ei} are in Σ and pairwise disjoint E = ∪∞
i=1Ei ∈ Σ and

µ(E) =
∞
∑

i=1

µ(Ei)

Proof. Let C1 and C2 be closed sets that are disjoint. There is a function f , 0 ≤ f ≤ 1,
f = 1 on C1 and 0 on C2. Let g equal 1 on C1 ∪ C2 with Λ(g) ≤ µ(C1 ∪ C2) + ǫ.
Λ(gf) ≥ µ(C1) and Λ(g(1− f)) ≥ µ(C2). Adding µ(C1 ∪C2) + ǫ ≥ Λ(g) ≥ µ(C1) + µ(C2)
Letting ǫ → 0, µ(C1 ∪ C2) ≥ Λ(g) ≥ µ(C1) + µ(C2). We already have the other half.

Since Ei ∈ Σ there are closed sets Di ⊂ Ei with µ(Di) ≥ µ(Ei) − ǫ2−i. {Di} are
pairwise disjoint as well.

µ(E) ≥ µ(∪n
i=1Ei) ≥ µ(∪n

i=1Di) =
n
∑

i=1

µ(Di) ≥
n
∑

i=1

[µ(Ei)− ǫ
∑

2−i]

with n → ∞ and ǫ → 0

µ(E) ≥

∞
∑

i=1

µ(Ei)

We have the other half. Easy to check that E ∈ M. Gi ⊃ Ei ⊃ Di, µ(Gi) − µ(Ci) ≤
ǫ2−i.Then ∪∞

i=1Gi ⊃ ∪∞
i=1Ei ⊃ ∪n

i=1Di.

9. For any E ∈ Σ and any ǫ > 0 there is an open set G and a closed set C such that
C ⊂ E ⊂ G and µ(G− C) ≤ ǫ.

Proof. From our definitions we can find C and G such that C ⊂ E and E ⊂ G and

µ(C) ≥ µ(E)−
ǫ

2
; µ(G)− µ(E) ≤ −

ǫ

2

G = C∪(G−C) is a disjoint union and both are in Σ. µ(G) = µ(C)+µ(G−C). Therefore
µ(G− C) ≤ ǫ.

10. Σ is a Field.

Proof. If E1, E2 ∈ Σ, for any ǫ > 0 can find C1, C2, G1, G2 such that Ci ⊂ Ei ⊂ Gi and
µ(Gi−Ci) <

ǫ
2
. ((G1∪G2)−(C1∪C2)) ⊂ ((G1−C1)∪(G2−C2)). µ((G1−C1)∪(G2−C2)) ≤

ǫ. (E1 ∪E2) ∈ Σ. Similarly intersection and complementation.

11. Σ is sigma field and µ is a measure on Σ.

Proof. Done.
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12.
∫

fdµ = Λ(f)

Proof. It is enough to prove Λ(f) ≤
∫

fdµ. We can add constants to both sides Λ(1) =
µ(X). Can assume f ≥ 0. Divide by a constant 0 ≤ f ≤ 1.

Let ǫ > 0 be given. Let {0 = y0 < y1 < · · · < yn = 1} be the interval [0, 1]
divided into n equal parts such that 1

n
< ǫ. Let Ei = {x : yi−1 < f(x) ≤ yi}. We can

include f−1(0) in E1. Ei are disjoint sets, X = ∪iEi. There are open sets Gi ⊃ Ei with
µ(Gi) < µ(Ei)+

ǫ
n
and f(x) ≤ yi+ ǫ. Since {Gi} is a covering of X , there is a partition of

unity {hi} with
∑

i hi = 1, and hi supported inside Gi. We have f =
∑

i hif . Note that
Λ(hi) ≤ µ(Gi) ≤ µ(Ei) +

ǫ
n
.

Λ(f) =
n
∑

i=1

Λ(hif) ≤
n
∑

i=1

(yi + ǫ)Λ(hi) ≤
n
∑

i=1

(yi − ǫ+ 2ǫ)[µ(Ei) +
ǫ

n
] + 2ǫ

≤
n
∑

i=1

(yi − ǫ)µ(Ei) + 2ǫ+ ǫ(1 + ǫ) ≤

∫

fdµ+ 3ǫ+ ǫ2

Dual of Lp spaces. Let (Ω,Σ, µ) be a measure space where µ is a finite measure on the
σ-field Σ of subsets of Ω. X be the Banach space Lp(Ω,Σ, µ) of Σ measurable functions
that satisfy

∫

Ω
|f(ω)|pdµ < ∞ with the norm

‖f‖p =

[
∫

Ω

|f(ω)|pdµ

]
1
p

for 1 ≤ p < ∞. Let Λ(f) be a bounded linear functional on Lp(Ω,Σ, µ). If 1 < p < ∞

Λ(f) =

∫

fgdµ

for some g ∈ Lq(Ω,Σ, µ) where
1

p
+ 1

q
= 1. ‖Λ‖ = ‖g‖q. If p = 1, q = ∞ and it is still true

that

Λ(f) =

∫

fgdµ

but g ∈ L∞(Ω,Σ, µ). L∞ consists of functions g that are essentially bounded, i.e. there
is a bound M such that µ[ω : |g(ω)| > M ] = 0. ‖g‖∞ is the smallest M that works.
‖Λ‖ = ‖g‖∞. Since

|

∫

fgdµ| ≤ ‖f‖p‖g‖q

for conjugate pairs p, q the functions g in Lq do define bounded linear functionals with
the correct bound. We concentrate now on the converse. Since µ is a finite measure,
1A(ω) ∈ Lp. Define

λ(A) = Λ(1A(ω))

‖λ(A)| ≤ C‖1A(ω‖p
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sup
A∈Σ

|λ(A)| ≤ C sup
A∈Σ

‖1A(ω‖p = C[µ(Ω)]
1
p

To prove λ is a countably additive signed measure, we need to check that for a countable
collection of pairwise disjoint sets Ai, with ∪∞

i=1Ai = A, we have

‖(

n
∑

i=1

1Ai
(ω))− 1A(ω)‖p → 0.

The difference is the indicator of the set ∪∞
i=n+1Ai whose measure tends to 0 and so does

its Lp norm for 1 ≤ p < ∞. λ(A) is a signed measure. λ << µ. There is a Radon-Nikodym
derivative.

Λ(1A) = λ(A) =

∫

A

gdµ

with g ∈ L1. Λ(f) =
∫

fgdµ for simple functions and then for bounded measurable
functions. Take f = (sign g)|g|q−11|g|≤M . Then f is bounded and pq = p+ q

∫

|f |pdµ =

∫

|g|≤M

|g|pq−pdµ =

∫

|g|≤M

|g|qdµ

Λ(f) =

∫

|g|≤M

|g|qdµ ≤ C

[
∫

|g|≤M

|g|qdµ

]
1
p

[
∫

|g|≤M

|g|qdµ

]
1
q

≤ C

Let M → ∞. g ∈ Lq and ‖g‖q ≤ C

If p = 1, |λ(A)| ≤ Cµ(A). g = dλ
dµ

. |g| ≤ C a.e. or ‖g‖∞ ≤ C.

ℓp spaces. The space of sequences ξ = {an} : n ≥ 1.

‖ξ‖p =

[ ∞
∑

i=1

|an|
p

]
1
p

The Dual of ℓp is ℓq. pq = p+ q. ‖ξ‖∞ = supn |an|.
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