Weak Topology. A weak open set around x € X is given by
N(z:n,Ar,.o o An) ={y: [Ai(z) — Ai(y)| < e,V 1<i<n}

for a finite collection of linear functionals {A;} in the dual A* of X'. It is not metrizable!
There is no countable basis at 0 unless X'* and therefore X is finite dimensional. But if X'*
is separable then the unit ball, with weak topology is metrizable and is in fact compact.
With a countable dense subset {A;} of A*

d(z,y) = ZWIAi(aﬁ) — Ai(y)]

will do it. We can try the weak topology on the dual X'*. Either we can try the linear
functionals < A,z >= A(z) as linear in x for fixed A or linear in A for fixed z. So
X* has two weak topologies using linear functionals x(A) from X or x**(A) from A™**.
Since X C X** one is weaker than the other. The weak topology on X'* can come from
considering either X or X**. One hardly ever chooses X**. In many examples like L,
spaces with 1 < p < 0o, X = A**. Such spaces are called reflexive Banach spaces.

Weak compactness. The Unit Ballin L, for 1 < p < oo is compact in the weak topology.

L, is different. We have functions f,(z) such that [ |f,(z)|dp < 1 May not have a weak
limit. For example f,(x) = nly 1y in L;1[0,1] with Lebesgue measure. The weak limit
wants to be the J-function at 0. Need uniform integrability.

A finite dimensional subspace of a Banach space is closed. Let S = {a1x1 + -+ + aqzq}
for some fixed lineraly independent z1,...,2q € X and ai,...,aq € R%. Let S 3 z,, =
ayzri + -+ + ajrg and x, — x. If 7, = sup, ;|a}| is bounded then we can choose
subsequences so that a? —aj and v = a171 + - - + aqgrq € S. If 7, is unbounded we can
divide both sides of
Tp =alx)+ -+ ajxg
{a}

by 7,. The left side will — 0. The terms on the right —% will be bounded and if we take

T}
a limit of subsequence a? — a; and at least one a; will be such that |a;| = 1.

Zajxj =0

contradicting linear independence.

The unit ball ||z|| < 1 can not be compact if X' is not finite dimensional. Let X" be infinite
dimensional. Given any « < 1 there is a sequence z,, such that ||x,|| = 1 for all n and
|z; — x]| > o for all i # j. It is enough to show that given a closed subspace S C X,
S # X, and a < 1, there is a y € X such that ||y|| =1 and inf,cg ||y — z|| > a.

Take y ¢ S with |ly|| = 1. Since S is closed inf,cg ||y — x| = 6 > 0 For any € > 0 can find

x1 € S such that ||y —z1]| < 0+e€. Let y; = ”(5__7;311” Then [|y1]] = 1. Since S is a subspace
for € small ) 9
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Linear Operators. Compact Operators. Composition. Uniform Limits.

An operator T from X to ) is compact or completely continuous if the image of the unit
ball of X' is a compact set in). Ti,T> compact implies T} + T5 is compact. T} : X — Y
T5 : Y — Z. If one of them is bounded and the other is compac the composition is
compact. A bounded operator maps compact sets into compact sets.

T,, compact for each n,||T;,, — T'|| — 0 implies T' is compact. Let x) € X satisfy [|z| < 1.
Since T,, is compact there is a subsequence such that T,z — vy, as k — oo. We can
diagonalize and assume this happens for all n. We want to show that Tx; has a limit.

1Tz; = Tyl < | Tnws = Toasl|l + [ Tn = Tl — 25l

limsup | T, — T, | < ||T — Tlas — ;]| < 2|T — T

%,)—>00
Let n — oo.

Examples of compact operators.

1. X = C0,1]. fo t)dt for a nice continuous function function K of
two variables.

2. Let 1, 29,...,0p € X, Ay, ..., Ay € X*. Tx =570 Ai(2)z;
The adjoint. If T: X — Y, A* : Y%st — X* is defined by

<T*y*,x>=<y*,Tr>

T bounded implies 7™ is bounded by the same bound.

|T'|| = lHStﬁp |Tz|| = sup | <Tx,y>|= sup | <2, Ty >|= H Sl|1|p [Tyl = |77l
x z Yy
ly* <1 ly*[| <1

If T is compact so is T*. Let K = T*B; the image of the unit ball. For any € > 0 we need
to cover K by a finite number balls of radius e. We can view K C X* as functions on X.

If 27, 2% are two members of K, ||z} — x3|| = [|T*y; — T*y3|| for some yi,y5 € B1(Y*).
IT*yy = T3l = sup | <T*(y7 —ya),z > |
zll<1
= sup |(y; —¥y3), Tz > |
zll<1
= sup | <yr—ua,y>|
YETB; (X)

The linear functionals < y*,y > are continuous on the compact set K; = TB;(X and
satisfy a uniform estimate | < y*,y1 —y2 > | < |ly1 — y2||- They are uniformly bounded.
By Ascoli-Arzela theorem the space of functions is compact and can be covered by a finite
number of balls.



Hilbert Spaces. A Hilbert space H is a vector space with an inner product (x,y) that
satisfies

1. (z,y) = (y,x) is linear in x for each y and linear in y for each x.
2. (x,z) > 0 for z # 0.
It follows that

((y +ta), (y + to)) = (y,y) + 2tz y) + t*(2,2) > 0
and

(@,9)* < (@, 2)(y,y)

and if we define ||z|| = \/(z, z) then |(z,y)| < ||z|/|ly| and ||z| is a norm on H.
3. The space H is complete under the norm ||z||.
Two vectors x1, zo are orthogonal if (x1,z2) = 0. Denoted by =1 L x,.

A collection {x} is orthonormal if z, L zg for a #  and ||z,| = 1 for all a.

A complete orthonormal set is a maximal orthonormal collection {z, } such that if x L z,
for o then x = 0.

We will assume that our Hilbert Space H is separable. Since ||z, — 75| = V2 if a # 8 in
an orthonormal set, any orthonormal set in a separable space has to be countable.

Given any set of n mutually orthogonal vectors z1,zs, ..., z, € H, and a additional vector
y linearly independent of x1, 2, .. ., x,, there exists x,41 = cpy1|y — 2?21 c;x;] such that
1,22, .., Tn,Tnt1 1S a set of n + 1 orthonormal vectors and span the same subspace as
T1,2T2,...,Tpn,y. For 1 < j < n, < xpq1,2; >= 0 yields < y,z; >= ¢; We need to
determine ¢, 1. To this end

n
< Tp41, Tpgl >= Ci+1 [||y - chxjHQ] =1
j=1

Finally need to check that [|y[|? > 2?21 ¢3. Since y is not in the span of x1,- -,z [ly —
2?21 c;xj|| > 0. It follows that any separable Hilbert space has a countable orthonormal
set that spans H, i.e an orthonormal basis. Start with a countable dense set and trim

it to a linearly independent set that spans H and then replace them inductively by an
orthonormal set. This is known as the Gram-Schmidt process.You end with an orthonormal
basis. Complete Orthonormal Set. {x;}. If y L x; for all j then y = 0.

{e;} is an orthonormal set of vectors. The following are equivalent
1. {e;} is maximal. That is if z L e; for all ¢ then x =0

2. For any y € H, |ly]|* =, < y,e; >?

3. Foranyye H,y=>,<y,ei>e;



Proof. 3 = 2 = 1 is obvious. Need to prove 1 = 3

Iyl =) <y.e>?
%

<y—Z<y,ei>ei,e]~>:O

(2

for all j. Therefore y — ) . < y,e; > e; = 0 because of maximality.

® a? < .

The space 5. Sequences z = {ay,as, ...} that are square summable, i.e ijl ;

<z,Y>= Z;il ajbj

Weak Convergence. < x,,y >—< z,y > for all y € H
If x,, converges weakly then ||z,|| is bounded. An application of Baire Category
Theorem.
H=Up{y :sup| <apn,y> | <k}
n

For some k, {y : sup,, | < z,,y > | < k} has interior. In other words for some ¢, k and ¢

sup  sup| <z, y>|<k
ly—zoll<s n

or

2%k
Sup sup | < T,y > | < =
lyl<1 = 0

Unit Ball is weakly compact. < x,y > is jointly continuous in the strong or norm topology.
< Tp,Yn >—< x,y > if either x,, — x strongly or y, — y strongly while the other can
converge weakly. If both converge weakly it may not converge. In fact if z,, — x weakly
and ||z, | — ||z| then ||z, — x| — 0.

There is only one Hilbert Space of given dimension. Finite dimension d. Countable infinite
dimension. Any correspondence between complete orthonormal basis sets up an isomor-
phism. In particular H* = H. The adjoint T*x is defined by < T*z,y >=< x, Ty > for
all y. Self adjoint operators are those for which 7* =T, or < Tz, y >=< z,T*y > V z,y.

Eigen Values, Eigen functions etc. May not exist. Compact Self adjoint operators have a
complete orthonormal set of eigen functions, with eigenvalues accumulating at 0.



