Weak Topology. A weak open set around $x \in \mathcal{X}$ is given by

$$N(x:n,\Lambda_1,\ldots,\Lambda_n) = \{y: |\Lambda_i(x) - \Lambda_i(y)| \le \epsilon, \forall \ 1 \le i \le n\}$$

for a finite collection of linear functionals $\{\Lambda_i\}$ in the dual \mathcal{X}^* of \mathcal{X} . It is not metrizable! There is no countable basis at 0 unless \mathcal{X}^* and therefore \mathcal{X} is finite dimensional. But if \mathcal{X}^* is separable then the unit ball, with weak topology is metrizable and is in fact compact. With a countable dense subset $\{\Lambda_i\}$ of \mathcal{X}^*

$$d(x,y) = \sum_{i=1}^{\infty} 2^{-i} |\Lambda_i(x) - \Lambda_i(y)|$$

will do it. We can try the weak topology on the dual \mathcal{X}^* . Either we can try the linear functionals $\langle \Lambda, x \rangle = \Lambda(x)$ as linear in x for fixed Λ or linear in Λ for fixed x. So \mathcal{X}^* has two weak topologies using linear functionals $x(\Lambda)$ from \mathcal{X} or $x^{**}(\Lambda)$ from \mathcal{X}^{**} . Since $\mathcal{X} \subset \mathcal{X}^{**}$ one is weaker than the other. The weak topology on \mathcal{X}^* can come from considering either \mathcal{X} or \mathcal{X}^{**} . One hardly ever chooses \mathcal{X}^{**} . In many examples like L_p spaces with $1 , <math>\mathcal{X} = \mathcal{X}^{**}$. Such spaces are called reflexive Banach spaces.

Weak compactness. The Unit Ball in L_p for 1 is compact in the weak topology.

 L_1 is different. We have functions $f_n(x)$ such that $\int |f_n(x)| d\mu \leq 1$ May not have a weak limit. For example $f_n(x) = n \mathbf{1}_{[0,\frac{1}{n}]}$ in $L_1[0,1]$ with Lebesgue measure. The weak limit wants to be the δ -function at 0. Need uniform integrability.

A finite dimensional subspace of a Banach space is closed. Let $S = \{a_1x_1 + \cdots + a_dx_d\}$ for some fixed lineraly independent $x_1, \ldots, x_d \in \mathcal{X}$ and $a_1, \ldots, a_d \in \mathbb{R}^d$. Let $S \ni x_n = a_1^n x_1 + \cdots + a_d^n x_d$ and $x_n \to x$. If $\tau_n = \sup_{n,j} |a_j^n|$ is bounded then we can choose subsequences so that $a_j^n \to a_j$ and $x = a_1x_1 + \cdots + a_dx_d \in S$. If τ_n is unbounded we can divide both sides of

$$x_n = a_1^n x_1 + \dots + a_d^n x_d$$

by τ_n . The left side will $\to 0$. The terms on the right $\frac{\{a_j^n\}}{\tau_n\}}$ will be bounded and if we take a limit of subsequence $a_j^n \to a_j$ and at least one a_j will be such that $|a_j| = 1$.

$$\sum a_j x_j = 0$$

contradicting linear independence.

The unit ball $||x|| \leq 1$ can not be compact if \mathcal{X} is not finite dimensional. Let \mathcal{X} be infinite dimensional. Given any $\alpha < 1$ there is a sequence x_n such that $||x_n|| = 1$ for all n and $||x_i - x_j|| \geq \alpha$ for all $i \neq j$. It is enough to show that given a closed subspace $S \subset \mathcal{X}$, $S \neq \mathcal{X}$, and $\alpha < 1$, there is a $y \in \mathcal{X}$ such that ||y|| = 1 and $\inf_{x \in S} ||y - x|| \geq \alpha$.

Take $y \notin S$ with ||y|| = 1. Since S is closed $\inf_{x \in S} ||y - x|| = \theta > 0$ For any $\epsilon > 0$ can find $x_1 \in S$ such that $||y - x_1|| \le \theta + \epsilon$. Let $y_1 = \frac{(y - x_1)}{||y - x_1||}$. Then $||y_1|| = 1$. Since S is a subspace for ϵ small

$$d(y_1, S) = d(\frac{y}{\|y - x_1\|}, S) = \frac{1}{\|y - x_1\|} d(y, S) \ge \frac{\theta}{\theta + \epsilon} \ge \alpha$$

Linear Operators. Compact Operators. Composition. Uniform Limits.

An operator T from \mathcal{X} to \mathcal{Y} is compact or completely continuous if the image of the unit ball of \mathcal{X} is a compact set in \mathcal{Y} . T_1, T_2 compact implies $T_1 + T_2$ is compact. $T_1 : \mathcal{X} \to \mathcal{Y}$ $T_2 : \mathcal{Y} \to \mathcal{Z}$. If one of them is bounded and the other is compact the composition is compact. A bounded operator maps compact sets into compact sets.

 T_n compact for each $n, ||T_n - T|| \to 0$ implies T is compact. Let $x_k \in \mathcal{X}$ satisfy $||x_k|| \leq 1$. Since T_n is compact there is a subsequence such that $T_n x_k \to y_n$ as $k \to \infty$. We can diagonalize and assume this happens for all n. We want to show that Tx_k has a limit.

$$||Tx_i - Tx_j|| \le ||T_n x_i - T_n x_j|| + ||T_n - T|| ||x_i - x_j||$$
$$\limsup_{i,j \to \infty} ||Tx_i - Tx_j|| \le ||T_n - T|| ||x_i - x_j|| \le 2||T_n - T||$$

Let $n \to \infty$.

Examples of compact operators.

1. $\mathcal{X} = C[0,1]$. $(Tf)(s) = \int_0^1 K(s,t)f(t)dt$ for a nice continuous function function K of two variables.

2. Let $x_1, x_2, \ldots, x_n \in \mathcal{X}, \Lambda_1, \ldots, \Lambda_n \in \mathcal{X}^*$. $Tx = \sum_{i=1}^n \Lambda_i(x) x_i$.

The adjoint. If $T: \mathcal{X} \to \mathcal{Y}, A^*: \mathcal{Y}^a st \to \mathcal{X}^*$ is defined by

$$< T^*y^*, x > = < y^*, Tx >$$

T bounded implies T^* is bounded by the same bound.

$$\|T\| = \sup_{\|\|x\| \le 1} \|Tx\| = \sup_{\|x\| \le 1 \\ \|y^*\| \le 1} |\langle Tx, y \rangle| = \sup_{\|x\| \le 1 \\ \|y^*\| \le 1} |\langle x, T^*y \rangle| = \sup_{\|y^*\| \le 1} \|T^*y\| = \|T^*\|$$

If T is compact so is T^* . Let $K = T^*B_1$ the image of the unit ball. For any $\epsilon > 0$ we need to cover K by a finite number balls of radius ϵ . We can view $K \subset \mathcal{X}^*$ as functions on \mathcal{X} . If x_1^*, x_2^* are two members of K, $||x_1^* - x_2^*|| = ||T^*y_1^* - T^*y_2^*||$ for some $y_1^*, y_2^* \in B_1(\mathcal{Y}^*)$.

$$\begin{aligned} \|T^*y_1^* - T^*y_2^*\| &= \sup_{\|x\| \le 1} | < T^*(y_1^* - y_2^*), x > | \\ &= \sup_{\|x\| \le 1} |(y_1^* - y_2^*), Tx > | \\ &= \sup_{y \in TB_1(\mathcal{X})} | < y_1^* - y_2^*, y > | \end{aligned}$$

The linear functionals $\langle y^*, y \rangle$ are continuous on the compact set $K_1 = TB_1(\mathcal{X}$ and satisfy a uniform estimate $|\langle y^*, y_1 - y_2 \rangle| \leq ||y_1 - y_2||$. They are uniformly bounded. By Ascoli-Arzela theorem the space of functions is compact and can be covered by a finite number of balls. **Hilbert Spaces.** A Hilbert space \mathcal{H} is a vector space with an inner product $\langle x, y \rangle$ that satisfies

1. $\langle x, y \rangle = \langle y, x \rangle$ is linear in x for each y and linear in y for each x.

2. $\langle x, x \rangle > 0$ for $x \neq 0$.

It follows that

$$\langle (y+tx), (y+tx) \rangle = \langle y, y \rangle + 2t \langle x, y \rangle + t^2 \langle x, x \rangle \ge 0$$

and

$$\langle x, y \rangle^2 \le \langle x, x \rangle \langle y, y \rangle$$

and if we define $||x|| = \sqrt{\langle x, x \rangle}$ then $|\langle x, y \rangle| \le ||x|| ||y||$ and ||x|| is a norm on \mathcal{H} .

3. The space \mathcal{H} is complete under the norm ||x||.

Two vectors x_1, x_2 are orthogonal if $\langle x_1, x_2 \rangle = 0$. Denoted by $x_1 \perp x_2$.

A collection $\{x_{\alpha}\}$ is orthonormal if $x_{\alpha} \perp x_{\beta}$ for $\alpha \neq \beta$ and $||x_{\alpha}|| = 1$ for all α .

A complete orthonormal set is a maximal orthonormal collection $\{x_{\alpha}\}$ such that if $x \perp x_{\alpha}$ for α then x = 0.

We will assume that our Hilbert Space \mathcal{H} is separable. Since $||x_{\alpha} - x_{\beta}|| = \sqrt{2}$ if $\alpha \neq \beta$ in an orthonormal set, any orthonormal set in a separable space has to be countable.

Given any set of n mutually orthogonal vectors $x_1, x_2, \ldots, x_n \in \mathcal{H}$, and a additional vector y linearly independent of x_1, x_2, \ldots, x_n , there exists $x_{n+1} = c_{n+1}[y - \sum_{j=1}^n c_j x_j]$ such that $x_1, x_2, \ldots, x_n, x_{n+1}$ is a set of n+1 orthonormal vectors and span the same subspace as x_1, x_2, \ldots, x_n, y . For $1 \leq j \leq n, < x_{n+1}, x_j >= 0$ yields $\langle y, x_j \rangle = c_j$ We need to determine c_{n+1} . To this end

$$\langle x_{n+1}, x_{n+1} \rangle = c_{n+1}^2 \left[\|y - \sum_{j=1}^n c_j x_j\|^2 \right] = 1$$

Finally need to check that $||y||^2 > \sum_{j=1}^n c_j^2$. Since y is not in the span of $x_1, \dots, x_n ||y - \sum_{j=1}^n c_j x_j|| > 0$. It follows that any separable Hilbert space has a countable orthonormal set that spans \mathcal{H} , i.e an orthonormal basis. Start with a countable dense set and trim it to a linearly independent set that spans \mathcal{H} and then replace them inductively by an orthonormal set. This is known as the Gram-Schmidt process. You end with an orthonormal basis. Complete Orthonormal Set. $\{x_i\}$. If $y \perp x_j$ for all j then y = 0.

 $\{e_i\}$ is an orthonormal set of vectors. The following are equivalent

- **1.** $\{e_i\}$ is maximal. That is if $x \perp e_i$ for all *i* then x = 0
- 2. For any $y \in \mathcal{H}$, $\|y\|^2 = \sum_i \langle y, e_i \rangle^2$
- **3.** For any $y \in \mathcal{H}$, $y = \sum_i \langle y, e_i \rangle e_i$

Proof. $3 \Rightarrow 2 \Rightarrow 1$ is obvious. Need to prove $1 \Rightarrow 3$

$$\|y\|^{2} \ge \sum_{i} \langle y, e_{i} \rangle^{2}$$

$$\langle y - \sum_{i} \langle y, e_{i} \rangle \langle e_{i}, e_{j} \rangle = 0$$

for all j. Therefore $y - \sum_i \langle y, e_i \rangle = 0$ because of maximality.

The space l_2 . Sequences $x = \{a_1, a_2, \ldots\}$ that are square summable, i.e $\sum_{j=1}^{\infty} a_j^2 < \infty$. $\langle x, y \rangle = \sum_{j=1}^{\infty} a_j b_j$

Weak Convergence. $\langle x_n, y \rangle \rightarrow \langle x, y \rangle$ for all $y \in \mathcal{H}$

If x_n converges weakly then $||x_n||$ is bounded. An application of Baire Category Theorem.

$$\mathcal{H} = \bigcup_k \{ y : \sup_n | < x_n, y > | \le k \}$$

For some k, $\{y : \sup_n | < x_n, y > | \le k\}$ has interior. In other words for some x_0, k and δ

$$\sup_{\|y-x_0\| < \delta} \sup_{n} | < x_n, y > | \le k$$

or

$$\sup_{\|y\| < 1} \sup_{n} | < x_n, y > | \le \frac{2k}{\delta}$$

Unit Ball is weakly compact. $\langle x, y \rangle$ is jointly continuous in the strong or norm topology. $\langle x_n, y_n \rangle \rightarrow \langle x, y \rangle$ if either $x_n \rightarrow x$ strongly or $y_n \rightarrow y$ strongly while the other can converge weakly. If both converge weakly it may not converge. In fact if $x_n \rightarrow x$ weakly and $||x_n|| \rightarrow ||x||$ then $||x_n - x|| \rightarrow 0$.

There is only one Hilbert Space of given dimension. Finite dimension d. Countable infinite dimension. Any correspondence between complete orthonormal basis sets up an isomorphism. In particular $\mathcal{H}^* = \mathcal{H}$. The adjoint T^*x is defined by $\langle T^*x, y \rangle = \langle x, Ty \rangle$ for all y. Self adjoint operators are those for which $T^* = T$, or $\langle Tx, y \rangle = \langle x, T^*y \rangle \forall x, y$.

Eigen Values, Eigen functions etc. May not exist. Compact Self adjoint operators have a complete orthonormal set of eigen functions, with eigenvalues accumulating at 0.