
Weak Topology. A weak open set around x ∈ X is given by

N(x : n,Λ1, . . . ,Λn) = {y : |Λi(x)− Λi(y)| ≤ ǫ, ∀ 1 ≤ i ≤ n}

for a finite collection of linear functionals {Λi} in the dual X ∗ of X . It is not metrizable!
There is no countable basis at 0 unless X ∗ and therefore X is finite dimensional. But if X ∗

is separable then the unit ball, with weak topology is metrizable and is in fact compact.
With a countable dense subset {Λi} of X ∗

d(x, y) =

∞
∑

i=1

2−i|Λi(x)− Λi(y)|

will do it. We can try the weak topology on the dual X ∗. Either we can try the linear
functionals < Λ, x >= Λ(x) as linear in x for fixed Λ or linear in Λ for fixed x. So
X ∗ has two weak topologies using linear functionals x(Λ) from X or x∗∗(Λ) from X ∗∗.
Since X ⊂ X ∗∗ one is weaker than the other. The weak topology on X ∗ can come from
considering either X or X ∗∗. One hardly ever chooses X ∗∗. In many examples like Lp

spaces with 1 < p < ∞, X = X ∗∗. Such spaces are called reflexive Banach spaces.

Weak compactness. The Unit Ball in Lp for 1 < p < ∞ is compact in the weak topology.

L1 is different. We have functions fn(x) such that
∫

|fn(x)|dµ ≤ 1 May not have a weak
limit. For example fn(x) = n1[0, 1

n
] in L1[0, 1] with Lebesgue measure. The weak limit

wants to be the δ-function at 0. Need uniform integrability.

A finite dimensional subspace of a Banach space is closed. Let S = {a1x1 + · · · + adxd}
for some fixed lineraly independent x1, . . . , xd ∈ X and a1, . . . , ad ∈ Rd. Let S ∋ xn =
an1x1 + · · · + andxd and xn → x. If τn = supn,j |anj | is bounded then we can choose
subsequences so that anj → aj and x = a1x1 + · · ·+ adxd ∈ S. If τn is unbounded we can
divide both sides of

xn = an1x1 + · · ·+ andxd

by τn. The left side will → 0. The terms on the right
{an

j

τn}
will be bounded and if we take

a limit of subsequence anj → aj and at least one aj will be such that |aj | = 1.

∑

ajxj = 0

contradicting linear independence.

The unit ball ‖x‖ ≤ 1 can not be compact if X is not finite dimensional. Let X be infinite
dimensional. Given any α < 1 there is a sequence xn such that ‖xn‖ = 1 for all n and
‖xi − xj‖ ≥ α for all i 6= j. It is enough to show that given a closed subspace S ⊂ X ,
S 6= X , and α < 1, there is a y ∈ X such that ‖y‖ = 1 and infx∈S ‖y − x‖ ≥ α.

Take y /∈ S with ‖y‖ = 1. Since S is closed infx∈S ‖y − x‖ = θ > 0 For any ǫ > 0 can find

x1 ∈ S such that ‖y−x1‖ ≤ θ+ ǫ. Let y1 = (y−x1

‖y−x1‖
. Then ‖y1‖ = 1. Since S is a subspace

for ǫ small

d(y1, S) = d(
y

‖y − x1‖
, S) =

1

‖y − x1‖
d(y, S) ≥ θ

θ + ǫ
≥ α
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Linear Operators. Compact Operators. Composition. Uniform Limits.

An operator T from X to Y is compact or completely continuous if the image of the unit
ball of X is a compact set inY . T1, T2 compact implies T1 + T2 is compact. T1 : X → Y
T2 : Y → Z. If one of them is bounded and the other is compac the composition is
compact. A bounded operator maps compact sets into compact sets.

Tn compact for each n,‖Tn − T‖ → 0 implies T is compact. Let xk ∈ X satisfy ‖xk‖ ≤ 1.
Since Tn is compact there is a subsequence such that Tnxk → yn as k → ∞. We can
diagonalize and assume this happens for all n. We want to show that Txk has a limit.

‖Txi − Txj‖ ≤ ‖Tnxi − Tnxj‖+ ‖Tn − T‖‖xi − xj‖

lim sup
i,j→∞

‖Txi − Txj‖ ≤ ‖Tn − T‖‖xi − xj‖ ≤ 2‖Tn − T‖

Let n → ∞.

Examples of compact operators.

1. X = C[0, 1]. (Tf)(s) =
∫ 1

0
K(s, t)f(t)dt for a nice continuous function function K of

two variables.

2. Let x1, x2, . . . , xn ∈ X , Λ1, . . . ,Λn ∈ X ∗. Tx =
∑n

i=1 Λi(x)xi.

The adjoint. If T : X → Y , A∗ : Yast → X ∗ is defined by

< T ∗y∗, x >=< y∗, Tx >

T bounded implies T ∗ is bounded by the same bound.

‖T‖ = sup
|‖x‖≤1

‖Tx‖ = sup
‖x‖≤1

‖y∗‖≤1

| < Tx, y > | = sup
‖x‖≤1

‖y∗‖≤1

| < x, T ∗y > | = sup
‖y∗‖≤1

‖T ∗y‖ = ‖T ∗‖

If T is compact so is T ∗. Let K = T ∗B1 the image of the unit ball. For any ǫ > 0 we need
to cover K by a finite number balls of radius ǫ. We can view K ⊂ X ∗ as functions on X .
If x∗

1, x
∗
2 are two members of K, ‖x∗

1 − x∗
2‖ = ‖T ∗y∗1 − T ∗y∗2‖ for some y∗1 , y

∗
2 ∈ B1(Y∗).

‖T ∗y∗1 − T ∗y∗2‖ = sup
‖x‖≤1

| < T ∗(y∗1 − y∗2), x > |

= sup
‖x‖≤1

|(y∗1 − y∗2), Tx > |

= sup
y∈TB1(X )

| < y∗1 − y∗2 , y > |

The linear functionals < y∗, y > are continuous on the compact set K1 = TB1(X and
satisfy a uniform estimate | < y∗, y1 − y2 > | ≤ ‖y1 − y2‖. They are uniformly bounded.
By Ascoli-Arzela theorem the space of functions is compact and can be covered by a finite
number of balls.
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Hilbert Spaces. A Hilbert space H is a vector space with an inner product 〈x, y〉 that
satisfies

1. 〈x, y〉 = 〈y, x〉 is linear in x for each y and linear in y for each x.

2. 〈x, x〉 > 0 for x 6= 0.

It follows that

〈(y + tx), (y + tx)〉 = 〈y, y〉+ 2t〈x, y〉+ t2〈x, x〉 ≥ 0

and

〈x, y〉2 ≤ 〈x, x〉〈y, y〉

and if we define ‖x‖ =
√

〈x, x〉 then |〈x, y〉| ≤ ‖x‖‖y‖ and ‖x‖ is a norm on H.

3. The space H is complete under the norm ‖x‖.

Two vectors x1, x2 are orthogonal if 〈x1, x2〉 = 0. Denoted by x1 ⊥ x2.

A collection {xα} is orthonormal if xα ⊥ xβ for α 6= β and ‖xα‖ = 1 for all α.

A complete orthonormal set is a maximal orthonormal collection {xα} such that if x ⊥ xα

for α then x = 0.

We will assume that our Hilbert Space H is separable. Since ‖xα − xβ‖ =
√
2 if α 6= β in

an orthonormal set, any orthonormal set in a separable space has to be countable.

Given any set of n mutually orthogonal vectors x1, x2, . . . , xn ∈ H, and a additional vector
y linearly independent of x1, x2, . . . , xn, there exists xn+1 = cn+1[y−

∑n
j=1 cjxj ] such that

x1, x2, . . . , xn, xn+1 is a set of n + 1 orthonormal vectors and span the same subspace as
x1, x2, . . . , xn, y. For 1 ≤ j ≤ n, < xn+1, xj >= 0 yields < y, xj >= cj We need to
determine cn+1. To this end

< xn+1, xn+1 >= c2n+1

[

‖y −
n
∑

j=1

cjxj‖2
]

= 1

Finally need to check that ‖y‖2 >
∑n

j=1 c
2
j . Since y is not in the span of x1, · · · , xn ‖y −

∑n
j=1 cjxj‖ > 0. It follows that any separable Hilbert space has a countable orthonormal

set that spans H, i.e an orthonormal basis. Start with a countable dense set and trim
it to a linearly independent set that spans H and then replace them inductively by an
orthonormal set. This is known as the Gram-Schmidt process.You end with an orthonormal
basis. Complete Orthonormal Set. {xj}. If y ⊥ xj for all j then y = 0.

{ei} is an orthonormal set of vectors. The following are equivalent

1. {ei} is maximal. That is if x ⊥ ei for all i then x = 0

2. For any y ∈ H, ‖y‖2 =
∑

i < y, ei >
2

3. For any y ∈ H, y =
∑

i < y, ei > ei
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Proof. 3 ⇒ 2 ⇒ 1 is obvious. Need to prove 1 ⇒ 3

‖y‖2 ≥
∑

i

< y, ei >
2

< y −
∑

i

< y, ei > ei, ej >= 0

for all j. Therefore y −
∑

i < y, ei > ei = 0 because of maximality.

The space l2. Sequences x = {a1, a2, . . .} that are square summable, i.e
∑∞

j=1 a
2
j < ∞.

< x, y >=
∑∞

j=1 ajbj

Weak Convergence. < xn, y >→< x, y > for all y ∈ H
If xn converges weakly then ‖xn‖ is bounded. An application of Baire Category

Theorem.
H = ∪k{y : sup

n
| < xn, y > | ≤ k}

For some k, {y : supn | < xn, y > | ≤ k} has interior. In other words for some x0, k and δ

sup
‖y−x0‖<δ

sup
n

| < xn, y > | ≤ k

or

sup
‖y‖<1

sup
n

| < xn, y > | ≤ 2k

δ

.

Unit Ball is weakly compact. < x, y > is jointly continuous in the strong or norm topology.
< xn, yn >→< x, y > if either xn → x strongly or yn → y strongly while the other can
converge weakly. If both converge weakly it may not converge. In fact if xn → x weakly
and ‖xn‖ → ‖x‖ then ‖xn − x‖ → 0.

There is only one Hilbert Space of given dimension. Finite dimension d. Countable infinite
dimension. Any correspondence between complete orthonormal basis sets up an isomor-
phism. In particular H∗ = H. The adjoint T ∗x is defined by < T ∗x, y >=< x, Ty > for
all y. Self adjoint operators are those for which T ∗ = T , or < Tx, y >=< x, T ∗y > ∀ x, y.

Eigen Values, Eigen functions etc. May not exist. Compact Self adjoint operators have a
complete orthonormal set of eigen functions, with eigenvalues accumulating at 0.
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