Problem 1. If μ is a measure with $\mu(R)=1$ on the Borel σ-field $\mathcal{B}(R)$, its distribution function is defined by

$$
F(x)=\mu[(-\infty, x]]=\mu[\{y:-\infty<y \leq x\}]
$$

Show that $F(x)$ is nondecreasing, continuous from the right and

$$
\lim _{x \rightarrow-\infty} F(x)=0, \lim _{x \rightarrow \infty} F(x)=1
$$

Conversely show that given such a function F there is a unique μ such that

$$
F(x)=\mu[(-\infty, x]]
$$

Problem 2. Find a sequence $f_{n}(x)$ on $[0,1]$ such that $f_{n}(\cdot) \rightarrow 0$ in measure with respect to the Lebesgue measure but $\lim \sup _{n} f_{n}(x)=1$ for every x.

Problem 3.

Consider $f_{n}(x)=n^{p} x^{n}(1-x)$ on $[0,1] . \lim _{n \rightarrow \infty} f_{n}(x)=0$ for $x \in[0,1]$. Determine the values of p for which $\int_{[0,1]} f_{n}(x) d x \rightarrow 0$. Are these the same as those for which $\sup _{n} f_{n}(x)$ is integrable on $[0,1]$?

