Problemset 10

Q1. \mathcal{X} and \mathcal{Y} are Banach spaces. T_n is a sequence of bounded operators $\mathcal{X} \to \mathcal{Y}$ such that $\sup_n ||T_n|| \leq C$ and

$$\lim_{n \to \infty} T_n x = T x$$

exists for $x \in D$, a dense subspace of \mathcal{X} . Show that

$$\lim_{n \to \infty} T_n x = T x$$

exists for all $x \in \mathcal{X}$ and $||T|| \leq C$.

Q2. If \mathcal{X} and \mathcal{Y} are Hilbert spaces and T is an isometry between dense subspaces $D_1 \subset \mathcal{X}$ and $D_2 \subset \mathcal{Y}$, then T extends as an isometry between \mathcal{X} and \mathcal{Y} .

Q3. The space S of functions on R consists of smooth functions that satisfy for nonnegative integers n and r

$$\left|\frac{d^{n}f(x)}{dx^{n}}\right| \le C_{r,n}(1+x^{2})^{-r}$$

for some constants $C_{r,n}$. Show that $f \in S$ if and only if it Fourier transform

$$(\widehat{f})(x) = \int e^{ixy} f(y) dy \in \mathcal{S}$$