1. F satisfies a Lipschitz condition if $|F(x) - F(y)| \le C|x - y|$ for some constant C. Show that such a function is differentiable almost everywhere with respect to Lebesgue measure and

$$F(b) - F(a) = \int_{a}^{b} F'(x) dx.$$

2. Construct a function F(x) on [0,1] that is nondecreasing F(0) = 0, F(1) = 1 and F'(x) = 0 a.e. with respect to Lebesgue measure. Hint: Start with f(x) = x. Divide [0,1] into three equal parts. Change it to $f(x) = \frac{3}{2}x$ on $[0,\frac{1}{3}]$, equal to $\frac{1}{2}$ on $[\frac{1}{3},\frac{2}{3}]$ and $\frac{1}{2} + \frac{3}{2}(x - \frac{2}{3})$ on $[\frac{2}{3},1]$ [Helps to draw a picture]. Repeat indefinitely leaving the middle piece constant. After *n* steps you will have *n* flat pieces and 2^n pieces of slope $(\frac{3}{2})^n$ on intervals of size $(\frac{1}{3})^n$. The limit will exist and should work.

3. Take a number from [0,1]. Expand it in binary expansion as $x = \sum_{j=1}^{\infty} \frac{a_j}{2^j}$ where $a_j = 0, 1$. Make it unique by replacing eventual 1's by 0's. Define the map $T(x) = \sum_{j=1}^{\infty} \frac{b_j}{3^j}$ where $b_j = 0$ if $a_j = 0$ and $b_j = 2$ if $a_j = 1$. If μ is Lebesgue measure then μT^{-1} will provide a counter example. Any connection to problem **2**?