1. F satisfies a Lipschitz condition if $|F(x)-F(y)| \leq C|x-y|$ for some constant C. Show that such a function is differentiable almost everywhere with respect to Lebesgue measure and

$$
F(b)-F(a)=\int_{a}^{b} F^{\prime}(x) d x
$$

2. Construct a function $F(x)$ on $[0,1]$ that is nondecreasing $F(0)=0, F(1)=1$ and $F^{\prime}(x)=0$ a.e. with respect to Lebesgue measure. Hint: Start with $f(x)=x$. Divide $[0,1]$ into three equal parts. Change it to $f(x)=\frac{3}{2} x$ on $\left[0, \frac{1}{3}\right]$, equal to $\frac{1}{2}$ on $\left[\frac{1}{3}, \frac{2}{3}\right]$ and $\frac{1}{2}+\frac{3}{2}\left(x-\frac{2}{3}\right)$ on $\left[\frac{2}{3}, 1\right]$ [Helps to draw a picture]. Repeat indefinitely leaving the middle piece constant. After n steps you will have n flat pieces and 2^{n} pieces of slope $\left(\frac{3}{2}\right)^{n}$ on intervals of size $\left(\frac{1}{3}\right)^{n}$. The limit will exist and should work.
3. Take a number from $[0,1]$. Expand it in binary expansion as $x=\sum_{j=1}^{\infty} \frac{a_{j}}{2^{j}}$ where $a_{j}=0,1$. Make it unique by replacing eventual 1 's by 0^{\prime} s. Define the map $T(x)=\sum_{j=1}^{\infty} \frac{b_{j}}{3^{j}}$ where $b_{j}=0$ if $a_{j}=0$ and $b_{j}=2$ if $a_{j}=1$. If μ is Lebesgue measure then μT^{-1} will provide a counter example. Any connection to problem 2?
