Problem set 3.

1. Show that if
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Give an example to show that the conclusion can fail with both sides being finite if
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2. Show that in a metric space if a sequence {x, } does not converge to x then there is
a subsequence of {z,} such that no further subsequence of this subsequence can converge
to . In other words if every subsequence of a sequence has a further subsequence that
converges to x then the entire sequence converges to x.

3. Construct a complete metric d on the interval (0, 1) such that d(z,,z) — 0 if and only
if |z, — x| — 0,



