Problem set 4.

1. If $d(x, y)$ is a metric on X show that so is $D(x, y)=\frac{d(x, y)}{1+d(x, y)}$. Show that (X, d) is complete if and only if (X, D) is. Show that they have the same collection of open sets.
2. $X=\Pi_{i=1}^{\infty} R$. $\xi \in X$ is a sequence of real numbres

$$
\xi=\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}
$$

We say that sequence $\xi_{n}=\left\{x_{j}^{n}\right\}$ converges to $\xi=\left\{x_{j}\right\}$ if for every $j, \lim _{n \rightarrow \infty} x_{j}^{n}=x_{j}$. Can you construct a metric that corresponds to this convergence. Is it complete?
3. Is the space X with this metric separable? Can you describe a countable basis for the open sets?

