Problemset 7.

Q1. Give an example of a sequence $f_{n}(x)$ that converges weakly to $f(x) \equiv 1$ on $L_{2}[0,1]$ with Lebesgue measure, but not strongly. (in the norm)

Q2. A family of continuous functions $f_{\alpha}(x)$ on $[0, \infty)$ satisfy

$$
\lim _{\delta \rightarrow 0} \sup _{\alpha} \sup _{\substack{x-y \mid \leq \delta \\ x, y \leq N}}\left|f_{\alpha}(x)-f_{\alpha}(y)\right|=0
$$

for every $N<\infty$,

$$
\begin{aligned}
& \sup _{x \geq 0} \sup _{\alpha}\left|f_{\alpha}(x)\right| \leq C<\infty \\
& \lim _{N \rightarrow \infty} \sup _{x \geq N} \sup _{\alpha}\left|f_{\alpha}(x)\right|=0
\end{aligned}
$$

Show that every sequence from the family has a convergent subsequence in the Banach space $\mathcal{X}=C[0, \infty)$ with the norm $\|f-g\|=\sup _{x \geq 0}|f(x)-g(x)|$.
Q3. $K(s, t)$ is a bounded continuous function of two variables on $[0, \infty) \times[0, \infty)$.

$$
(T f)(s)=\int_{0}^{\infty} K(s, t) e^{-(s+t)} f(t) d t
$$

Show that T is a compact operator from \mathcal{X} to \mathcal{X}.

