Problemset 7.

Q1. Give an example of a sequence $f_n(x)$ that converges weakly to $f(x) \equiv 1$ on $L_2[0, 1]$ with Lebesgue measure, but not strongly. (in the norm)

Q2. A family of continuous functions $f_{\alpha}(x)$ on $[0, \infty)$ satisfy

$$\lim_{\delta \to 0} \sup_{\alpha} \sup_{|x-y| \le \delta \atop x,y \le N} |f_{\alpha}(x) - f_{\alpha}(y)| = 0$$

for every $N < \infty$,

$$\sup_{x \ge 0} \sup_{\alpha} |f_{\alpha}(x)| \le C < \infty$$
$$\lim_{N \to \infty} \sup_{x \ge N} \sup_{\alpha} |f_{\alpha}(x)| = 0$$

Show that every sequence from the family has a convergent subsequence in the Banach space $\mathcal{X} = C[0, \infty)$ with the norm $||f - g|| = \sup_{x \ge 0} |f(x) - g(x)|$.

Q3. K(s,t) is a bounded continuous function of two variables on $[0,\infty) \times [0,\infty)$.

$$(Tf)(s) = \int_0^\infty K(s,t)e^{-(s+t)}f(t)dt$$

Show that T is a compact operator from \mathcal{X} to \mathcal{X} .