Problemset 9.

1. Find the eigenvalues and eigenvectors of the operator on $L_{2}[0,1]$ with Lebesgue measure given by

$$
(T f)(s)=\int_{0}^{1} K(s, t) f(t) d t
$$

where $K(s, t)=\min \{s, t\}-s t$.
2. If A and B are two self adjoint compact operators on a Hilbert space \mathcal{H} that commute, i.e. $A B=B A$, show that there is a common orthonormal set of eigenvectors $\left\{e_{j}\right\}$ such that $A e_{j}=a_{j} e_{j}$ and $B e_{j}=b_{j} e_{j}$ with real constants a_{j}, b_{j}
3. What would the result look like if you dropped the assumption of compactness but the operators A, B commute and are bounded and self adjoint.

