1. Consider the space $\mathbf{Z} = \{1, 2, 3, ...\}$ of positive integers. $d(i, j) = |2^{-i} - 2^{-j}|$. Is (\mathbf{Z}, d) a metric space? Is it complete, Is it compact, is it separable?

2. Consider the space $\mathbf{Z} = \{1, 2, 3, ...\}$ of positive integers. $d(i, j) = |2^i - 2^j|$. Is (\mathbf{Z}, d) a metric space? Is it complete, Is it compact, is it separable?

3. Consider the space X = [0, 1] the interval $0 \le x \le 1$ and the sequence of functions $f_n(x) = nx^n$ defined for $n \ge 1$ on X. Let f(x) be the function f(x) = 0 for all x.

Does $f_n \to f$ uniformly on [0, 1]. Does it converge at every point $x \in X$? Does it converge almost everywhere with respect to Lebesgue measure? Is the sequence dominated by an integrable function, is the family uniformly integrable. Does $\int_0^1 f_n(x) dx \to 0$?

4. If K(x, y) is a continuous symmetric function on $[0, 1] \times [0, 1]$ show that operator is compact. Let $\{\lambda_j\}$ be the eigenvalues and $\{f_j(x)\}$ the complete orthonormal set of the corresponding eigenfunctions. Show that

$$K(x,y) = \sum_{j} \lambda_j f_j(x) f_j(y)$$

and the convergence takes place in $L_2[[0,1] \times [0,1]]$. In paticular

$$\sum_{j} |\lambda_{j}|^{2} = \int_{0}^{1} \int_{0}^{1} |K(x,y)|^{2} dx dy < \infty$$