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Abstract

Individual ions undergo random motion and pass through ion channels arranged in
the cell membrane. Statistical measurements are difficult to calculate in an individual
channel, consequently making it difficult to understand these processes. Here we in-
vestigate the number of ions in a channel by simulating the random particle movement
through an arbitrary channel, and calculating the mean squared displacement, to ex-
pand on previous work. The previous model agrees with the simulated data in a one
dimensional case, but in a two dimensional case the simulated data deviates from the
previous theoretical model. From our simulations we modified the previous model to
agree to simulated data for short times. This advancement provides a starting point
for further research with different particle conditions or a three-dimensional setting.
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1 Introduction

On a molecular level particles diffuse from an area of high concentration to low concen-
trations. This diffusion process is partially a result of Brownian motion. Brownian motion
occurs when small granules or particles are bombarded by surrounding atoms undergoing
thermal movements [2]. These smaller molecules provide both the damping, which restricts
vibratory motion, and driving forces, which provide energy to the particles on a microscopic
level. These forces create a random motion of specific particles called ions, examples of
which are potassium, sodium and calcium [2]. The liquid that contains these molecules and
particles is found surrounding cell membranes. Cell membranes contain proteins, called ion
channels, that arrange to allow passage for particles from one side of the membrane to the
other. While these particles pass through the pore they still undergo random motion [4].
Pore size can determine the permeability of water and rejection of other solutes [6]. There
is limited understanding of how these ions behave passing through these channels because
of the difficulty to make statistical measurements of a single particle.

1.1 Brownian Motion

Here we present Brownian motion.

Figure 1: Diagram of a particle (blue circle) moving on a one dimensional line with equal
probability (p) of moving left or right

In a one dimensional setting the particle begins at the origin and at each time step(τ)
has equal probability of moving the same distance left or right on a line, creating a discrete
random walk [5]. When τ becomes very small, this discrete walk becomes continuous. Eq.(1)
shows the probability of finding the particle at position x at time t.

p(x, t) =
1√

2πDt
e

−x2

2Dt (1)

whereD is the diffusion coefficient. Eq.(1) satisfies the Fokker-Planck equation ∂p
∂t

= D ∂2p
∂x2

. A
stochastic process, known as the Wiener process can further describe Brownian motion. The
Wiener Process is the limit of a discrete random walk with very small steps, and described
by Eq.(2), where Xk is the particle’s position at time k and Wk is Gaussian white noise[1].

∆Xk = Xk+1 −Xk = DWk τ =
√

2Dτ Wk (2)
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In the simulations described below we use (3) to describe the motion of the particles. The
process above can be equivalently described by the Langevin equation below[1].

ζv(t) =

√
2kBTζ

∆t
W (3)

Xk(t+ ∆t)−Xk(t)

∆t
= v(t) (4)

where x(t) is particle position x at time t, ζ is the friction coefficient, kB is Boltzmann
constant, T is temperature, ∆t is the time increment and W is a normally distributed
random variable. The mean of W denoted by 〈W 〉 = 0 , and the variance denoted by
〈W (t)W (t′)〉 = δ(t − t′). Here 〈· · · 〉 is the average over realizations of the noise. These
equations can be extended to 2D by calculating Eq.(3) with two different random variables
(Wx and Wy) for x and y for each of the axes. Using a 2D setting more accurately shows
how a particle moves in a real space. In this space, the introduction of other components
such as artificial channels provides an even better understanding of particle behavior, which
is what I looked at in this project.

The mean 〈x(t)〉 gives limited information. To better understand the particle behavior
and trajectory we use the statistical method of taking the mean squared displacement(MSD).

1.2 Mean Squared Displacement (MSD)

Mean squared displacement is the sum of the squared deviation of the position of a
particle from a reference position over times[1], shown in Eq. (5).

MSD(τ) =< ∆x(τ)2 >=< [x(t+ τ)− x(t)]2 > (5)

To obtain more data for one particle trajectory, various values of t are used, from 1 to τ ,
τ being the total time the trajectory is tracked. For example, if τ = 1 with ∆t the MSD
is calculated between every position, or if τ = 2 then the MSD is calculated between every
other position which is shown in the sketch below where it starts at t = 0. It would then
start at t = 1 and increase by τ .

Standard Brownian motion has a linear MSD as the particle moves in time. Below, the
derivation of the MSD of standard Brownian motion is done. Starting from Eq. (3) and (4),
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ζv(t) =

√
2kBTζ

∆t
W v(t) =

Xk(t+ dt)−Xk(t)

∆t

ζ
Xk(t+ dt)−Xk(t)

∆t
=
√

2kBTζW

Xk(t+ ∆t)−Xk(t) =
1

ζ
∆t
√

2kBTζW〈
(Xk(t+ ∆t)−Xk(t))

2
〉

=

〈
1

ζ
∆t
√

2kBTζW )2

〉
〈
(Xk(t+ ∆t)−Xk(t))

2
〉

=
2kbT

ζ
∆t
〈
W 2
〉

〈
(Xk(t+ ∆t)−Xk(t))

2
〉

=
2kbT

ζ
∆t

If the motion happens in many dimensions the MSD of a particle trajectory, where d is
dimension, is, 〈

∆Xk(∆t)
2
〉

=
2kBTd

ζ
∆t. (6)

Now, instead of looking at standard Brownian motion, we can look at Brownian motion
with an added ion channel, not considering the surrounding membrane. An imaginary box
is defined to represent the real channel. At each time step the amount of particles inside
the imaginary box, representing particles passing through the channel, can be counted and
called N . This is shown in Fig.2. When the MSD is taken of the number of particles in
the channel it is not linear, unlike the MSD of standard Brownian motion. The theoretical
expression for this MSD calculation derived from counting particles coming in and out of
the box is below in the case of an infinitely long rectangle [3].

< (N(t+ t0)−N(t0))2 >= 2N0

[(
1− e

−w2

4Dt

)√4Dt

πw2
+ 1− erf

(
w√
4Dt

)]
(7)

N(t) is the number of particles within the channel, N0 is the average number of particles
in the channel, and w is the width of the channel, which will be further explained in Section
2. This expression describes the MSD for number of particles in the channel in one dimension
or when the width(w) approaches 0 and the height(h) of the channel approaches ∞. When
the general shape of the channel becomes more square or h=w the theoretical expression
does not properly describe the MSD of number of particles in the channel. The goal of
this paper is to explore how to adjust the theoretical equation in Eq.(7) to more accurately
describe the MSD of number of particles in the arbitrary channel over a period of time.

2 Simulations

2.1 Simulation Set Up

To model particles undergoing Brownian motion and passing through ion channels, we
first started with simulating multiple particle trajectories in a custom made MATLAB rou-
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tine. These trajectories were created using Eq.(3) and Eq.(4) in Section 1.1. Each particles
position on the x and y was recorded at each time step. In all simulations set parameter
values were chosen as kB T = 0.004 and ζ = 6π(0.001) resulting in D = kB

ζ
≈ 0.222 × l2

∆t
,

where l an arbitrary unit length. The random variable W was determined using MATLAB’s
random normally distributed number generator. To obtain enough data to plot smooth data
at early times the particles trajectories were ran for at least time T = 200000 ∆t(∆t = 1).

In a lab setting particles pass through the observed region and leave the observed re-
gion. To simulate this movement and create ”new” particles we used periodic boundary
conditions. This region was defined by it’s height, h, and width, w, and centered around
the origin. When the particle trajectories were generated and if the particle’s position was
outside of the region, the particle would be placed on the opposite side of it’s exit position
in the region an equal distance to which it left the region. Consistently throughout the
simulations the width was 200l, with the height an equivalent length, with 2000 particles. A
sufficiently large periodic box ensures that the MSD will not be affected at long times. The
particles at time zero were placed randomly in the periodic box.

Within the periodic bounded region an artificial box was made defined by height h and
width w. This box represents the ion channel which the particles pass through. In these
simulation the surrounding membrane is not considered. Rather than track each individuals
particle’s movement through the box, at each time step in t the number of particles in the
box, N(t), was counted. Box sizes varied, we commonly looked at box ratios( h

w
) of 1 to 20,

where 1 is a square box, and 20 is a rectangular box spanning the height of the periodic box.

Figure 2: Example of particle positions in the periodic bounded region with different box
sizes at time 300
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We calculated the MSD of N(t) for different box height to width ratios ( h
w

). To cal-
culate the MSD for each value of τ to the maximum increment value(T ), we calculated
T−τ∑
t=0

(N(t+ τ)−N(t))2, then divided by t/τ . Then divided by the average number of parti-

cles in the box over T . The result is an array from 1 to τ , with the MSD corresponding to
the value of τ or ”inc” in the code below.

Figure 3: Sample of code to calculate the MSD in MATLAB
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2.2 Theoretical MSD

Figure 4 shows data obtained from the simulations of MSD of number of particles in the
box plotted against the theoretical curve shown in Eq.(7) for MSD. For a ratio( h

w
) of 20 a

rectangle the simulations agreed with the theoretical Eq.(7) for short and long times. As the
ratio becomes square Eq.(7) increasingly deviates from the simulated data.

(a) (b)

Figure 4: Comparison of MSD of simulated data to theoretical MSD Eq. (7). ∆t = 1 and
t=500000.

We focused on discrepancies at early times. From Eq.(7), 2N0

√
4Dt
πw2 describes the be-

havior of the MSD in early times. To test where the theoretical MSD deviated from the
simulated data, the simulated data of MSD at early times was fitted to the power function
b · ta for different box height to width ratios( h

w
), where w was kept at w = 10. Theoretically

b = 2
√

4D
πw2 and a = 0.5.

(a) (b)

Figure 5: Values of a and b from simulated MSD data at early times (t=50000) fitted to b ta

for different values of h
w
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Figure 5a indicates the values of b are not consistent with the expected theoretical values,
which should be approximately 0.1 for all values of h

w
. Values of a in Fig. stays consistent

with the expected values of about 0.5. To further understand the simulated vs. theoretical

value of b, the data in Figure 3.a was fitted to the power function c h
w

d
+ g

Figure 6: Simulated values of b fitted to c
(
h
w

)d
+g and compared to the expected theoretical

value

The values of c,d, and g were found to be c = g = 2
√

4D
πw2 which will now be referred to

as b∞ and d ≈ −1. Using these an adjusted theoretical value of b is found.

b
(w
h

)
= b∞

w + h

h
=

2
√

4D

h

(
w + h

h

)
Let R = wh

h+w
. Now, introducing this value of R in place of w, and adding factor of 2 to

account for two dimensions(dimensional component seen in Eq. (6)) in Eq. (7), we obtain,

< (N(t+ t0)−N(t0))2 >= 2N0

[(
1− e

−R2

8Dt

)√ 8Dt

2πR2
+ 1− erf

(
R√
8Dt

)]
. (8)

Figure 7 compares simulated data for the MSD and Eq.(8) to determine if this adjusted
theoretical prediction represents simulated data better for more square box height to width
ratios. Fig.8 shows the comparison of MSD for longer times. This comparison will be
discussed in the next section.
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(a) 50x50 box with the Eq.(7) (b) 50x50 box with Eq.(8)

Figure 7: Comparison of Eq. (7) and Eq. (8) against simulated MSD

Figure 8: Equation 8 shown for long times
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3 Discussion and Conclusion

As seen in Fig.7 the adjusted theoretical(Eq.(8) agrees with the simulated data for short
times with visible improvement from Eq. (7). From time t = 0 to t = 102 the adjusted
theoretical is the most accurate, then around t = 103 there is a small deviation from the
simulated data. This deviation is more visible in Fig. 8 when Eq.(8) is plotted for longer
times but the adjusted theoretical still follows the general trend of the simulated data. After
t = 104 the simulated data has a large amount of statistical error. Obtaining enough data
to limit statistical error is difficult at long time periods because it requires large computing
resources. To test the agreement of Eq.(8) with simulated data for long times, smoother
data is needed. Then to further adjust the original theoretical expression(Eq.(7)) the proper
modifications need to be found for the long time data. An analytic derivation of the new
value of b is also needed to demonstrate that the simulated value found is correct.

This project only focused on a small portion of the bigger picture of how particles behave
in and around ion channels. Understanding this setting requires looking at many differ-
ent components with small differences. Here we looked at one of the simpler cases with a
rectangular channel, with limited particle conditions, this work could easily be expanded to
introduce new restrictions and provide added accuracy to the model.

In all simulations the particles had size zero. To further investigate how particles behave
inside ion channels, altering particle size to a finite size would provide further insights. With
finite size there would be a maximum number of particles allowed in the ion channel at once
instead of infinitely many particles.
Another restriction could be boundaries for the membrane, which would restrict the move-
ment of the particles and how they an pass through the artificial channel. fIn addition to
particle size the density of number of particles with finite size would affect the dynamics
because the particles would hit each other more frequently. These factors should all be
considered when moving forward with this researcht.
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