DEPARTMENT OF MATHEMATICS

Spring 2014 Term

Seminar Series: Statistical Mechanics and the Riemann Hypothesis

Wednesdays, 2:00–3:50 p.m.
Room 1314 WWH
Professor Charles Newman
(January 29 to March 12, 2014)

We present some old results concerning the location of zeros of partition functions (or moment generating functions) in certain statistical mechanics models and their possible connections to the Riemann Hypothesis (RH).

A standard reformulation of the RH is as follows. The (two-sided) Laplace transform of a certain specific function Ψ on the real line is automatically an entire function on the complex plane and the RH is equivalent to this transform having only pure imaginary zeros. Also Ψ is a positive integrable function, so (modulo a multiplicative constant C) is a probability density function.

A (finite) Ising model (with pair ferromagnetic interactions) is a specific type of probability measure P on the points $S = (S_1, \ldots, S_N)$ with each $S_j = +1$ or -1. The Lee-Yang theorem implies that for non-negative a_1, \ldots, a_N, the Laplace transform of the induced probability distribution of $a_1 S_1 + \cdots + a_N S_N$ has only pure imaginary zeros.

The big question here is whether it’s possible to find a sequence of Ising models so that the limit as N tends to ∞ of such induced distributions has density exactly $C \Psi$. We will focus on questions of this sort.

* * *

Here are some background references: