Geometry Seminar
Tuesday, Feb 01, 2011
Room 201 WWH at 6:00 P.M.

Improved Bounds on the (1,k)-Separation Problem

Mordechai Novick
Hebrew University, Israel.

In 1979, Tverberg proved that for every positive integer k there exists an integer f_{k} such that given any family of f_{k} pairwise disjoint convex sets in the plane, there exists a line which separates one of them from k of the others ($f_{1}=2$ is a basic result about convex sets).

He proved that $f_{2}=5$ but otherwise provided a very large upper bound on the size of f_{k}. Ten years later Hope and Katchalski showed that $3 k-1 \leq f_{k} \leq 12(k-1)$. We prove the upper bound $f_{k}<(4+\sqrt{10})(k-1)$ (the coefficient is approximately 7.16), thus more than halving the range in which f_{k} may lie. The proof uses allowable interval sequences, introduced by Goodman and Pollack in 2005.

For more information please visit the seminar website at:
http://www.math.nyu.edu/seminars/geometry_seminar.html.

