On the number of lines on projective hypersurfaces

Saugata Basu
Department of Mathematics
Purdue University

Abstract

I will describe new results comparing three quantities. The number of lines, C_{n}, on a generic complex projective hypersurface in \mathbb{P}^{n} of degree $2 n-3$, the expected number, E_{n}, of lines on a random (Kostlan distributed) real hypersurface of the same degree, and the number $R_{n}=(2 n-3)!!$ of the number of lines counted with intrinsic signs on a generic real hypersurface of the same degree. Clearly, $R_{n} \leq E_{n} \leq C_{n}$. We prove that $E_{3}=6 \sqrt{2}-3$, and that $\lim _{n \rightarrow \infty} \frac{\log \left(E_{n}\right)}{\log \left(C_{n}\right)}=\frac{1}{2}$. I will also discuss new proofs of the well known fact that $C_{3}=27$, and also that $R_{n}=(2 n-3)!!$ (a result of Kharlamov and Finashin, and Okonek and Teleman) which follow from our methods. (Joint work with A. Lerario, E. Lundberg and C. Peterson.)

