
Recent Results on Semialgebraic
Range Searching Lower Bounds

Peyman Afshani DS LB 1/19

Some Overview of Data Structure Lower Bounds

Peyman Afshani DS LB 2/19

Contents:

1. Introduction
2. Pointer-machine Lower Bounds
3. A framework
4. An example of a LB
5. Semialgebraic
6. Overview of LB techniques

Introduction

Peyman Afshani DS LB 3/19

• No general, unconditional framework
• Conditional: Conjecture Problem A is hard, then use reductions
• Pointer Machine: Disallows random access, only applies when we need to report
a large list. A Navigation bottleneck, free information/computation

• Cell-probe: Can’t go beyond Ω(log n) static query time; Information bottleneck,
free computation

• Semi-group: Limits what DS can store and do. Only for weighted counting,
weights from a semi-group, i.e., no subtractions

• Group: Limits what DS can store and do. Allows subtractions but we only know
how to do dynamic lower bounds

Introduction

Peyman Afshani DS LB 3/19

• No general, unconditional framework
• Conditional: Conjecture Problem A is hard, then use reductions
• Pointer Machine: Disallows random access, only applies when we need to report
a large list. A Navigation bottleneck, free information/computation

• Cell-probe: Can’t go beyond Ω(log n) static query time; Information bottleneck,
free computation

• Semi-group: Limits what DS can store and do. Only for weighted counting,
weights from a semi-group, i.e., no subtractions

• Group: Limits what DS can store and do. Allows subtractions but we only know
how to do dynamic lower bounds

(we can’t even prove a nω(1) lower bound for 3-SAT)

Introduction

Peyman Afshani DS LB 3/19

• No general, unconditional framework
• Conditional: Conjecture Problem A is hard, then use reductions
• Pointer Machine: Disallows random access, only applies when we need to report
a large list. A Navigation bottleneck, free information/computation

• Cell-probe: Can’t go beyond Ω(log n) static query time; Information bottleneck,
free computation

• Semi-group: Limits what DS can store and do. Only for weighted counting,
weights from a semi-group, i.e., no subtractions

• Group: Limits what DS can store and do. Allows subtractions but we only know
how to do dynamic lower bounds

(we can’t even prove a nω(1) lower bound for 3-SAT)

Introduction

Peyman Afshani DS LB 3/19

• No general, unconditional framework
• Conditional: Conjecture Problem A is hard, then use reductions
• Pointer Machine: Disallows random access, only applies when we need to report
a large list. A Navigation bottleneck, free information/computation

• Cell-probe: Can’t go beyond Ω(log n) static query time; Information bottleneck,
free computation

• Semi-group: Limits what DS can store and do. Only for weighted counting,
weights from a semi-group, i.e., no subtractions

• Group: Limits what DS can store and do. Allows subtractions but we only know
how to do dynamic lower bounds

(we can’t even prove a nω(1) lower bound for 3-SAT)

Introduction

Peyman Afshani DS LB 3/19

• No general, unconditional framework
• Conditional: Conjecture Problem A is hard, then use reductions
• Pointer Machine: Disallows random access, only applies when we need to report
a large list. A Navigation bottleneck, free information/computation

• Cell-probe: Can’t go beyond Ω(log n) static query time; Information bottleneck,
free computation

• Semi-group: Limits what DS can store and do. Only for weighted counting,
weights from a semi-group, i.e., no subtractions

• Group: Limits what DS can store and do. Allows subtractions but we only know
how to do dynamic lower bounds

(we can’t even prove a nω(1) lower bound for 3-SAT)

Introduction

Peyman Afshani DS LB 3/19

• No general, unconditional framework
• Conditional: Conjecture Problem A is hard, then use reductions
• Pointer Machine: Disallows random access, only applies when we need to report
a large list. A Navigation bottleneck, free information/computation

• Cell-probe: Can’t go beyond Ω(log n) static query time; Information bottleneck,
free computation

• Semi-group: Limits what DS can store and do. Only for weighted counting,
weights from a semi-group, i.e., no subtractions

• Group: Limits what DS can store and do. Allows subtractions but we only know
how to do dynamic lower bounds

(we can’t even prove a nω(1) lower bound for 3-SAT)

Introduction

Peyman Afshani DS LB 3/19

• No general, unconditional framework
• Conditional: Conjecture Problem A is hard, then use reductions
• Pointer Machine: Disallows random access, only applies when we need to report
a large list. A Navigation bottleneck, free information/computation

• Cell-probe: Can’t go beyond Ω(log n) static query time; Information bottleneck,
free computation

• Semi-group: Limits what DS can store and do. Only for weighted counting,
weights from a semi-group, i.e., no subtractions

• Group: Limits what DS can store and do. Allows subtractions but we only know
how to do dynamic lower bounds

(we can’t even prove a nω(1) lower bound for 3-SAT)

Must avoid icebergs!

The Pointer Machine Model

Peyman Afshani DS LB 4/19

Range Reporting

Peyman Afshani DS LB 5/19

Range Reporting:
• A general class of Computational Geometric problems
• Input: A set of n objects, e.g., points, given by coordinates.

– In 2D we have (xi, yi), 1 ≤ i ≤ n
• We want to build a Data Structure:

– Process the data using some preprocessing time, P (n)
– Store the process data using S(n) units of storage, i.e., space

Range Reporting

Peyman Afshani DS LB 5/19

Range Reporting:
• A general class of Computational Geometric problems
• Input: A set of n objects, e.g., points, given by coordinates.

– In 2D we have (xi, yi), 1 ≤ i ≤ n
• We want to build a Data Structure:

– Process the data using some preprocessing time, P (n)
– Store the process data using S(n) units of storage, i.e., space

The Goal:
• Answer queries
• A query is a geometric region or object.

– Triangle
– Circle
– Point
– . . .

• Output: List of all the input objects that intersect the query object

Range Reporting

Peyman Afshani DS LB 5/19

Range Reporting:
• A general class of Computational Geometric problems
• Input: A set of n objects, e.g., points, given by coordinates.

– In 2D we have (xi, yi), 1 ≤ i ≤ n
• We want to build a Data Structure:

– Process the data using some preprocessing time, P (n)
– Store the process data using S(n) units of storage, i.e., space

The Goal:
• Answer queries
• A query is a geometric region or object.

– Triangle
– Circle
– Point
– . . .

• Output: List of all the input objects that intersect the query object

• k: Output size

A 2D Range Reporting Example

Peyman Afshani DS LB 6/19

• Input: n points in 2D
• Query: A triangle ∆
• Output: List of k points inside ∆

A 2D Range Reporting Example

Peyman Afshani DS LB 6/19

• Input: n points in 2D
• Query: A triangle ∆
• Output: List of k points inside ∆

• We want to spend O(n) space
• Query time?

A 2D Range Reporting Example

Peyman Afshani DS LB 6/19

• Input: n points in 2D
• Query: A triangle ∆
• Output: List of k points inside ∆

• We want to spend O(n) space
• Query time?

• Answer: O(
√
n+ k)

A 2D Range Reporting Example

Peyman Afshani DS LB 6/19

• Input: n points in 2D
• Query: A triangle ∆
• Output: List of k points inside ∆

• We want to spend O(n) space
• Query time?

• Answer: O(
√
n+ k)

• Some people invented crazy
techniques: cutting lemma,
partition theorem, partition
trees, etc.

A 2D Range Reporting Example

Peyman Afshani DS LB 6/19

• Input: n points in 2D
• Query: A triangle ∆
• Output: List of k points inside ∆

• We want to spend O(n) space
• Query time?

• Answer: O(
√
n+ k)

• This is optimal!

• Some people invented crazy
techniques: cutting lemma,
partition theorem, partition
trees, etc.

A 2D Range Reporting Example

Peyman Afshani DS LB 6/19

• Input: n points in 2D
• Query: A triangle ∆
• Output: List of k points inside ∆

• We want to spend O(n) space
• Query time?

• Answer: O(
√
n+ k)

• This is optimal!

• Some people invented crazy
techniques: cutting lemma,
partition theorem, partition
trees, etc.

Assume we have a data structure:
1. Works on any input of n points
2. Uses O(n) space
3. Finds all the points inside any triangle
4. Query time is O(Q(n) + k)

A 2D Range Reporting Example

Peyman Afshani DS LB 6/19

• Input: n points in 2D
• Query: A triangle ∆
• Output: List of k points inside ∆

• We want to spend O(n) space
• Query time?

• Answer: O(
√
n+ k)

• This is optimal!

• Some people invented crazy
techniques: cutting lemma,
partition theorem, partition
trees, etc.

Assume we have a data structure:
1. Works on any input of n points
2. Uses O(n) space
3. Finds all the points inside any triangle
4. Query time is O(Q(n) + k) =⇒ Q(n) = Ω(

√
n)

A 2D Range Reporting Example

Peyman Afshani DS LB 6/19

• Input: n points in 2D
• Query: A triangle ∆
• Output: List of k points inside ∆

• We want to spend O(n) space
• Query time?

• Answer: O(
√
n+ k)

• This is optimal!

• Some people invented crazy
techniques: cutting lemma,
partition theorem, partition
trees, etc.

Assume we have a data structure:
1. Works on any input of n points
2. Uses O(n) space
3. Finds all the points inside any triangle
4. Query time is O(Q(n) + k) =⇒ Q(n) = Ω(

√
n)

This is a claim that holds for any
data structure that satisfies 1-4!!

A 2D Range Reporting Example

Peyman Afshani DS LB 6/19

• Input: n points in 2D
• Query: A triangle ∆
• Output: List of k points inside ∆

• We want to spend O(n) space
• Query time?

• Answer: O(
√
n+ k)

• This is optimal!

• Some people invented crazy
techniques: cutting lemma,
partition theorem, partition
trees, etc.

Assume we have a data structure:
1. Works on any input of n points
2. Uses O(n) space
3. Finds all the points inside any triangle
4. Query time is O(Q(n) + k) =⇒ Q(n) = Ω(

√
n)

This is a claim that holds for any
data structure that satisfies 1-4!!

How do we prove it?

Data Structure Lower Bounds

Peyman Afshani DS LB 7/19

Theorem we want to prove
Assume we have a data structure:
1. Given any input of n points in 2D,
2. stores them using O(n) space, s.t., it
3. finds all the points inside any given query triangle, using
4. query time of O(Q(n) + k).
Then, we must have Q(n) = Ω(

√
n)

Data Structure Lower Bounds

Peyman Afshani DS LB 7/19

Theorem we want to prove
Assume we have a data structure:
1. Given any input of n points in 2D,
2. stores them using O(n) space, s.t., it
3. finds all the points inside any given query triangle, using
4. query time of O(Q(n) + k).
Then, we must have Q(n) = Ω(

√
n)⇐

⇒

Theorem we want to prove
It is impossible to have a data structure that:
1. Given any input of n points in 2D,
2. stores them using O(n) space, s.t., it
3. finds all the points inside any given query triangle, using
4. query time of o(

√
n) +O(k).

Data Structure Lower Bounds

Peyman Afshani DS LB 7/19

Theorem we want to prove
Assume we have a data structure:
1. Given any input of n points in 2D,
2. stores them using O(n) space, s.t., it
3. finds all the points inside any given query triangle, using
4. query time of O(Q(n) + k).
Then, we must have Q(n) = Ω(

√
n)⇐

⇒

Theorem we want to prove
It is impossible to have a data structure that:
1. Given any input of n points in 2D,
2. stores them using O(n) space, s.t., it
3. finds all the points inside any given query triangle, using
4. query time of o(

√
n) +O(k).

Impossibility result!

The Model of Computation: A Pointer Machine

Peyman Afshani DS LB 8/19

Assume, the input is a set P of n items (e.g., points)
DS:
• Storage is a collection of cells
• A cell stores one item
• A cell points to two other cells
• There is a special node called the root

1

2

3

4

9

6

5

7

10

11

8

12

13145

15

13

8 11

9

5

2

8

12

The Model of Computation: A Pointer Machine

Peyman Afshani DS LB 8/19

Assume, the input is a set P of n items (e.g., points)
DS:
• Storage is a collection of cells
• A cell stores one item
• A cell points to two other cells
• There is a special node called the root

1

2

3

4

9

6

5

7

10

11

8

12

13145

15

13

8 11

9

5

2

8

12

The Model of Computation: A Pointer Machine

Peyman Afshani DS LB 8/19

Assume, the input is a set P of n items (e.g., points)
DS:
• Storage is a collection of cells
• A cell stores one item
• A cell points to two other cells
• There is a special node called the root

1

2

3

4

9

6

5

7

10

11

8

12

13145

15

13

8 11

9

5

2

8

12

The Model of Computation: A Pointer Machine

Peyman Afshani DS LB 8/19

1

2

3

4

9

6

5

7

10

11

8

12

13145

15

13

8 11

9

5

2

8

12

Don’t care how long it takes to build this!

of cells is the space usage (space complexity)

The Model of Computation: A Pointer Machine

Peyman Afshani DS LB 8/19

1

2

3

4

9

6

5

7

10

11

8

12

13145

15

13

8 11

9

5

2

8

12

Don’t care how long it takes to build this!

of cells is the space usage (space complexity)

Given a query q, assume we need to report
Pq ⊂ P :

The Model of Computation: A Pointer Machine

Peyman Afshani DS LB 8/19

1

2

3

4

9

6

5

7

10

11

8

12

13145

15

13

8 11

9

5

2

8

12

Don’t care how long it takes to build this!

of cells is the space usage (space complexity)

Given a query q, assume we need to report
Pq ⊂ P :

• ∀x ∈ Pq: We must visit a cell that
stores x

• Only through pointer navigation
• # of pointer navigations = query time

The Model of Computation: A Pointer Machine

Peyman Afshani DS LB 8/19

1

2

3

4

9

6

5

7

10

11

8

12

13145

15

13

8 11

9

5

2

8

12

• Computation is free!
• Information is free!

Don’t care how long it takes to build this!

of cells is the space usage (space complexity)

Given a query q, assume we need to report
Pq ⊂ P :

• ∀x ∈ Pq: We must visit a cell that
stores x

• Only through pointer navigation
• # of pointer navigations = query time

The Model of Computation: A Pointer Machine

Peyman Afshani DS LB 8/19

1

2

3

4

9

6

5

7

10

11

8

12

13145

15

13

8 11

9

5

2

8

12

Don’t care how long it takes to build this!

of cells is the space usage (space complexity)

Given a query q, assume we need to report
Pq ⊂ P :

• ∀x ∈ Pq: We must visit a cell that
stores x

• Only through pointer navigation
• # of pointer navigations = query time

1

2

4

8
8

2

8

We want to report {1, 2, 4, 8}

The Model of Computation: A Pointer Machine

Peyman Afshani DS LB 8/19

1

2

3

4

9

6

5

7

10

11

8

12

13145

15

13

8 11

9

5

2

8

12

Don’t care how long it takes to build this!

of cells is the space usage (space complexity)

Given a query q, assume we need to report
Pq ⊂ P :

• ∀x ∈ Pq: We must visit a cell that
stores x

• Only through pointer navigation
• # of pointer navigations = query time

1

2

4

8
8

2

8

We want to report {1, 2, 4, 8}

The Model of Computation: A Pointer Machine

Peyman Afshani DS LB 8/19

1

2

3

4

9

6

5

7

10

11

8

12

13145

15

13

8 11

9

5

2

8

12

Don’t care how long it takes to build this!

of cells is the space usage (space complexity)

Given a query q, assume we need to report
Pq ⊂ P :

• ∀x ∈ Pq: We must visit a cell that
stores x

• Only through pointer navigation
• # of pointer navigations = query time

1

2

4

8
8

2

8

We want to report {1, 2, 4, 8}
We used 11 pointers ⇒ query time at
least 11

The Model of Computation: A Pointer Machine

Peyman Afshani DS LB 8/19

BALANCED BINARY TREE

x1 xn

Space: O(n)

Query: O(k log n)

The Model of Computation: A Pointer Machine

Peyman Afshani DS LB 8/19

BALANCED BINARY TREE

x1 xn

Space: O(n)

Query: O(k log n)

• Query time must be Q(n) +O(k) (or Q(n) + o(k log n))
• PM can simulate RAM w/ extra O(log n) factor

– LB in PM with Q(n) +O(k log n) ⇒ Q(n)/ log n+O(k) LB in RAM

A Framework Theorem

Peyman Afshani DS LB 9/19

Unit square in 2D

A Framework Theorem

Peyman Afshani DS LB 9/19

Unit square in 2D

Problem:
• Input: n points
• Goal: A data structure
• Query: A region inside the unit square
• Output: All the points inside the region

query slab

A Framework Theorem

Peyman Afshani DS LB 9/19

Unit square in 2D

Problem:
• Input: n points
• Goal: A data structure
• Query: A region inside the unit square
• Output: All the points inside the region

Geometric Range Reporting: GRR
query slab

A Framework Theorem

Peyman Afshani DS LB 9/19

Unit square in 2D

Problem:
• Input: n points
• Goal: A data structure
• Query: A region inside the unit square
• Output: All the points inside the region

Geometric Range Reporting: GRR

Framework Theorem:
(i) Assume we have a data structure that solves our GRR:
1. Given any input of n points

2. stores them using S(n) space, s.t., it

3. answers any query in O(Q(n) + k) time.

query slab

A Framework Theorem

Peyman Afshani DS LB 9/19

Unit square in 2D

Problem:
• Input: n points
• Goal: A data structure
• Query: A region inside the unit square
• Output: All the points inside the region

Geometric Range Reporting: GRR

Framework Theorem:
(i) Assume we have a data structure that solves our GRR:
1. Given any input of n points

2. stores them using S(n) space, s.t., it

3. answers any query in O(Q(n) + k) time.

query slab

Assume we can build:
• n points
• m query regions, r1, . . . , rm
• (Cond. I) Every ri contains Ω(Q(n)) points
• (Cond. II) Any α queries contain at most β points

A Framework Theorem

Peyman Afshani DS LB 9/19

Unit square in 2D

Problem:
• Input: n points
• Goal: A data structure
• Query: A region inside the unit square
• Output: All the points inside the region

Geometric Range Reporting: GRR

Framework Theorem:
(i) Assume we have a data structure that solves our GRR:
1. Given any input of n points

2. stores them using S(n) space, s.t., it

3. answers any query in O(Q(n) + k) time.

query slab

Assume we can build:
• n points
• m query regions, r1, . . . , rm
• (Cond. I) Every ri contains Ω(Q(n)) points
• (Cond. II) Any α queries contain at most β points

S(n) = Ω

(∑
|ri|

α2O(β)

)

A Discrete Geometry View

Peyman Afshani DS LB 10/19

• Input: n points
• Query: lines

A Discrete Geometry View

Peyman Afshani DS LB 10/19

• Input: n points
• Query: lines

Build:
• n points
• (a lot of) m query regions, r1, . . . , rm
• (Cond. I) Every ri contains Ω(Q(n)) points
• (Cond. II) Any α queries contain at most β
points.

S(n) = Ω

(∑
|ri|

α2O(β)

)

A Discrete Geometry View

Peyman Afshani DS LB 10/19

• Input: n points
• Query: lines

Build:
• n points
• (a lot of) m query regions, r1, . . . , rm
• (Cond. I) Every ri contains Ω(Q(n)) points
• (Cond. II) Any α queries contain at most β
points.

S(n) = Ω

(∑
|ri|

α2O(β)

)
• Every line is Q(n)-rich
• No Kα,β in incidence graph

• Lower bound: S(n) ≫ # of incidences
α2O(β)

A Discrete Geometry View

Peyman Afshani DS LB 10/19

• Input: n points
• Query: lines

Build:
• n points
• (a lot of) m query regions, r1, . . . , rm
• (Cond. I) Every ri contains Ω(Q(n)) points
• (Cond. II) Any α queries contain at most β
points.

S(n) = Ω

(∑
|ri|

α2O(β)

)
• Every line is Q(n)-rich
• No Kα,β in incidence graph

• Lower bound: S(n) ≫ # of incidences
α2O(β)

n
Q(n)

Q(n)Well-known construction:

A Discrete Geometry View

Peyman Afshani DS LB 10/19

• Input: n points
• Query: lines

Build:
• n points
• (a lot of) m query regions, r1, . . . , rm
• (Cond. I) Every ri contains Ω(Q(n)) points
• (Cond. II) Any α queries contain at most β
points.

S(n) = Ω

(∑
|ri|

α2O(β)

)
• Every line is Q(n)-rich
• No Kα,β in incidence graph

• Lower bound: S(n) ≫ # of incidences
α2O(β)

n
Q(n)

Q(n)Well-known construction:

Slopes of 1,2,3,. . . , n
Q2(n)

A Discrete Geometry View

Peyman Afshani DS LB 10/19

• Input: n points
• Query: lines

Build:
• n points
• (a lot of) m query regions, r1, . . . , rm
• (Cond. I) Every ri contains Ω(Q(n)) points
• (Cond. II) Any α queries contain at most β
points.

S(n) = Ω

(∑
|ri|

α2O(β)

)
• Every line is Q(n)-rich
• No Kα,β in incidence graph

• Lower bound: S(n) ≫ # of incidences
α2O(β)

n
Q(n)

Q(n)Well-known construction:

Slopes of 1,2,3,. . . , n
Q2(n)

Ω
(

n
Q(n)

)
values for Y -intersepts

A Discrete Geometry View

Peyman Afshani DS LB 10/19

• Input: n points
• Query: lines

Build:
• n points
• (a lot of) m query regions, r1, . . . , rm
• (Cond. I) Every ri contains Ω(Q(n)) points
• (Cond. II) Any α queries contain at most β
points.

S(n) = Ω

(∑
|ri|

α2O(β)

)
• Every line is Q(n)-rich
• No Kα,β in incidence graph

• Lower bound: S(n) ≫ # of incidences
α2O(β)

n
Q(n)

Q(n)Well-known construction:

Slopes of 1,2,3,. . . , n
Q2(n)

Ω
(

n
Q(n)

)
values for Y -intersepts

No K2,2

I = n2

Q2(n) space lower bound

Optimal

A Discrete Geometry View

Peyman Afshani DS LB 10/19

• Input: n points
• Query: lines

Build:
• n points
• (a lot of) m query regions, r1, . . . , rm
• (Cond. I) Every ri contains Ω(Q(n)) points
• (Cond. II) Any α queries contain at most β
points.

S(n) = Ω

(∑
|ri|

α2O(β)

)
• Every line is Q(n)-rich
• No Kα,β in incidence graph

• Lower bound: S(n) ≫ # of incidences
α2O(β)

Afshani, Cheng, SOSA’23 :

Q(n) ≫
(

n2

S(n)

) d−1
d

For S(n) = O(n) ⇒ Q(n) = Ω(n1−1/d)
(only tight LB for d > 2)

Semialgebraic Range Reporting

Peyman Afshani DS LB 11/19

Input:
• n points in Rd.
• Store in a DS
• Given a range R

– list them.

n space, n1−1/d query time (low space)

nd space, logd−1 n query time (fast query)

Semialgebraic Range Reporting

Peyman Afshani DS LB 11/19

Input:
• n points in Rd.
• Store in a DS
• Given a range R

– list them.

n space, n1−1/d query time (low space)

nd space, logd−1 n query time (fast query)

S(n) = nd

Qd(n)

Semialgebraic Range Reporting

Peyman Afshani DS LB 11/19

Input:
• n points in Rd.
• Store in a DS
• Given a range R

– list them.

n space, n1−1/d query time (low space)

nd space, logd−1 n query time (fast query)

S(n) = nd

Qd(n)

Semialgebraic Range Reporting

Peyman Afshani DS LB 11/19

Input:
• n points in Rd.
• Store in a DS
• Given a range R

– list them.

n space, n1−1/d query time (low space)

nd space, logd−1 n query time (fast query)

S(n) = nd

Qd(n)

d degrees of
freedom

Semialgebraic Range Reporting

Peyman Afshani DS LB 11/19

Input:
• n points in Rd.
• Store in a DS
• Given a range R

– list them.

S(n) = nd

Qd(n)

d-dimensional
d degrees of
freedom

Semialgebraic Range Reporting

Peyman Afshani DS LB 11/19

Input:
• n points in Rd.
• Store in a DS
• Given a range R

– list them.

S(n) = nd

Qd(n)

d-dimensional
d degrees of
freedom

Semialgebraic Range Reporting

Peyman Afshani DS LB 11/19

Input:
• n points in Rd.
• Store in a DS
• Given a range R

– list them.

S(n) = nd

Qd(n)

d-dimensional
d degrees of
freedom

Find all (xi, yi) s.t.,
(xi − a)2 + (yi − b)2 ≤ r2

Semialgebraic Range Reporting

Peyman Afshani DS LB 11/19

Input:
• n points in Rd.
• Store in a DS
• Given a range R

– list them.

S(n) = nd

Qd(n)

d-dimensional
d degrees of
freedom

Find all (xi, yi) s.t.,
(xi − a)2 + (yi − b)2 ≤ r2

Semialgebraic Range Reporting

Peyman Afshani DS LB 11/19

Input:
• n points in Rd.
• Store in a DS
• Given a range R

– list them.

S(n) = nd

Qd(n)

d-dimensional
d degrees of
freedom

Find all (xi, yi) s.t.,
(xi − a)2 + (yi − b)2 ≤ r2

x2
i − 2axi + a2 + y2i − 2byi + b2 ≤ r2

zi − 2axi + a2 +−2byi + b2 ≤ r2

zi ≤ 2axi + 2byi + r2 − a2 − b2

Point (xi, yi, x
2
i + y2i) below halfspace

H(a, b, r) : Z ≤ 2aX + 2bY + r2 − a2 − b2

Semialgebraic Range Reporting

Peyman Afshani DS LB 11/19

Input:
• n points in Rd.
• Store in a DS
• Given a range R

– list them.

S(n) = nd

Qd(n)

d-dimensional
d degrees of
freedom

S(n) = n3

Q3(n)

2D
3 degrees of
freedom

Semialgebraic Range Reporting

Peyman Afshani DS LB 11/19

Input:
• n points in Rd.
• Store in a DS
• Given a range R

– list them.

S(n) = nd

Qd(n)

d-dimensional
d degrees of
freedom

S(n) = n3

Q3(n)

2D
3 degrees of
freedom

n space, n1−1/3 = n2/3 query time (low space)

n3 space, log2 n query time (fast query)

Semialgebraic Range Reporting

Peyman Afshani DS LB 11/19

Input:
• n points in Rd.
• Store in a DS
• Given a range R

– list them.

S(n) = nd

Qd(n)

d-dimensional
d degrees of
freedom

S(n) = n3

Q3(n)

2D
3 degrees of
freedom

n space, n1−1/3 = n2/3 query time (low space)

n3 space, log2 n query time (fast query)

The polynomial
Method

Semialgebraic Range Reporting

Peyman Afshani DS LB 11/19

Input:
• n points in Rd.
• Store in a DS
• Given a range R

– list them.

S(n) = nd

Qd(n)

d-dimensional
d degrees of
freedom

S(n) = n3

Q3(n)

2D
3 degrees of
freedom

n space, n1−1/3 = n2/3 query time (low space)

n3 space, log2 n query time (fast query)

The polynomial
Method

Semialgebraic Range Reporting

Peyman Afshani DS LB 11/19

Input:
• n points in Rd.
• Store in a DS
• Given a range R

– list them.

S(n) = nd

Qd(n)

d-dimensional
d degrees of
freedom

S(n) = n3

Q3(n)

2D
3 degrees of
freedom

n space, n1−1/3 = n2/3 query time (low space)

n3 space, log2 n query time (fast query)

The polynomial
Method

Current knowledge: n3

Q5(n)
≤ S(n) ≤ n3

Q4(n)

Semialgebraic Range Reporting

Peyman Afshani DS LB 11/19

Input:
• n points in Rd.
• Store in a DS
• Given a range R

– list them.

S(n) = nd

Qd(n)

d-dimensional
d degrees of
freedom

S(n) = n3

Q3(n)

2D
3 degrees of
freedom

n space, n1−1/3 = n2/3 query time (low space)

n3 space, log2 n query time (fast query)

The polynomial
Method

Current knowledge: n3

Q5(n)
≤ S(n) ≤ n3

Q4(n)

tight

Fast Query Lower Bound: The General Approach

Peyman Afshani DS LB 12/19

Unit square in 2D

• Input: n uniformly random points
• Query: −w ≤ P (x, y) ≤ w
• List the points in the query
• Goal: Lower bound for polylog Q(n); Q(n) = Õ(1)
• Space Lower Bound: roughly nβ

• β: Degrees of freedom

Fast Query Lower Bound: The General Approach

Peyman Afshani DS LB 12/19

Unit square in 2D

• Input: n uniformly random points
• Query: −w ≤ P (x, y) ≤ w
• List the points in the query
• Goal: Lower bound for polylog Q(n); Q(n) = Õ(1)
• Space Lower Bound: roughly nβ

• β: Degrees of freedom

How to:
• Create nβ polynomials Pi(x, y)
• Area of −w ≤ P (x, y) ≤ w is Θ(w)

• w ≈ Q(n)
n = Õ(1): Each region is “Q(n)-rich”

Fast Query Lower Bound: The General Approach

Peyman Afshani DS LB 12/19

Unit square in 2D

• Input: n uniformly random points
• Query: −w ≤ P (x, y) ≤ w
• List the points in the query
• Goal: Lower bound for polylog Q(n); Q(n) = Õ(1)
• Space Lower Bound: roughly nβ

• β: Degrees of freedom

How to:
• Create nβ polynomials Pi(x, y)
• Area of −w ≤ P (x, y) ≤ w is Θ(w)

• w ≈ Q(n)
n = Õ(1): Each region is “Q(n)-rich”

• (main challenge) Intersection of two regions: ≪ 1
n

Fast Query Lower Bound: The General Approach

Peyman Afshani DS LB 12/19

Unit square in 2D

• Input: n uniformly random points
• Query: −w ≤ P (x, y) ≤ w
• List the points in the query
• Goal: Lower bound for polylog Q(n); Q(n) = Õ(1)
• Space Lower Bound: roughly nβ

• β: Degrees of freedom

How to:
• Create nβ polynomials Pi(x, y)
• Area of −w ≤ P (x, y) ≤ w is Θ(w)

• w ≈ Q(n)
n = Õ(1): Each region is “Q(n)-rich”

• (main challenge) Intersection of two regions: ≪ 1
n

Fast Query Lower Bound: The General Approach

Peyman Afshani DS LB 12/19

Unit square in 2D

• Input: n uniformly random points
• Query: −w ≤ P (x, y) ≤ w
• List the points in the query
• Goal: Lower bound for polylog Q(n); Q(n) = Õ(1)
• Space Lower Bound: roughly nβ

• β: Degrees of freedom

How to:
• Create nβ polynomials Pi(x, y)
• Area of −w ≤ P (x, y) ≤ w is Θ(w)

• w ≈ Q(n)
n = Õ(1): Each region is “Q(n)-rich”

• (main challenge) Intersection of two regions: ≪ 1
n

So far only one approach:

Create: P1(x, y), P2(x, y), . . . , PM (x, y)
Min. distance between coefficients is large
Prove it implies (main challenge)

The First Technique

Peyman Afshani DS LB 13/19

Unit square in 2D

How to:
• Create n∆+1 polynomials Pi(x, y)

• −Q(n)
n ≤ P (x, y) ≤ Q(n)

n
• Each region is “Q(n)-rich”

• (main challenge) Intersection of two regions: ≪ 1
n

P (x, y) : Y = □X∆ +□X∆−1 + . . .+□X +□

The First Technique

Peyman Afshani DS LB 13/19

Unit square in 2D

How to:
• Create n∆+1 polynomials Pi(x, y)

• −Q(n)
n ≤ P (x, y) ≤ Q(n)

n
• Each region is “Q(n)-rich”

• (main challenge) Intersection of two regions: ≪ 1
n

Pj(x, y) : Y = □X∆ +□X∆−1 + . . .+□X +□

Pi(x, y) : Y = □X∆ +□X∆−1 + . . .+□X +□

Distance Q∆(n)
n is enough

to imply (main challenge)

The Second Technique

Peyman Afshani DS LB 14/19

Unit square in 2D

How to:
• Create n(

∆+d
d) polynomials Pi(x, y)

• −Q(n)
n ≤ P (x, y) ≤ Q(n)

n
• Each region is “Q(n)-rich”

• (main challenge) Intersection of two regions: ≪ 1
n

P (x, y) : Y = X∆+□X∆−1Y +. . .+□XiY j+. . .+□Y +□X+□

The Second Technique

Peyman Afshani DS LB 14/19

Unit square in 2D

How to:
• Create n(

∆+d
d) polynomials Pi(x, y)

• −Q(n)
n ≤ P (x, y) ≤ Q(n)

n
• Each region is “Q(n)-rich”

• (main challenge) Intersection of two regions: ≪ 1
n

Distance Q∆2
(n)

n and small magnitude
is enough to imply (main challenge)

Pj(x, y) : Y = X∆+□X∆−1Y +. . .+□XiY j+. . .+□Y +□X+□

Pi(x, y) : Y = X∆+□X∆−1Y +. . .+□XiY j+. . .+□Y +□X+□

The Main Open Question

Peyman Afshani DS LB 15/19

Unit square in 2D

How to:
• Create nβ polynomials Pi(x, y)

• −Q(n)
n ≤ P (x, y) ≤ Q(n)

n
• Each region is “Q(n)-rich”

• (main challenge) Intersection of two regions: ≪ 1
n

P (x, y) : 0 = □X∆+□X∆−1Y +. . .+□XiY j+. . .+□Y +□X+□

• In many problems, □’s CANNOT be independent.
• □ is a polynomial of a1, . . . , aβ
• Some of them have to zero.
• Some of them have to constants
• Some of them depend on other coefficients

The Main Open Question

Peyman Afshani DS LB 15/19

Unit square in 2D

How to:
• Create nβ polynomials Pi(x, y)

• −Q(n)
n ≤ P (x, y) ≤ Q(n)

n
• Each region is “Q(n)-rich”

• (main challenge) Intersection of two regions: ≪ 1
n

P (x, y) : 0 = □X∆+□X∆−1Y +. . .+□XiY j+. . .+□Y +□X+□

• In many problems, □’s CANNOT be independent.
• □ is a polynomial of a1, . . . , aβ
• Some of them have to zero.
• Some of them have to constants
• Some of them depend on other coefficients

Hurdle:
• P1(x, y)H(x, y) = 0
• P2(x, y)H(x, y) = 0
• Have arbitrary large coefficient distance
• Infinitely many zeroes in common

The Third Technique

Peyman Afshani DS LB 16/19

Unit square in 2D

How to:
• Create nβ polynomials Pi(x, y)

• −Q(n)
n ≤ P (x, y) ≤ Q(n)

n
• Each region is “Q(n)-rich”

• (main challenge) Intersection of two regions: ≪ 1
n

P (x, y) : Y G(X) = F (X)
G and F “far from” sharing a root
Y G(X)− F (X) is irreducible

The Third Technique

Peyman Afshani DS LB 16/19

Unit square in 2D

How to:
• Create nβ polynomials Pi(x, y)

• −Q(n)
n ≤ P (x, y) ≤ Q(n)

n
• Each region is “Q(n)-rich”

• (main challenge) Intersection of two regions: ≪ 1
n

P (x, y) : Y G(X) = F (X)
G and F “far from” sharing a root
Y G(X)− F (X) is irreducible

Distance Qpoly ∆(n)
n and small magnitude is enough to imply (main

challenge)

The End?

Peyman Afshani DS LB 17/19

How to Main Challenge

Peyman Afshani DS LB 18/19

Setup:
P (x, y) : Y G(X) = F (X)
t = Resultant(F,G) > 0

How to Main Challenge

Peyman Afshani DS LB 18/19

Setup:
P (x, y) : Y G(X) = F (X)
t = Resultant(F,G) > 0

∃H(X), L(X) : GH + FL = 1

How to Main Challenge

Peyman Afshani DS LB 18/19

Setup:
P (x, y) : Y G(X) = F (X)
t = Resultant(F,G) > 0

∃H(X), L(X) : GH + FL = 1

Create lots of poly:

• A “grid” of side-length δ around P

How to Main Challenge

Peyman Afshani DS LB 18/19

Setup:
P (x, y) : Y G(X) = F (X)
t = Resultant(F,G) > 0

∃H(X), L(X) : GH + FL = 1

Create lots of poly:

• A “grid” of side-length δ around P

• For each coeff. a of P :
– For each i = 0, . . . , n

QC(n)
:

∗ Add δi to a

How to Main Challenge

Peyman Afshani DS LB 18/19

Setup:
P (x, y) : Y G(X) = F (X)
t = Resultant(F,G) > 0

∃H(X), L(X) : GH + FL = 1

Create lots of poly:

• A “grid” of side-length δ around P

• For each coeff. a of P :
– For each i = 0, . . . , n

QC(n)
:

∗ Add δi to a

Get:
• M = nβ polys, P1, ..., PM (ignoring poly Q(n) factors)
• Every two differ at by at least δ in one coeff.
• Every Pi in a small neighborhood of P (within radius nδ)
• δ sufficiently small constant

• Region: 0 ≤ Pi(x, y) ≤ Q(n)
n = w

How to Main Challenge

Peyman Afshani DS LB 18/19

Setup:
P (x, y) : Y G(X) = F (X)
t = Resultant(F,G) > 0

∃H(X), L(X) : GH + FL = 1

Consider P1 and P2:

How to Main Challenge

Peyman Afshani DS LB 18/19

Setup:
P (x, y) : Y G(X) = F (X)
t = Resultant(F,G) > 0

∃H(X), L(X) : GH + FL = 1

Consider P1 and P2:

Imagine big overlap

How to Main Challenge

Peyman Afshani DS LB 18/19

Setup:
P (x, y) : Y G(X) = F (X)
t = Resultant(F,G) > 0

∃H(X), L(X) : GH + FL = 1

Consider P1 and P2:

Imagine big overlap

How to Main Challenge

Peyman Afshani DS LB 18/19

Setup:
P (x, y) : Y G(X) = F (X)
t = Resultant(F,G) > 0

∃H(X), L(X) : GH + FL = 1

Consider P1 and P2:

Imagine big overlap

P1

P2

How to Main Challenge

Peyman Afshani DS LB 18/19

Setup:
P (x, y) : Y G(X) = F (X)
t = Resultant(F,G) > 0

∃H(X), L(X) : GH + FL = 1

Consider P1 and P2:

Imagine big overlap

P1

P2

P1 and P2 evaluate within [0, w] in a big interval I of length
at least 1

Q(n)

How to Main Challenge

Peyman Afshani DS LB 18/19

Setup:
P (x, y) : Y G(X) = F (X)
t = Resultant(F,G) > 0

∃H(X), L(X) : GH + FL = 1

Consider P1 and P2:

Imagine big overlap

P1

P2

P1 and P2 evaluate within [0, w] in a big interval I of length
at least 1

Q(n)

Approach:

• Pick ℓ points in I on P1

How to Main Challenge

Peyman Afshani DS LB 18/19

Setup:
P (x, y) : Y G(X) = F (X)
t = Resultant(F,G) > 0

∃H(X), L(X) : GH + FL = 1

Consider P1 and P2:

Imagine big overlap

P1

P2

P1 and P2 evaluate within [0, w] in a big interval I of length
at least 1

Q(n)

Approach:

• Pick ℓ points in I on P1

How to Main Challenge

Peyman Afshani DS LB 18/19

Setup:
P (x, y) : Y G(X) = F (X)
t = Resultant(F,G) > 0

∃H(X), L(X) : GH + FL = 1

Consider P1 and P2:

Imagine big overlap

P1

P2

P1 and P2 evaluate within [0, w] in a big interval I of length
at least 1

Q(n)

Approach:

• Pick ℓ points in I on P1

V : Vector of monomials:
• all monomials except yX∆G .
• Xi for i = 1, ..., k so we get ℓ mono. in total

• Build an ℓ× ℓ matrix A:
– Row i is the evaluation of V on the i-th point

How to Main Challenge

Peyman Afshani DS LB 18/19

Setup:
P (x, y) : Y G(X) = F (X)
t = Resultant(F,G) > 0

∃H(X), L(X) : GH + FL = 1

Consider P1 and P2:

Imagine big overlap

P1

P2

P1 and P2 evaluate within [0, w] in a big interval I of length
at least 1

Q(n)

Approach:

• Pick ℓ points in I on P1

V : Vector of monomials:
• all monomials except yX∆G .
• Xi for i = 1, ..., k so we get ℓ mono. in total

• Build an ℓ× ℓ matrix A:
– Row i is the evaluation of V on the i-th point

Claim: |det(A)| ≥ Resultant(F,G)|I|ℓ2 −O(w)

How to Main Challenge

Peyman Afshani DS LB 18/19

Setup:
P (x, y) : Y G(X) = F (X)
t = Resultant(F,G) > 0

∃H(X), L(X) : GH + FL = 1

Consider P1 and P2:

Imagine big overlap

P1

P2

P1 and P2 evaluate within [0, w] in a big interval I of length
at least 1

Q(n)

Approach:

• Pick ℓ points in I on P1

V : Vector of monomials:
• all monomials except yX∆G .
• Xi for i = 1, ..., k so we get ℓ mono. in total

• Build an ℓ× ℓ matrix A:
– Row i is the evaluation of V on the i-th point

Claim: |det(A)| ≥ Resultant(F,G)|I|ℓ2 −O(w)

Tweak coeff of P2 by smaller
than δ to pass through the ℓ
points ⇒ contradiction

Thank you!

Peyman Afshani DS LB 19/19

