Recent Results on Semialgebraic Range Searching Lower Bounds

Some Overview of Data Structure Lower Bounds

Contents:

- 1. Introduction
- 2. Pointer-machine Lower Bounds
- 3. A framework
- 4. An example of a LB
- 5. Semialgebraic
- 6. Overview of LB techniques

• No general, unconditional framework

• No general, unconditional framework

(we can't even prove a $n^{\omega(1)}$ lower bound for 3-SAT)

- No general, unconditional framework (we can't even prove a $n^{\omega(1)}$ lower bound for 3-SAT)
- Conditional: Conjecture Problem A is hard, then use reductions

- No general, unconditional framework (we can't even prove a $n^{\omega(1)}$ lower bound for 3-SAT)
- \bullet Conditional: Conjecture Problem A is hard, then use reductions
- Pointer Machine: Disallows random access, only applies when we need to report a large list. A Navigation bottleneck, free information/computation

- No general, unconditional framework (we can't even prove a $n^{\omega(1)}$ lower bound for 3-SAT)
- Conditional: Conjecture Problem A is hard, then use reductions
- Pointer Machine: Disallows random access, only applies when we need to report a large list. A Navigation bottleneck, free information/computation
- Cell-probe: Can't go beyond $\Omega(\log n)$ static query time; Information bottleneck, free computation

- No general, unconditional framework (we can't even prove a $n^{\omega(1)}$ lower bound for 3-SAT)
- Conditional: Conjecture Problem A is hard, then use reductions
- Pointer Machine: Disallows random access, only applies when we need to report a large list. A Navigation bottleneck, free information/computation
- Cell-probe: Can't go beyond $\Omega(\log n)$ static query time; Information bottleneck, free computation
- Semi-group: Limits what DS can store and do. Only for weighted counting, weights from a semi-group, i.e., no subtractions
- Group: Limits what DS can store and do. Allows subtractions but we only know how to do dynamic lower bounds

- No general, unconditional framework (we can't even prove a $n^{\omega(1)}$ lower bound for 3-SAT)
- Conditional: Conjecture Problem A is hard, then use reductions
- Pointer Machine: Disallows random access, only applies when we need to report a large list. A Navigation bottleneck, free information/computation
- Cell-probe: Can't go beyond $\Omega(\log n)$ static query time; Information bottleneck, free computation
- Semi-group: Limits what DS can store and do. Only for weighted counting, weights from a semi-group, i.e., no subtractions
- Group: Limits what DS can store and do. Allows subtractions but we only know how to do dynamic lower bounds

Must avoid icebergs!

The Pointer Machine Model

Range Reporting

Range Reporting:

- A general class of Computational Geometric problems
- Input: A set of *n* objects, e.g., points, given by coordinates.
 - In 2D we have (x_i, y_i) , $1 \le i \le n$
- We want to build a Data Structure:
 - Process the data using some preprocessing time, P(n)
 - Store the process data using S(n) units of storage, i.e., space

Range Reporting

Range Reporting:

- A general class of Computational Geometric problems
- Input: A set of *n* objects, e.g., points, given by coordinates.
 - In 2D we have (x_i, y_i) , $1 \le i \le n$
- We want to build a Data Structure:
 - Process the data using some preprocessing time, P(n)
 - Store the process data using S(n) units of storage, i.e., space

The Goal:

- Answer queries
- A query is a geometric region or object.
 - Triangle
 - Circle
 - Point
 - . . .
- Output: List of all the input objects that intersect the query object

Range Reporting

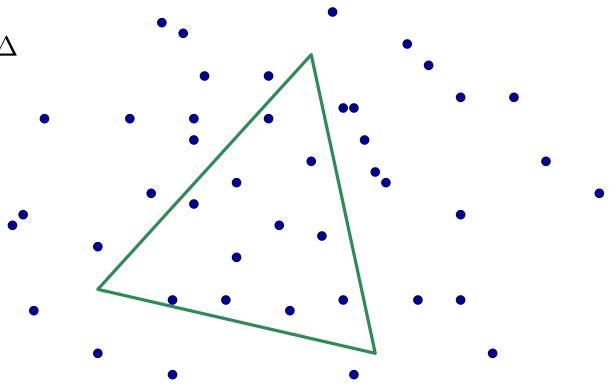
Range Reporting:

- A general class of Computational Geometric problems
- Input: A set of *n* objects, e.g., points, given by coordinates.
 - In 2D we have (x_i, y_i) , $1 \le i \le n$
- We want to build a Data Structure:
 - Process the data using some preprocessing time, P(n)
 - Store the process data using S(n) units of storage, i.e., space

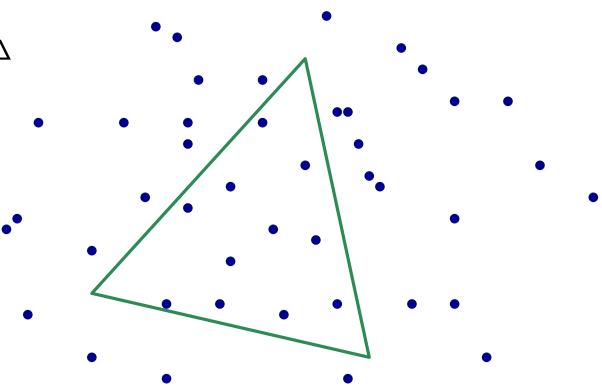
The Goal:

- Answer queries
- A query is a geometric region or object.
 - Triangle
 - Circle
 - Point
 - . . .
- Output: List of all the input objects that intersect the query object
- k: Output size

- Input: *n* points in 2D
- Query: A triangle Δ
- Output: List of k points inside Δ

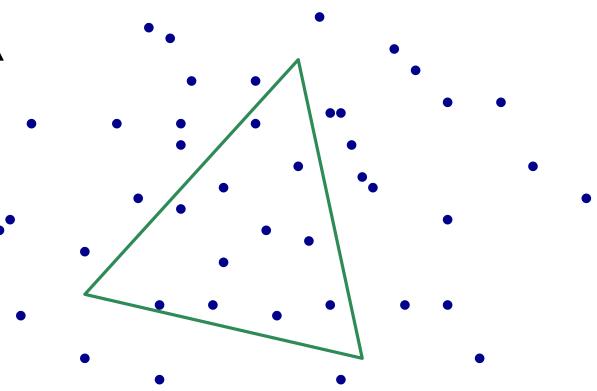


- Input: *n* points in 2D
- Query: A triangle Δ
- Output: List of k points inside Δ
- We want to spend O(n) space
- Query time?

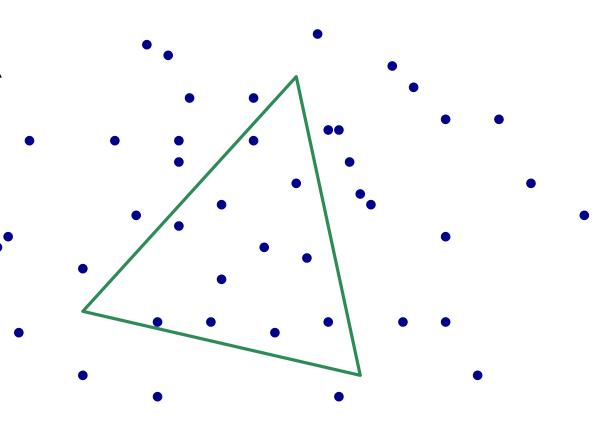


6/19

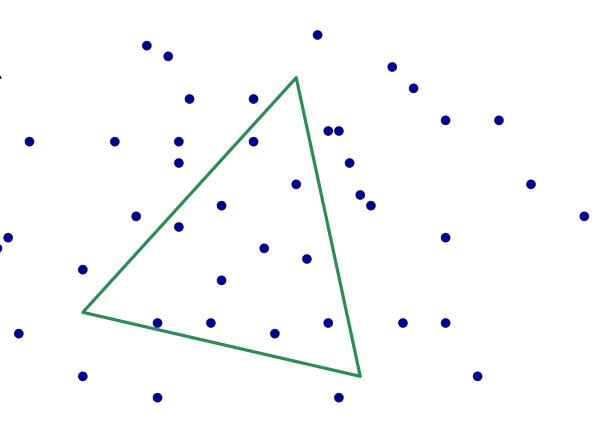
- Input: n points in 2D
- Query: A triangle Δ
- Output: List of k points inside Δ
- We want to spend O(n) space
- Query time?
- Answer: $O(\sqrt{n} + k)$



- Input: n points in 2D
- Query: A triangle Δ
- Output: List of k points inside Δ
- We want to spend O(n) space
- Query time?
- Answer: $O(\sqrt{n} + k)$
 - Some people invented crazy techniques: cutting lemma, partition theorem, partition trees, etc.



- Input: n points in 2D
- Query: A triangle Δ
- Output: List of k points inside Δ
- We want to spend O(n) space
- Query time?
- Answer: $O(\sqrt{n} + k)$
 - Some people invented crazy techniques: cutting lemma, partition theorem, partition trees, etc.
- This is optimal!



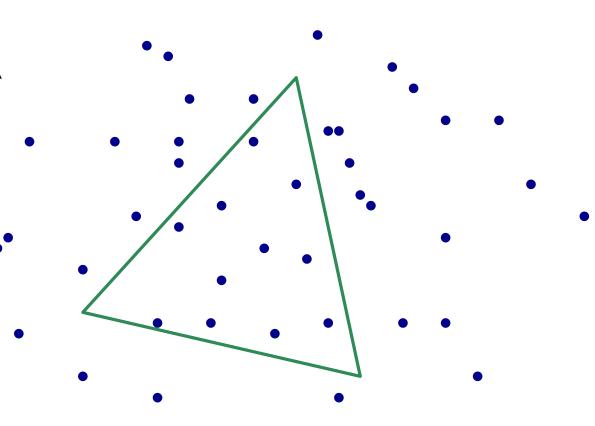
- Input: n points in 2D
- Query: A triangle Δ
- Output: List of k points inside Δ
- We want to spend O(n) space
- Query time?
- Answer: $O(\sqrt{n} + k)$
 - Some people invented crazy techniques: cutting lemma, partition theorem, partition trees, etc.

• This is optimal!

Assume we have a data structure:

- 1. Works on any input of n points
- 2. Uses O(n) space
- 3. Finds all the points inside any triangle
- 4. Query time is O(Q(n) + k)

- Input: n points in 2D
- Query: A triangle Δ
- Output: List of k points inside Δ
- We want to spend O(n) space
- Query time?
- Answer: $O(\sqrt{n} + k)$
 - Some people invented crazy techniques: cutting lemma, partition theorem, partition trees, etc.



• This is optimal!

Assume we have a data structure:

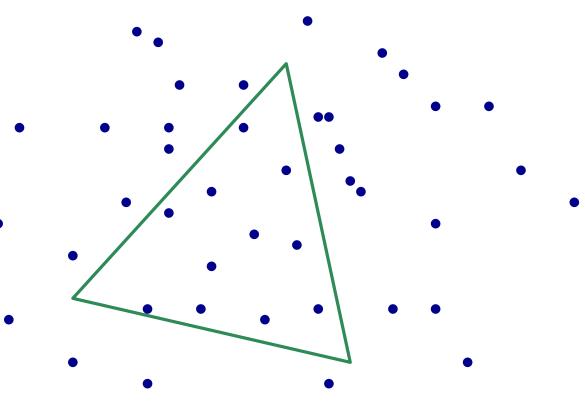
- 1. Works on any input of n points
- 2. Uses O(n) space
- 3. Finds all the points inside any triangle
- 4. Query time is $O(Q(n) + k) \implies Q(n) = \Omega(\sqrt{n})$

Peyman Afshani

- Input: *n* points in 2D
- Query: A triangle Δ
- Output: List of k points inside Δ
- We want to spend O(n) space
- Query time?
- Answer: $O(\sqrt{n} + k)$
 - Some people invented crazy techniques: cutting lemma, partition theorem, partition trees, etc.
- This is optimal!

Assume we have a data structure:

- 1. Works on any input of n points
- 2. Uses O(n) space
- 3. Finds all the points inside any triangle
- 4. Query time is $O(Q(n) + k) \implies Q(n) = \Omega(\sqrt{n})$

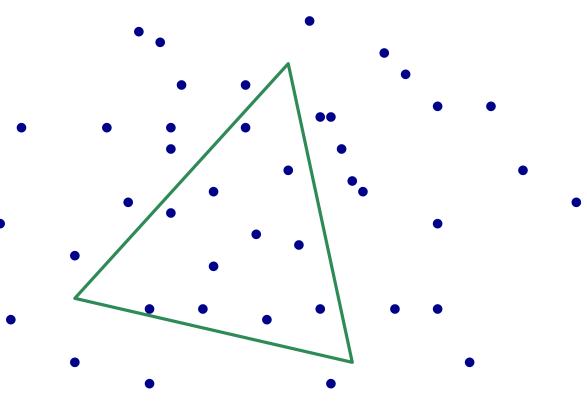


This is a claim that holds for any data structure that satisfies 1-4!!

- Input: *n* points in 2D
- Query: A triangle Δ
- Output: List of k points inside Δ
- We want to spend O(n) space
- Query time?
- Answer: $O(\sqrt{n} + k)$
 - Some people invented crazy techniques: cutting lemma, partition theorem, partition trees, etc.
- This is optimal!

Assume we have a data structure:

- 1. Works on any input of n points
- 2. Uses O(n) space
- 3. Finds all the points inside any triangle
- 4. Query time is $O(Q(n) + k) \implies Q(n) = \Omega(\sqrt{n})$



This is a claim that holds for any data structure that satisfies 1-4!!

How do we prove it?

Data Structure Lower Bounds

Theorem we want to prove

Assume we have a data structure:

- 1. Given any input of n points in 2D,
- 2. stores them using O(n) space, s.t., it
- 3. finds all the points inside any given query triangle, using
- 4. query time of O(Q(n) + k).

Then, we must have $Q(n) = \Omega(\sqrt{n})$

Data Structure Lower Bounds

Theorem we want to prove

Assume we have a data structure:

- 1. Given any input of n points in 2D,
- 2. stores them using O(n) space, s.t., it
- 3. finds all the points inside any given query triangle, using
- 4. query time of O(Q(n) + k).

Then, we must have $Q(n) = \Omega(\sqrt{n})$

Theorem we want to prove

It is impossible to have a data structure that:

- 1. Given any input of n points in 2D,
- 2. stores them using O(n) space, s.t., it
- 3. finds all the points inside any given query triangle, using
- 4. query time of $o(\sqrt{n}) + O(k)$.

Data Structure Lower Bounds

Theorem we want to prove

Assume we have a data structure:

- 1. Given any input of n points in 2D,
- 2. stores them using O(n) space, s.t., it
- 3. finds all the points inside any given query triangle, using
- 4. query time of O(Q(n) + k).

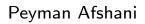
Then, we must have $Q(n) = \Omega(\sqrt{n})$

Theorem we want to prove

Impossibility result!

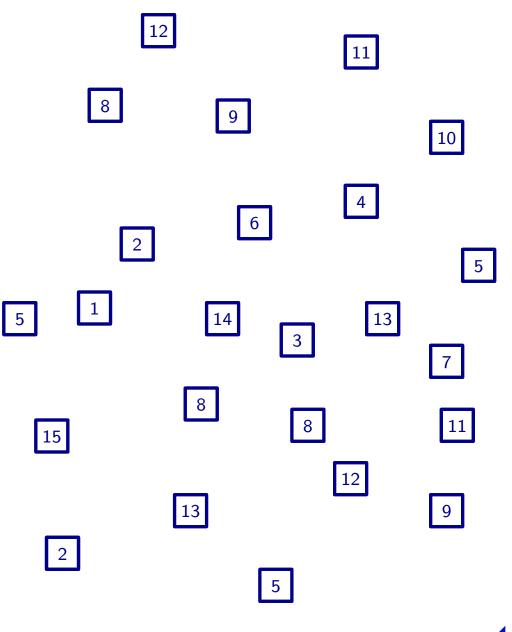
It is impossible to have a data structure that:

- 1. Given any input of n points in 2D,
- 2. stores them using O(n) space, s.t., it
- 3. finds all the points inside any given query triangle, using
- 4. query time of $o(\sqrt{n}) + O(k)$.



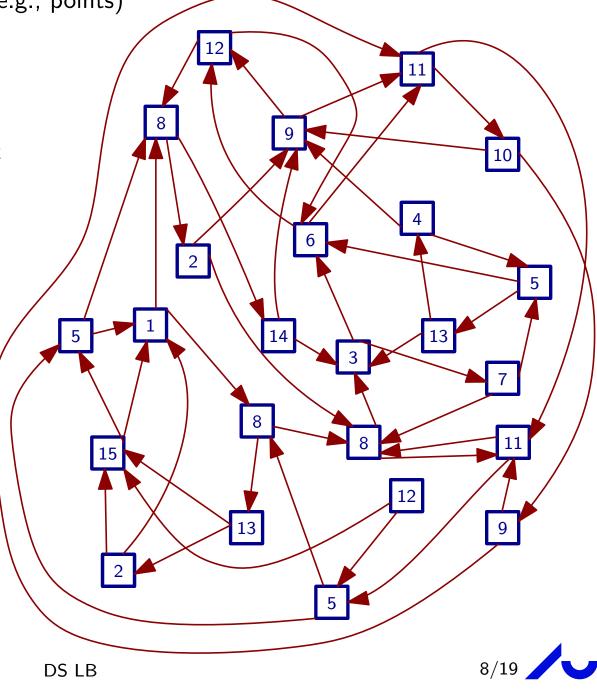
Assume, the input is a set P of n items (e.g., points) DS:

- Storage is a collection of cells
- A cell stores **one** item
- A cell points to two other cells
- There is a special node called the root



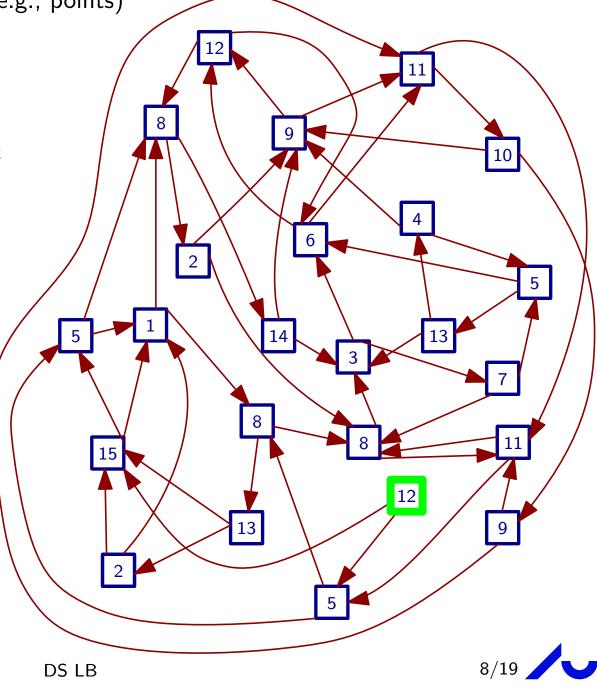
Assume, the input is a set P of n items (e.g., points) DS:

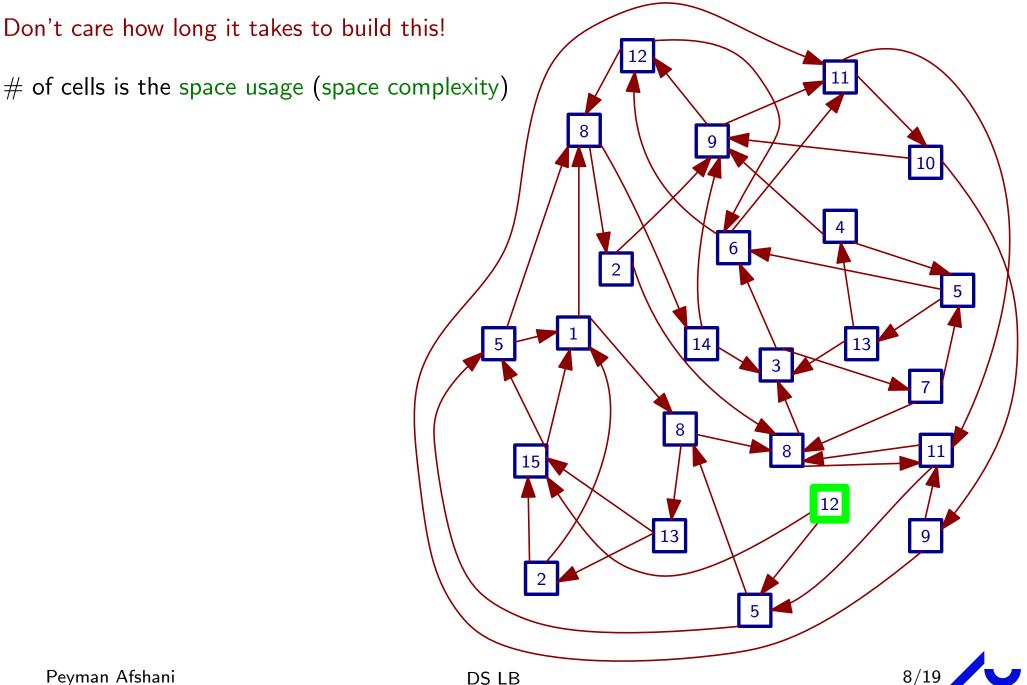
- Storage is a collection of cells
- A cell stores **one** item
- A cell points to two other cells
- There is a special node called the root



Assume, the input is a set P of n items (e.g., points) DS:

- Storage is a collection of cells
- A cell stores **one** item
- A cell points to two other cells
- There is a special node called the root



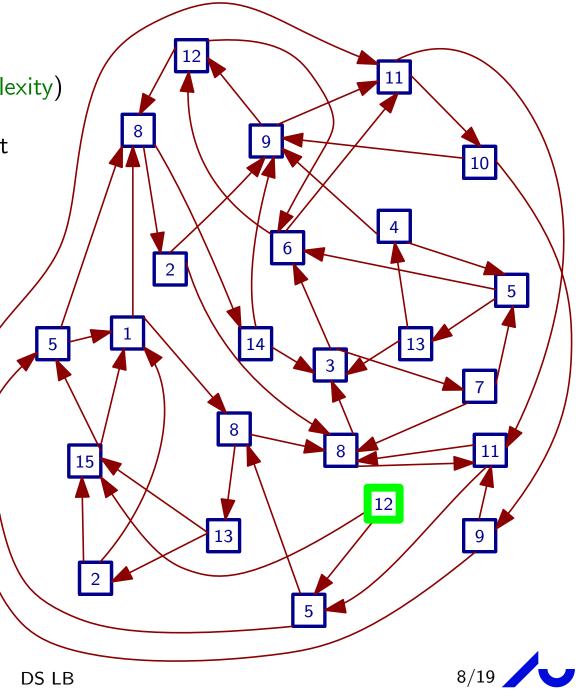


Peyman Afshani

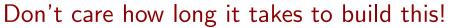
Don't care how long it takes to build this!

of cells is the space usage (space complexity)

Given a query q, assume we need to report $P_q \subset P$:



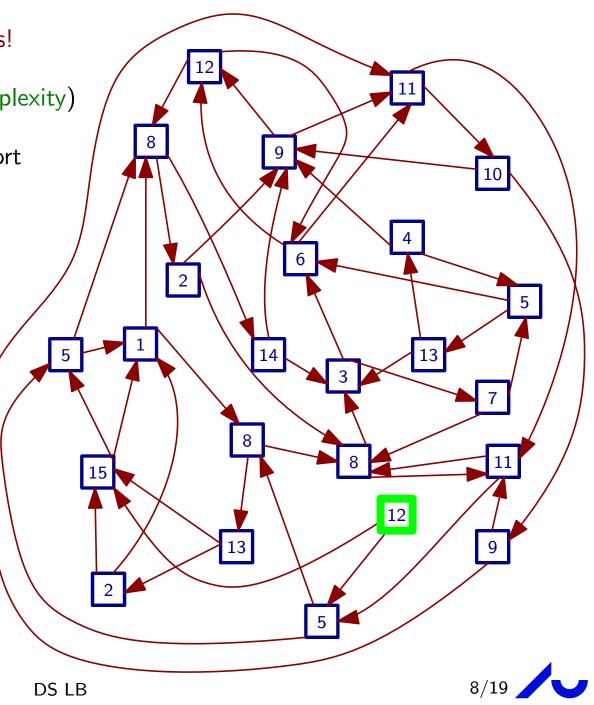
Peyman Afshani

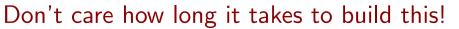


of cells is the space usage (space complexity)

Given a query q, assume we need to report $P_q \subset P$:

- $\forall x \in P_q$: We must visit a cell that stores x
- Only through pointer navigation
- # of pointer navigations = query time

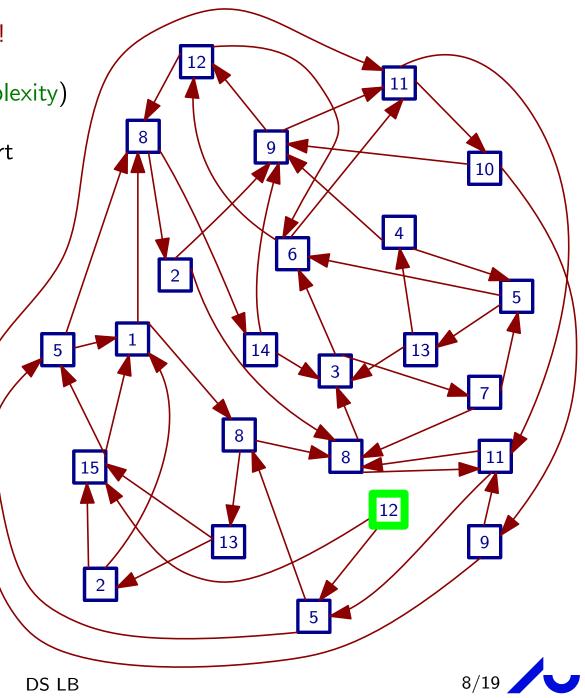


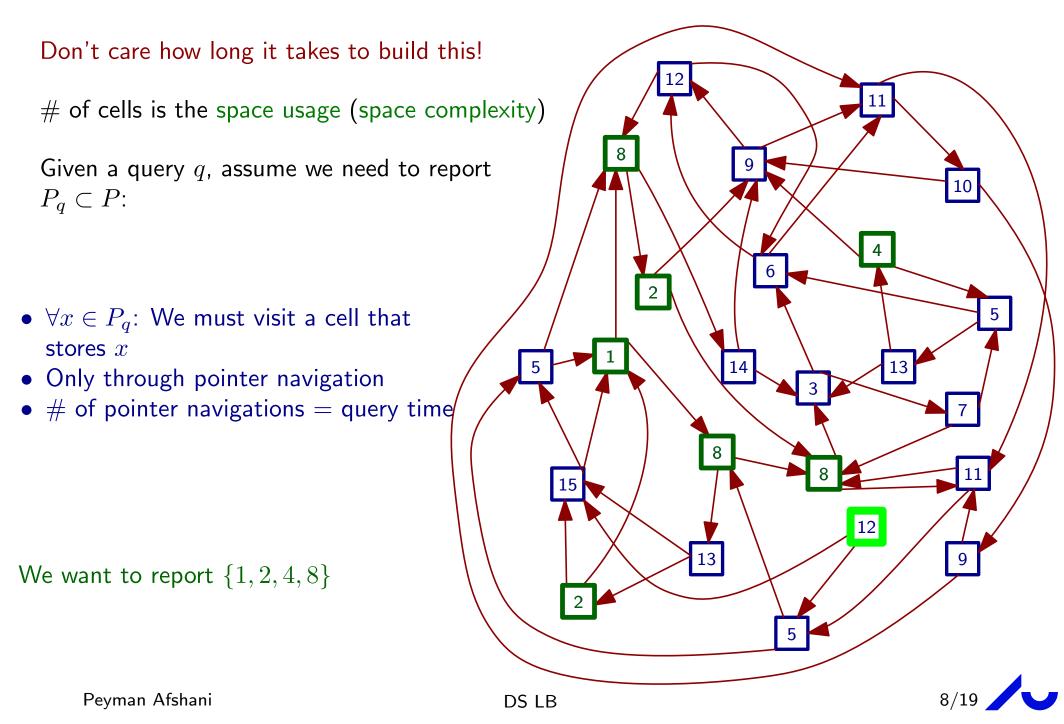


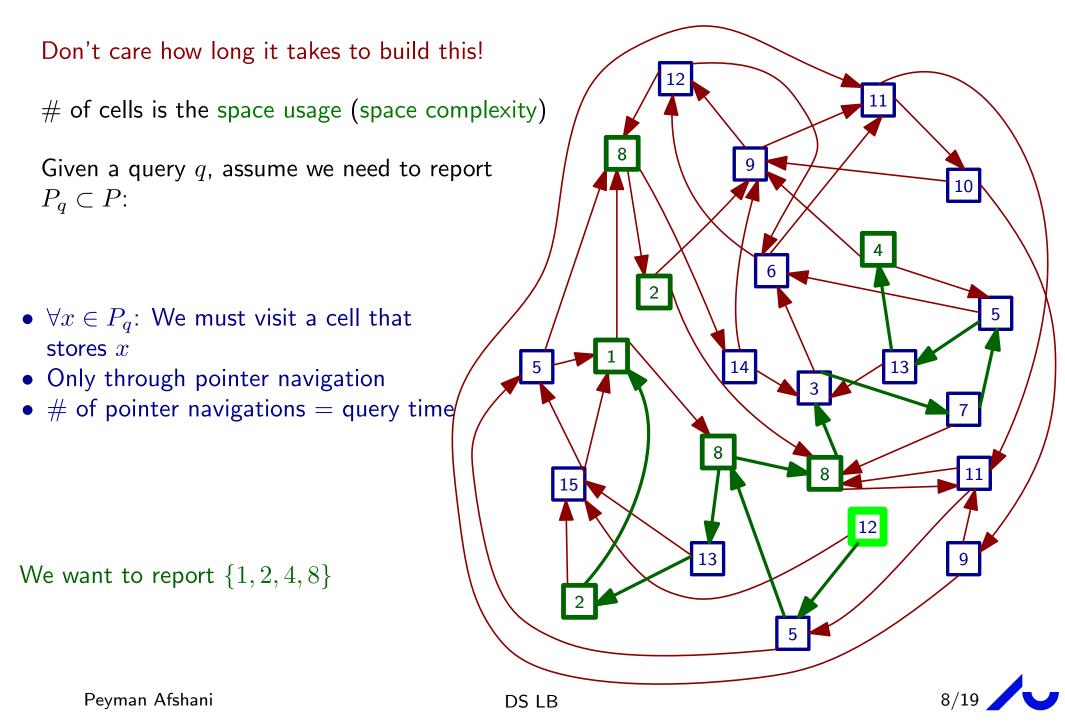
of cells is the space usage (space complexity)

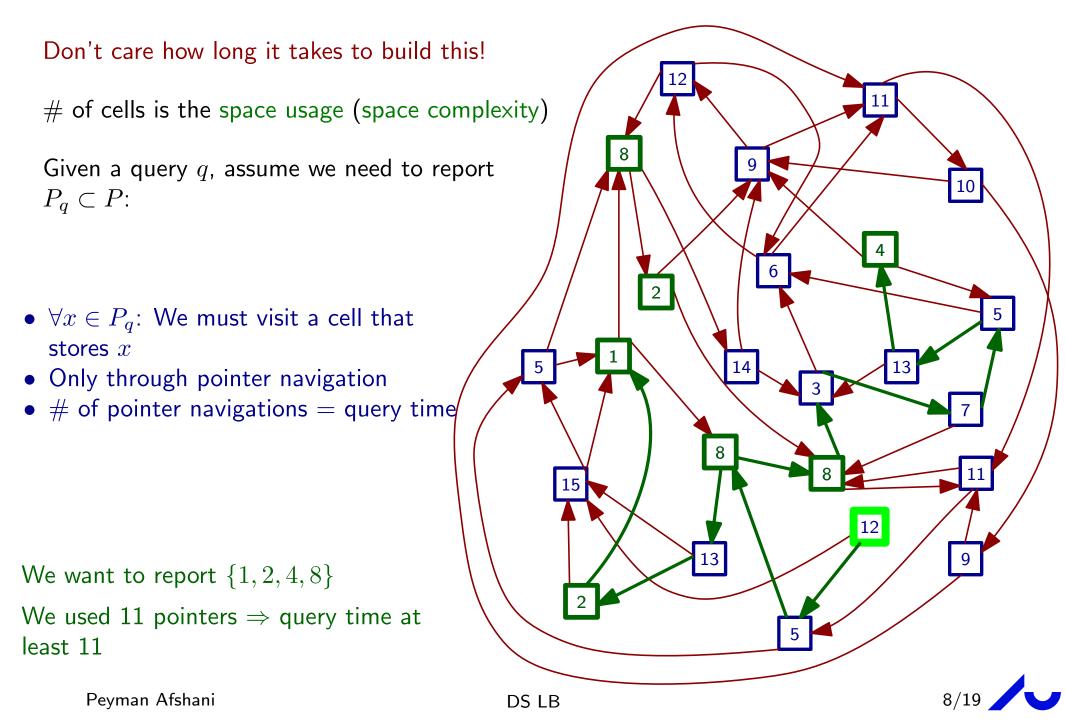
Given a query q, assume we need to report $P_q \subset P$:

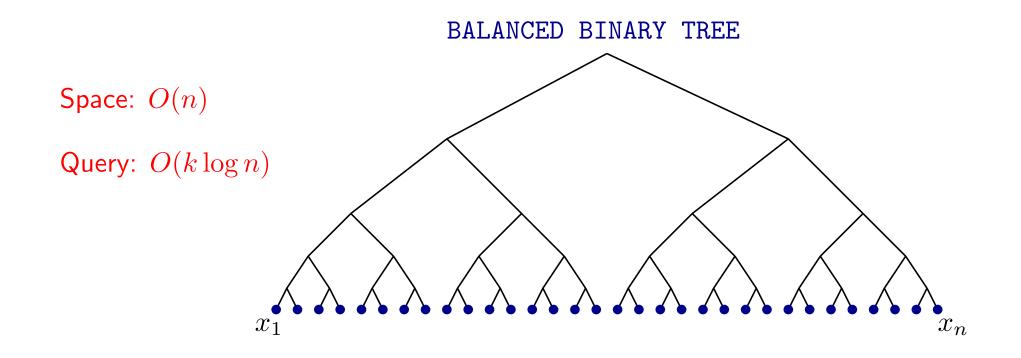
- $\forall x \in P_q$: We must visit a cell that stores x
- Only through pointer navigation
- # of pointer navigations = query time
 - Computation is free!
 - Information is free!



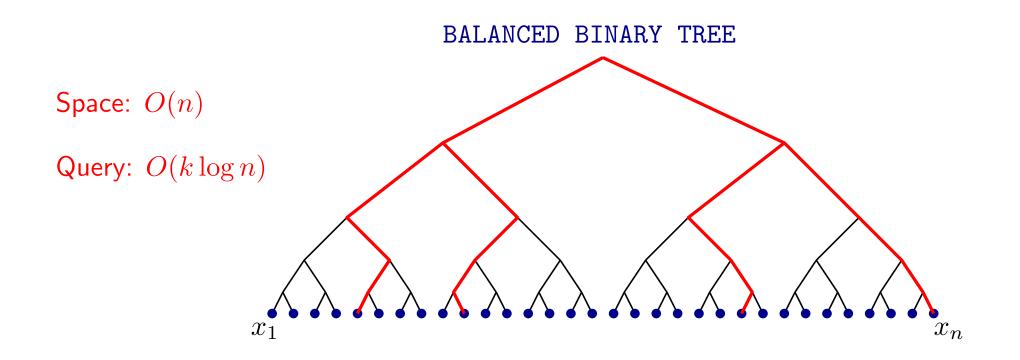






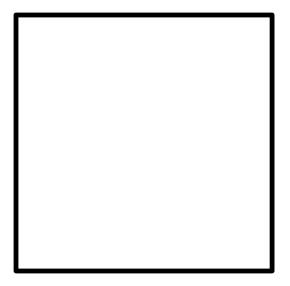


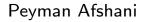
The Model of Computation: A Pointer Machine



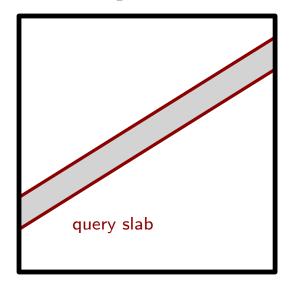
- Query time must be Q(n) + O(k) (or $Q(n) + o(k \log n)$)
- PM can simulate RAM w/ extra $O(\log n)$ factor - LB in PM with $Q(n) + O(k \log n) \Rightarrow Q(n) / \log n + O(k)$ LB in RAM

Unit square in 2D





Unit square in 2D

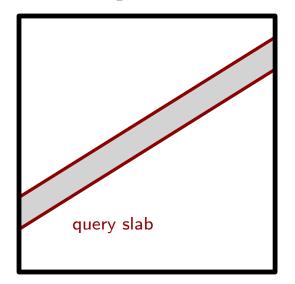


Problem:

- Input: *n* points
- Goal: A data structure
- Query: A region inside the unit square
- Output: All the points inside the region

9/19

Unit square in 2D

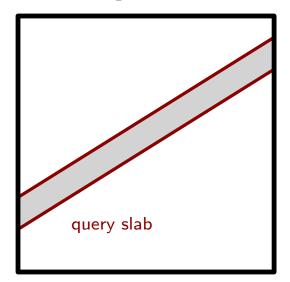


Problem:

- Input: *n* points
- Goal: A data structure
- Query: A region inside the unit square
- Output: All the points inside the region

Geometric Range Reporting: GRR

Unit square in 2D



Problem:

- Input: *n* points
- Goal: A data structure
- Query: A region inside the unit square
- Output: All the points inside the region

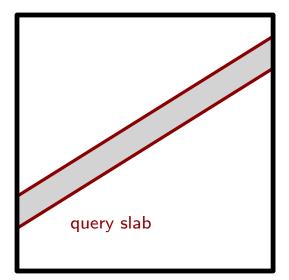
Geometric Range Reporting: GRR

Framework Theorem:

(i) Assume we have a data structure that solves our GRR:

- 1. Given any input of n points
- 2. stores them using S(n) space, s.t., it
- 3. answers any query in O(Q(n) + k) time.

Unit square in 2D



Problem:

- Input: n points
- Goal: A data structure
- Query: A region inside the unit square
- Output: All the points inside the region

Geometric Range Reporting: GRR

Framework Theorem:

(i) Assume we have a data structure that solves our GRR:

- 1. Given any input of n points
- 2. stores them using S(n) space, s.t., it
- 3. answers any query in O(Q(n) + k) time.

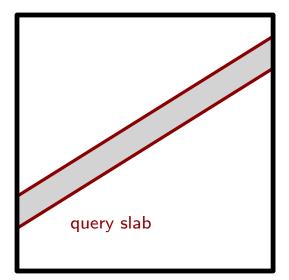
Assume we can build:

- *n* points
- m query regions, r_1, \ldots, r_m
- (Cond. I) Every r_i contains $\Omega(Q(n))$ points
- (Cond. II) Any α queries contain at most β points

Peyman Afshani

DS LB

Unit square in 2D



Problem:

- Input: *n* points
- Goal: A data structure
- Query: A region inside the unit square
- Output: All the points inside the region

Geometric Range Reporting: GRR

Framework Theorem:

(i) Assume we have a data structure that solves our GRR:

- 1. Given any input of n points
- 2. stores them using S(n) space, s.t., it
- 3. answers any query in O(Q(n) + k) time.

Assume we can build:

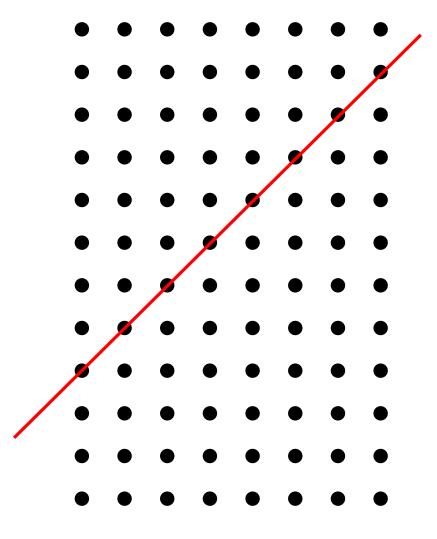
- *n* points
- m query regions, r_1, \ldots, r_m
- (Cond. I) Every r_i contains $\Omega(Q(n))$ points
- (Cond. II) Any α queries contain at most β points

Peyman Afshani

 $S(n) = \Omega\left(\frac{\sum |r_i|}{\alpha 2^{O(\beta)}}\right)$

DS LB

- Input: *n* points
- Query: lines

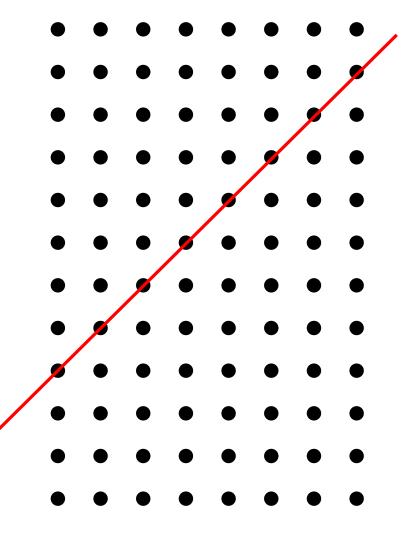


- Input: n points
- Query: lines

Build:

- n points
- (a lot of) m query regions, r_1, \ldots, r_m
- (Cond. I) Every r_i contains $\Omega(Q(n))$ points
- (Cond. II) Any α queries contain at most β points.

$$S(n) = \Omega\left(\frac{\sum |r_i|}{\alpha 2^{O(\beta)}}\right)$$



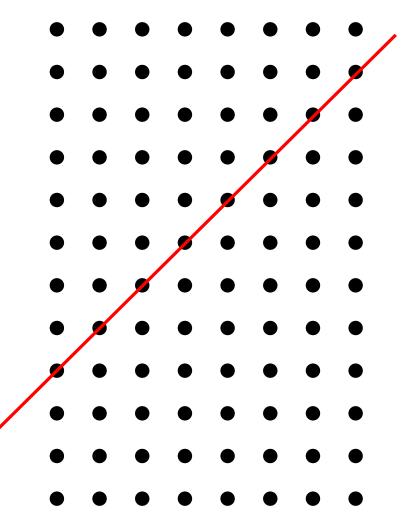
- Input: n points
- Query: lines

Build:

- n points
- (a lot of) m query regions, r_1, \ldots, r_m
- (Cond. I) Every r_i contains $\Omega(Q(n))$ points
- (Cond. II) Any α queries contain at most β points.

$$S(n) = \Omega\left(\frac{\sum |r_i|}{\alpha 2^{O(\beta)}}\right)$$

- Every line is Q(n)-rich
- No $K_{\alpha,\beta}$ in incidence graph
- Lower bound: $S(n) \gg \frac{\# \text{ of incidences}}{\alpha 2^{O(\beta)}}$



- Input: n points
- Query: lines

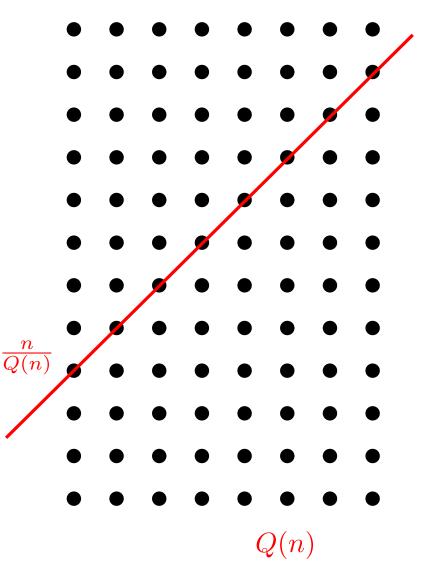
Build:

- n points
- (a lot of) m query regions, r_1, \ldots, r_m
- (Cond. I) Every r_i contains $\Omega(Q(n))$ points
- (Cond. II) Any α queries contain at most β points.

$$S(n) = \Omega\left(\frac{\sum |r_i|}{\alpha 2^{O(\beta)}}\right)$$

- Every line is Q(n)-rich
- No $K_{\alpha,\beta}$ in incidence graph
- Lower bound: $S(n) \gg \frac{\# \text{ of incidences}}{\alpha 2^{O(\beta)}}$

Well-known construction:



- Input: n points
- Query: lines

Build:

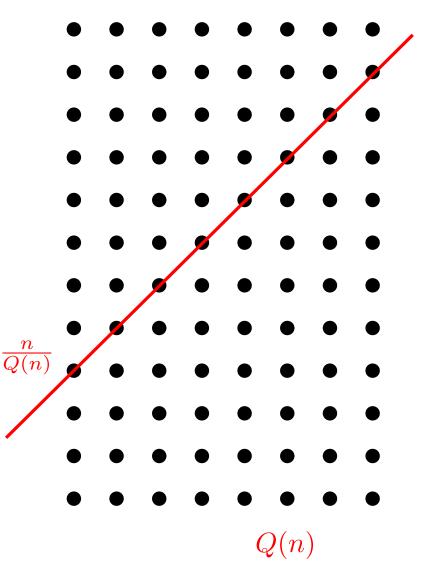
- n points
- (a lot of) m query regions, r_1, \ldots, r_m
- (Cond. I) Every r_i contains $\Omega(Q(n))$ points
- (Cond. II) Any α queries contain at most β points.

$$S(n) = \Omega\left(\frac{\sum |r_i|}{\alpha 2^{O(\beta)}}\right)$$

- Every line is Q(n)-rich
- No $K_{\alpha,\beta}$ in incidence graph
- Lower bound: $S(n) \gg \frac{\# \text{ of incidences}}{\alpha 2^{O(\beta)}}$

Well-known construction:

Slopes of 1,2,3,..., $\frac{n}{Q^2(n)}$



- Input: n points
- Query: lines

Build:

- n points
- (a lot of) m query regions, r_1, \ldots, r_m
- (Cond. I) Every r_i contains $\Omega(Q(n))$ points
- (Cond. II) Any α queries contain at most β points.

$$S(n) = \Omega\left(\frac{\sum |r_i|}{\alpha 2^{O(\beta)}}\right)$$

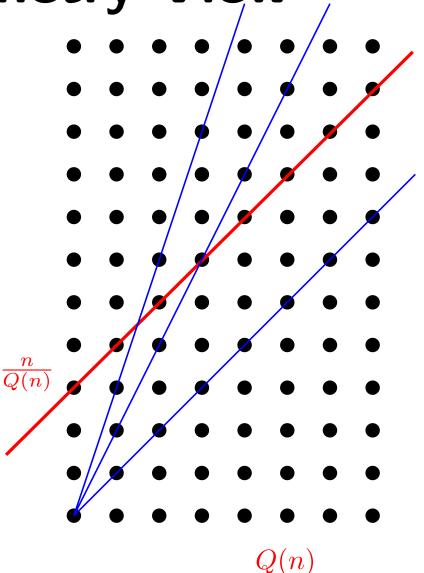
- Every line is Q(n)-rich
- No $K_{\alpha,\beta}$ in incidence graph
- Lower bound: $S(n) \gg \frac{\# \text{ of incidences}}{\alpha 2^{O(\beta)}}$

Well-known construction:

Slopes of 1,2,3,...,
$$\frac{n}{Q^2(n)}$$

 $\Omega\left(\frac{n}{Q(n)}\right)$ values for Y-intersepts

Peyman Afshani



- Input: n points
- Query: lines

Build:

- *n* points
- (a lot of) m query regions, r_1, \ldots, r_m
- (Cond. I) Every r_i contains $\Omega(Q(n))$ points
- (Cond. II) Any α queries contain at most β points.

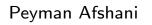
$$S(n) = \Omega\left(\frac{\sum |r_i|}{\alpha 2^{O(\beta)}}\right)$$

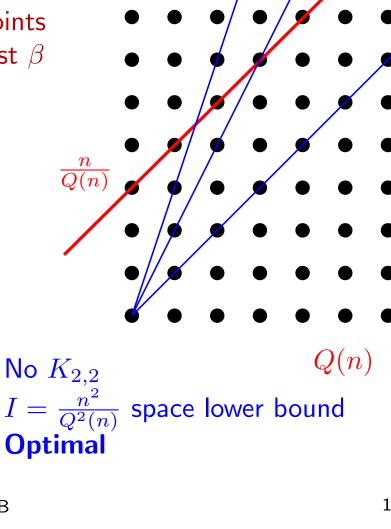
- Every line is Q(n)-rich
- No $K_{\alpha,\beta}$ in incidence graph
- Lower bound: $S(n) \gg \frac{\# \text{ of incidences}}{\alpha 2^{O(\beta)}}$

Well-known construction:

Slopes of 1,2,3,...,
$$\frac{n}{Q^2(n)}$$

 $\Omega\left(\frac{n}{Q(n)}\right)$ values for Y-intersepts





- Input: n points
- Query: lines

Build:

- n points
- (a lot of) m query regions, r_1, \ldots, r_m
- (Cond. I) Every r_i contains $\Omega(Q(n))$ points
- (Cond. II) Any α queries contain at most β points.

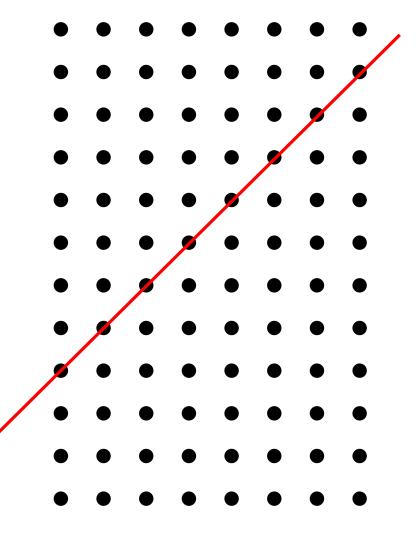
$$S(n) = \Omega\left(\frac{\sum |r_i|}{\alpha 2^{O(\beta)}}\right)$$

- Every line is Q(n)-rich
- No $K_{\alpha,\beta}$ in incidence graph
- Lower bound: $S(n) \gg \frac{\# \text{ of incidences}}{\alpha 2^{O(\beta)}}$

```
Afshani, Cheng, SOSA'23:

Q(n) \gg \left(\frac{n^2}{S(n)}\right)^{\frac{d-1}{d}}
For S(n) = O(n) \Rightarrow Q(n) = \Omega(n^{1-1/d})

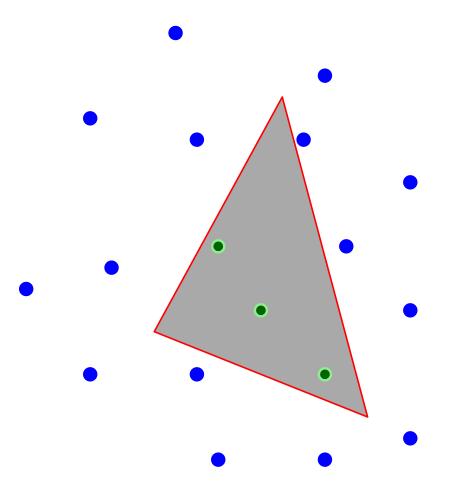
(only tight LB for d > 2)
```



Input:

- n points in \mathbb{R}^d .
- Store in a DS
- Given a range R
 - list them.

n space, $n^{1-1/d}$ query time (low space) n^d space, $\log^{d-1} n$ query time (fast query)

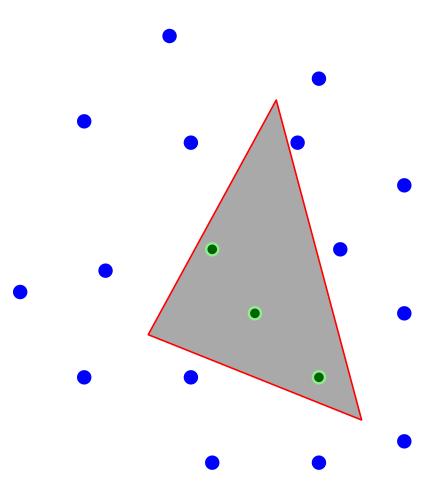


Input:

- n points in \mathbb{R}^d .
- Store in a DS
- Given a range R
 - list them.

n space, $n^{1-1/d}$ query time (low space) n^d space, $\log^{d-1} n$ query time (fast query)

$$S(n) = \frac{n^d}{Q^d(n)}$$

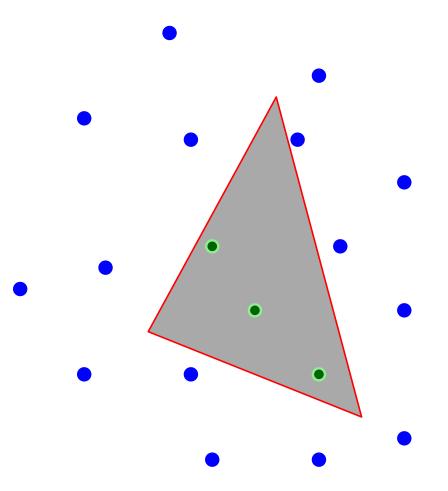


Input:

- n points in \mathbb{R}^d
- Store in a DS
- Given a range R
 - list them.

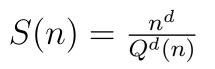
n space, n^{1-1} query time (low space) not space, $\log^{d-1} n$ query time (fast query)

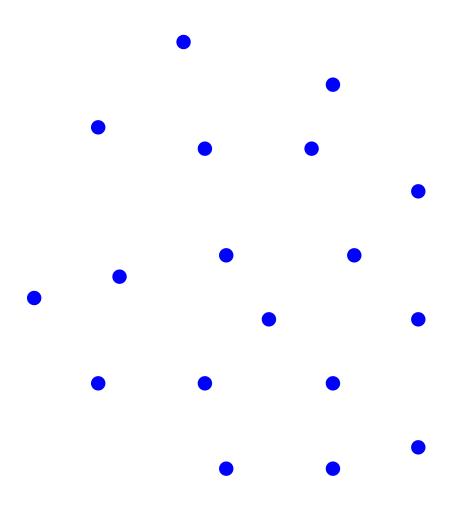
$$S(n) = \frac{n^d}{Q^d(n)}$$



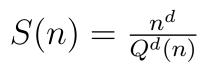
Semialgebraic Range Reporting d degrees of Input: freedom • n points in \mathbb{R}^d • Store in a DS • Given a range R- list them. n space, n^{1-1} query time (low space) n^{d} space, $\log^{d-1} n$ query time (fast query) $S(n) = \frac{n^d}{d n}$

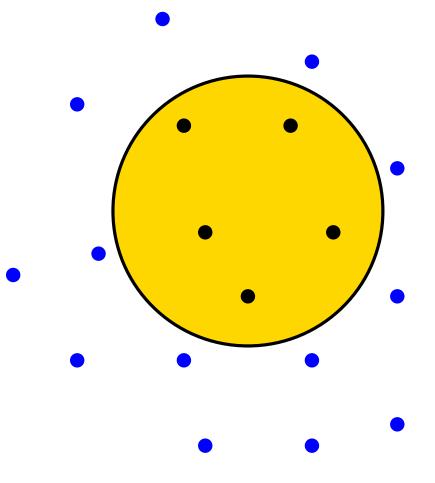
- n points in \mathbb{R}^d .
- Store in a DS
- Given a range ${\cal R}$
 - list them.



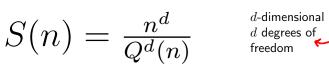


- n points in \mathbb{R}^d .
- Store in a DS
- Given a range ${\cal R}$
 - list them.

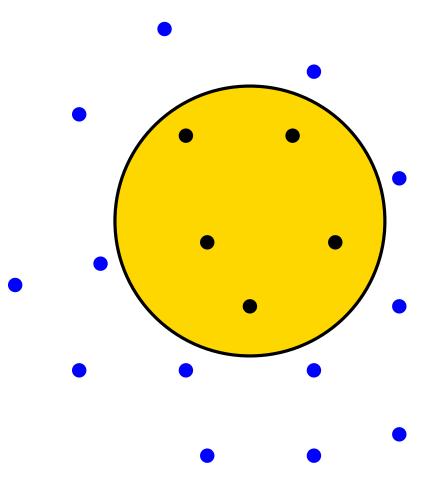




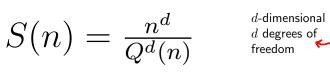
- n points in \mathbb{R}^d .
- Store in a DS
- Given a range R
 - list them.



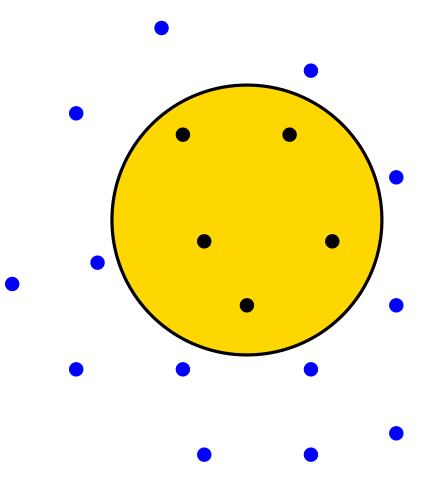
Find all
$$(x_i, y_i)$$
 s.t.,
 $(x_i - a)^2 + (y_i - b)^2 \le r^2$



- n points in \mathbb{R}^d .
- Store in a DS
- Given a range R
 - list them.

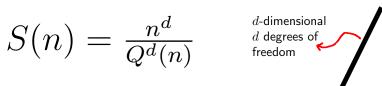


Find all
$$(x_i, y_i)$$
 s.t.,
 $(x_i - a)^2 + (y_i - b)^2 \le r^2$



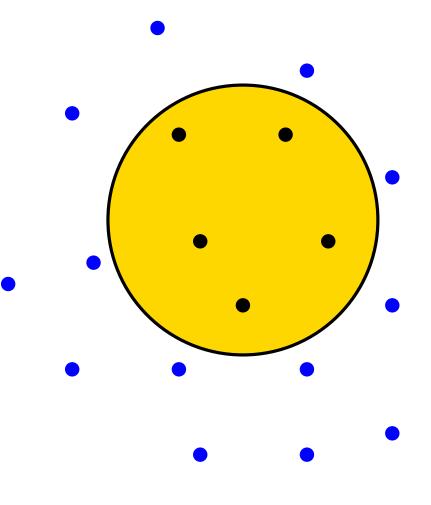
Input:

- n points in \mathbb{R}^d .
- Store in a DS
- Given a range R
 - list them.



Find all (x_i, y_i) s.t., $(x_i - a)^2 + (y_i - b)^2 \le r^2$ $x_i^2 - 2ax_i + a^2 + y_i^2 - 2by_i + b^2 \le r^2$ $z_i - 2ax_i + a^2 + -2by_i + b^2 \le r^2$ $z_i \le 2ax_i + 2by_i + r^2 - a^2 - b^2$ Point $(x_i, y_i, x_i^2 + y_i^2)$ below halfspace

Point $(x_i, y_i, x_i + y_i)$ below halfspace $H(a, b, r): Z \leq 2aX + 2bY + r^2 - a^2 - b^2$



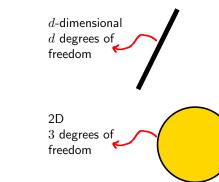
Peyman Afshani

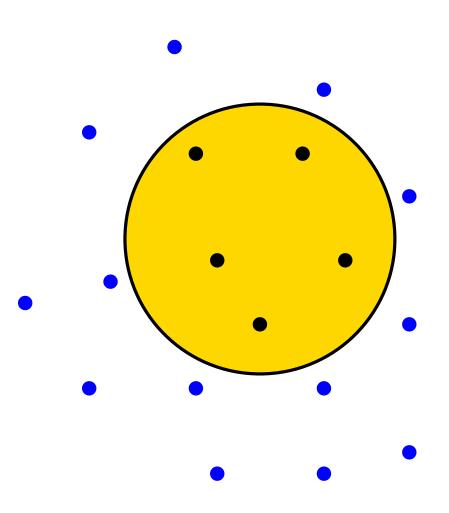
Input:

- n points in \mathbb{R}^d .
- Store in a DS
- $\bullet~$ Given a range R
 - list them.

 $S(n) = \frac{n^d}{Q^d(n)}$

 $S(n) = \frac{n^3}{Q^3(n)}$



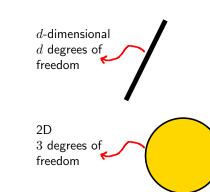


Input:

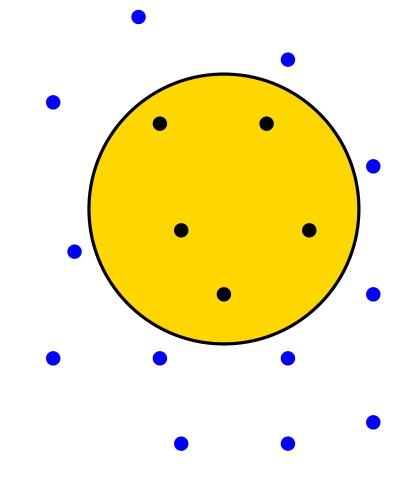
- n points in \mathbb{R}^d .
- Store in a DS
- $\bullet~$ Given a range R
 - list them.

 $S(n) = \frac{n^d}{Q^d(n)}$

 $S(n) = \frac{n^3}{Q^3(n)}$

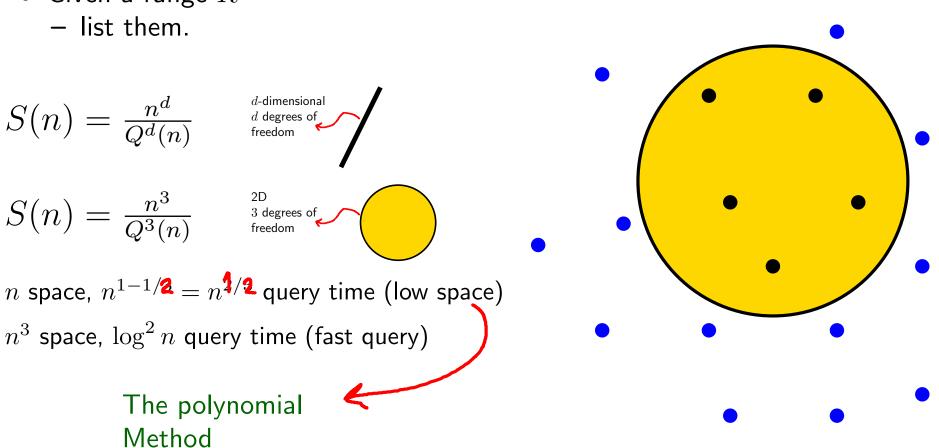


n space, $n^{1-1/3}=n^{2/3}$ query time (low space) n^3 space, $\log^2 n$ query time (fast query)



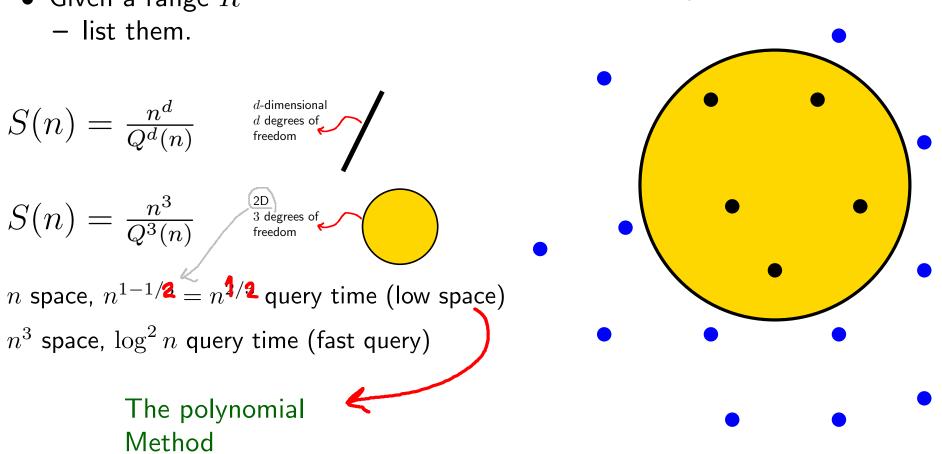
Input:

- n points in \mathbb{R}^d .
- Store in a DS
- $\bullet~$ Given a range R



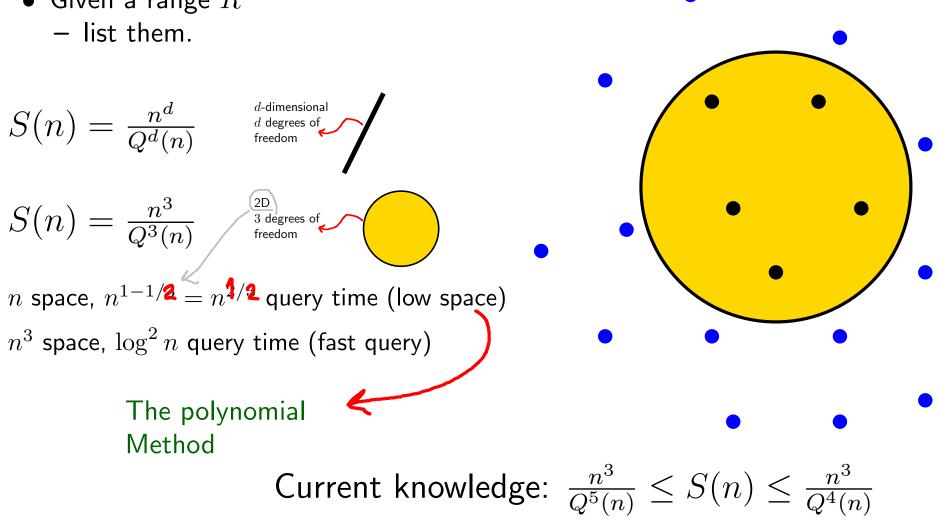
11/19

- n points in \mathbb{R}^d .
- Store in a DS
- $\bullet~$ Given a range R



Input:

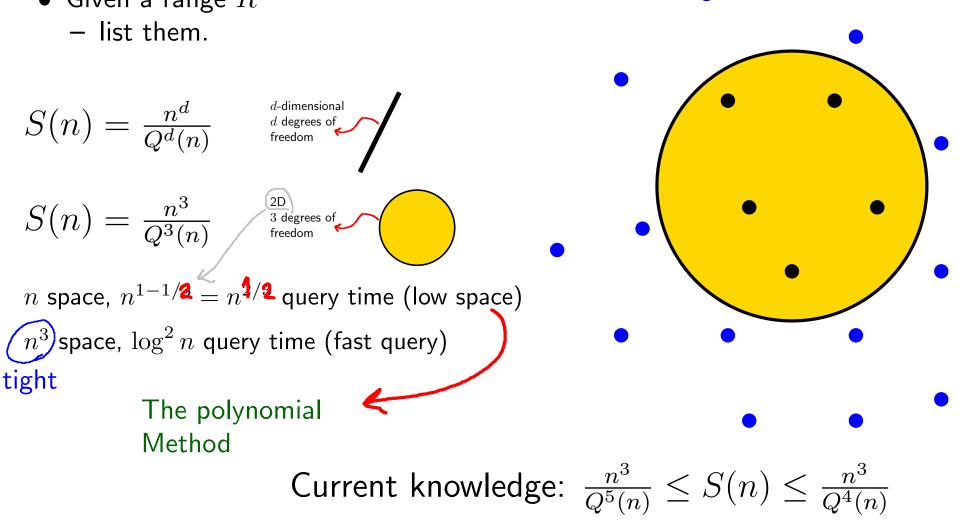
- n points in \mathbb{R}^d .
- Store in a DS
- Given a range R



Peyman Afshani

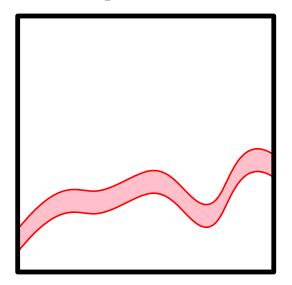
Input:

- n points in \mathbb{R}^d .
- Store in a DS
- Given a range R



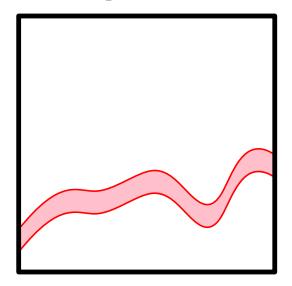
Peyman Afshani

Unit square in 2D



- Input: *n* uniformly random points
- Query: $-w \leq P(x,y) \leq w$
- List the points in the query
- Goal: Lower bound for polylog Q(n); $Q(n) = \tilde{O}(1)$
- Space Lower Bound: roughly n^{β}
- β : Degrees of freedom

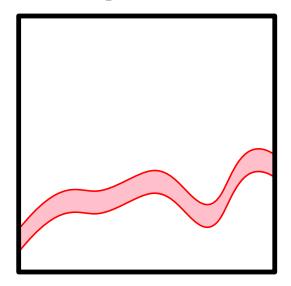
Unit square in 2D



- Input: n uniformly random points
- Query: $-w \leq P(x,y) \leq w$
- List the points in the query
- Goal: Lower bound for polylog Q(n); $Q(n) = \tilde{O}(1)$
- Space Lower Bound: roughly n^{β}
- β : Degrees of freedom

- Create n^{β} polynomials $P_i(x, y)$
- Area of $-w \leq P(x,y) \leq w$ is $\Theta(w)$
- $w \approx \frac{Q(n)}{n} = \tilde{O}(1)$: Each region is "Q(n)-rich"

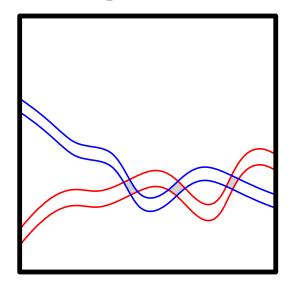
Unit square in 2D



- Input: *n* uniformly random points
- Query: $-w \leq P(x,y) \leq w$
- List the points in the query
- Goal: Lower bound for polylog Q(n); $Q(n) = \tilde{O}(1)$
- Space Lower Bound: roughly n^{β}
- β : Degrees of freedom

- Create n^{β} polynomials $P_i(x, y)$
- Area of $-w \leq P(x,y) \leq w$ is $\Theta(w)$
- $w \approx \frac{Q(n)}{n} = \tilde{O}(1)$: Each region is "Q(n)-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

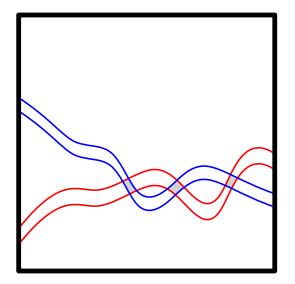
Unit square in 2D



- Input: *n* uniformly random points
- Query: $-w \leq P(x,y) \leq w$
- List the points in the query
- Goal: Lower bound for polylog Q(n); $Q(n) = \tilde{O}(1)$
- Space Lower Bound: roughly n^{β}
- β : Degrees of freedom

- Create n^{β} polynomials $P_i(x, y)$
- Area of $-w \le P(x,y) \le w$ is $\Theta(w)$
- $w \approx \frac{Q(n)}{n} = \tilde{O}(1)$: Each region is "Q(n)-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

Unit square in 2D



- Input: *n* uniformly random points
- Query: $-w \leq P(x,y) \leq w$
- List the points in the query
- Goal: Lower bound for polylog Q(n); $Q(n) = \tilde{O}(1)$
- Space Lower Bound: roughly n^{β}
- β : Degrees of freedom

How to:

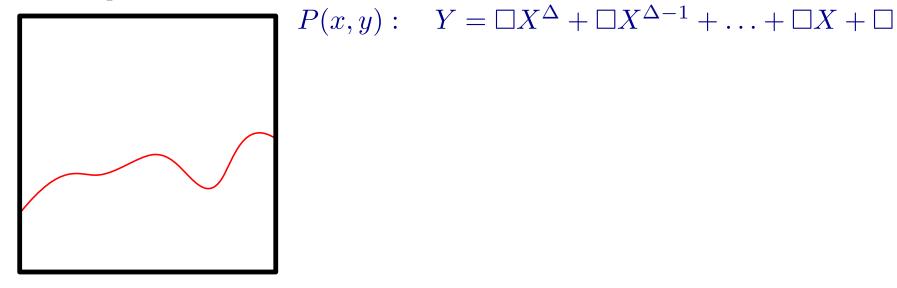
- Create n^{β} polynomials $P_i(x, y)$
- Area of $-w \leq P(x,y) \leq w$ is $\Theta(w)$
- $w \approx \frac{Q(n)}{n} = \tilde{O}(1)$: Each region is "Q(n)-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

So far only one approach:

Create: $P_1(x, y), P_2(x, y), \ldots, P_M(x, y)$ Min. distance between coefficients is **large** Prove it implies (main challenge)

The First Technique

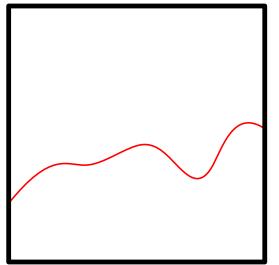
Unit square in 2D



- Create $n^{\Delta+1}$ polynomials $P_i(x,y)$
- $-\frac{Q(n)}{n} \le P(x,y) \le \frac{Q(n)}{n}$
- Each region is "Q(n)-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

The First Technique

Unit square in 2D

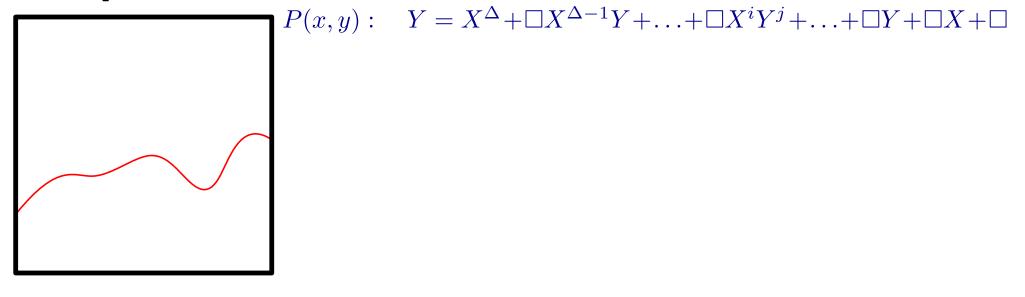


$$\begin{split} P_j(x,y): \quad Y &= \Box X^{\Delta} + \Box X^{\Delta-1} + \ldots + \Box X + \Box \\ & \text{Distance } \frac{Q^{\Delta}(n)}{n} \text{ is enough} \\ & \text{to imply (main challenge)} \\ P_i(x,y): \quad Y &= \Box X^{\Delta} + \Box X^{\Delta-1} + \ldots + \Box X + \Box \end{split}$$

- Create $n^{\Delta+1}$ polynomials $P_i(x,y)$
- $-\frac{Q(n)}{n} \le P(x,y) \le \frac{Q(n)}{n}$
- Each region is "Q(n)-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

The Second Technique

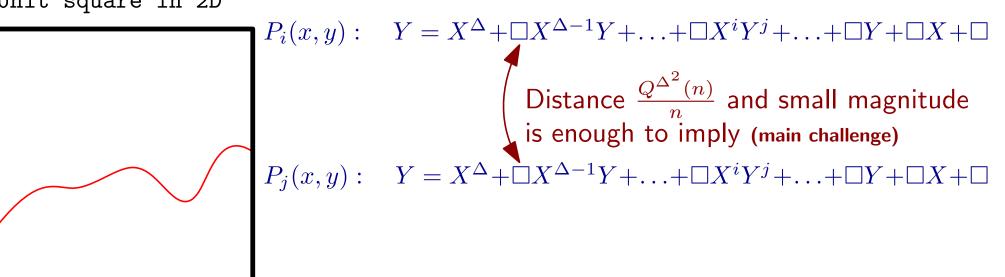
Unit square in 2D



- Create $n^{\binom{\Delta+d}{d}}$ polynomials $P_i(x,y)$
- $-\frac{Q(n)}{n} \le P(x,y) \le \frac{Q(n)}{n}$
- Each region is "Q(n)-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

The Second Technique

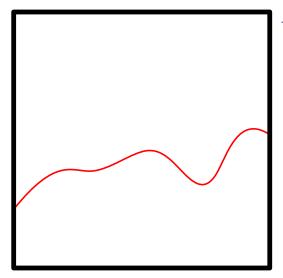
Unit square in 2D



- Create $n^{\binom{\Delta+d}{d}}$ polynomials $P_i(x,y)$
- $-\frac{Q(n)}{n} \le P(x,y) \le \frac{Q(n)}{n}$
- Each region is "Q(n)-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

The Main Open Question

Unit square in 2D



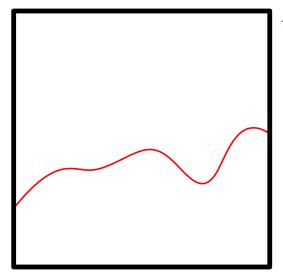
$P(x,y): \quad 0 = \Box X^{\Delta} + \Box X^{\Delta-1}Y + \ldots + \Box X^i Y^j + \ldots + \Box Y + \Box X + \Box$

- In many problems, \Box 's **CANNOT** be independent.
- \Box is a polynomial of a_1, \ldots, a_{eta}
- Some of them have to zero.
- Some of them have to constants
- Some of them depend on other coefficients

- Create n^{β} polynomials $P_i(x,y)$
- $-\frac{Q(n)}{n} \le P(x,y) \le \frac{Q(n)}{n}$
- Each region is "Q(n)-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

The Main Open Question

Unit square in 2D



$P(x,y): \quad 0 = \Box X^{\Delta} + \Box X^{\Delta-1}Y + \ldots + \Box X^i Y^j + \ldots + \Box Y + \Box X + \Box$

- In many problems, □'s **CANNOT** be independent.
- \Box is a polynomial of a_1, \ldots, a_{eta}
- Some of them have to zero.
- Some of them have to constants
- Some of them depend on other coefficients

How to:

- Create n^{β} polynomials $P_i(x,y)$
- $-\frac{Q(n)}{n} \le P(x,y) \le \frac{Q(n)}{n}$
- Each region is "Q(n)-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

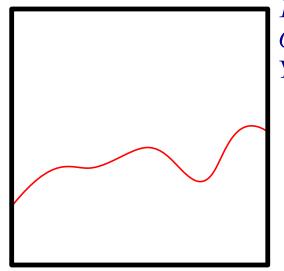
Hurdle:

- $P_1(x,y)H(x,y) = 0$
- $P_2(x,y)H(x,y) = 0$
- Have arbitrary large coefficient distance
- Infinitely many zeroes in common

Peyman Afshani

The Third Technique

Unit square in 2D

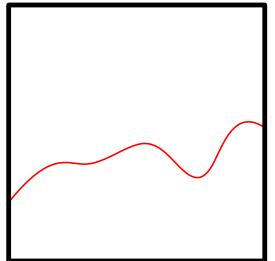


$$\begin{split} P(x,y) &: YG(X) = F(X) \\ G \text{ and } F \text{ "far from" sharing a root} \\ YG(X) - F(X) \text{ is irreducible} \end{split}$$

- Create n^{β} polynomials $P_i(x,y)$
- $-\frac{Q(n)}{n} \le P(x,y) \le \frac{Q(n)}{n}$
- Each region is "Q(n)-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

The Third Technique

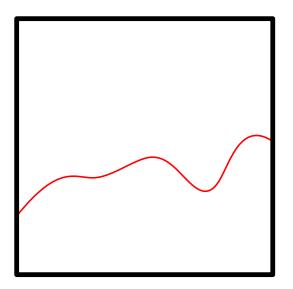
Unit square in 2D



 $\begin{array}{l} P(x,y):YG(X)=F(X)\\ G \text{ and }F \text{ "far from" sharing a root}\\ YG(X)-F(X) \text{ is irreducible}\\\\ \text{Distance } \frac{Q^{\mathsf{poly}\ \Delta}(n)}{n} \text{ and small magnitude is enough to imply (main challenge)} \end{array}$

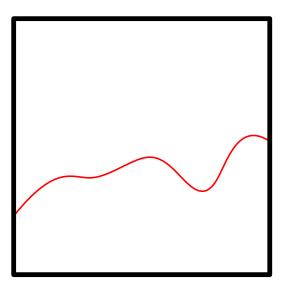
- Create n^{β} polynomials $P_i(x, y)$
- $-\frac{Q(n)}{n} \le P(x,y) \le \frac{Q(n)}{n}$
- Each region is "Q(n)-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

The End?



Setup:

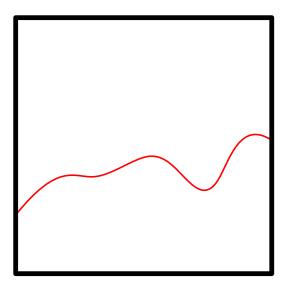
$$\begin{split} P(x,y) &: YG(X) = F(X) \\ t &= \mathsf{Resultant}(F,G) > 0 \end{split}$$



Setup:

$$\begin{split} P(x,y) &: YG(X) = F(X) \\ t &= \mathsf{Resultant}(F,G) > 0 \end{split}$$

 $\exists H(X), L(X) : GH + FL = 1$



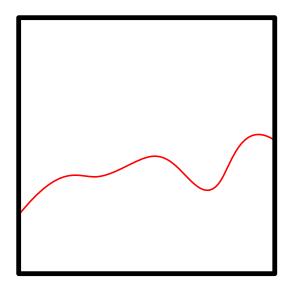
Setup:

P(x,y): YG(X) = F(X) $t = \mathsf{Resultant}(F,G) > 0$

```
\exists H(X), L(X): GH + FL = 1
```

Create lots of poly:

• A "grid" of side-length δ around P



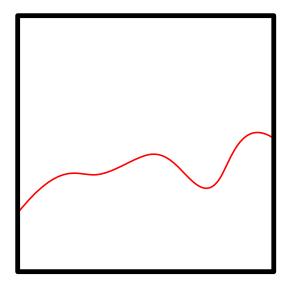
Setup:

P(x,y): YG(X) = F(X) $t = \mathsf{Resultant}(F,G) > 0$

 $\exists H(X), L(X): GH+FL=1$

Create lots of poly:

- A "grid" of side-length δ around P
- For each coeff. a of P:
 - For each $i = 0, \dots, \frac{n}{Q^C(n)}$: * Add δi to a



Setup:

 $\begin{aligned} P(x,y) &: YG(X) = F(X) \\ t &= \mathsf{Resultant}(F,G) > 0 \end{aligned}$

 $\exists H(X), L(X) : GH + FL = 1$

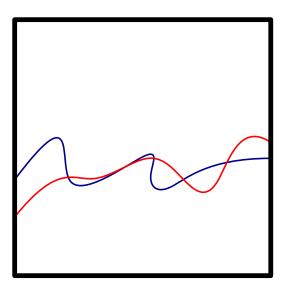
Create lots of poly:

- A "grid" of side-length δ around P
- For each coeff. a of P:
 - For each $i = 0, \dots, \frac{n}{Q^C(n)}$: * Add δi to a

Get:

- $M = n^{\beta}$ polys, $P_1, ..., P_M$ (ignoring poly Q(n) factors)
- Every two differ at by at least δ in one coeff.
- Every P_i in a small neighborhood of P (within radius $n\delta$)
- δ sufficiently small constant

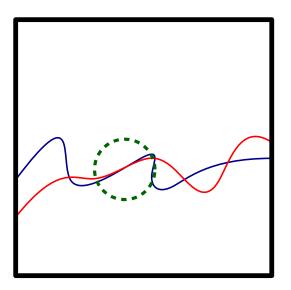
• Region:
$$0 \le P_i(x, y) \le \frac{Q(n)}{n} = w$$



Setup:

$$\begin{split} P(x,y) &: YG(X) = F(X) \\ t &= \mathsf{Resultant}(F,G) > 0 \end{split}$$

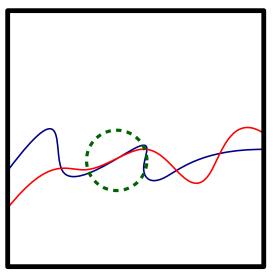
 $\exists H(X), L(X) : GH + FL = 1$ Consider P_1 and P_2 :



Setup:

$$\begin{split} P(x,y) &: YG(X) = F(X) \\ t &= \mathsf{Resultant}(F,G) > 0 \end{split}$$

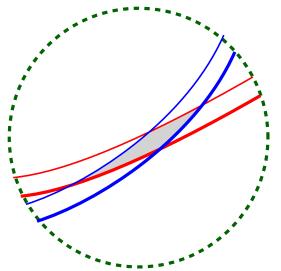
 $\exists H(X), L(X) : GH + FL = 1$ Consider P_1 and P_2 : Imagine big overlap

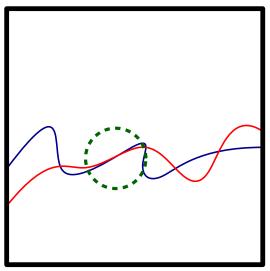


Setup:

$$\begin{split} P(x,y) &: YG(X) = F(X) \\ t &= \mathsf{Resultant}(F,G) > 0 \end{split}$$

 $\exists H(X), L(X) : GH + FL = 1$ Consider P_1 and P_2 : Imagine big overlap

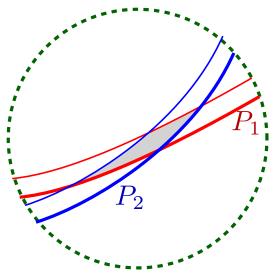


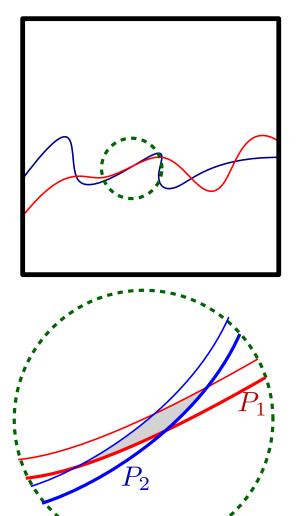


Setup:

 $\begin{aligned} P(x,y) &: YG(X) = F(X) \\ t &= \mathsf{Resultant}(F,G) > 0 \end{aligned}$

 $\exists H(X), L(X) : GH + FL = 1$ Consider P_1 and P_2 : Imagine big overlap



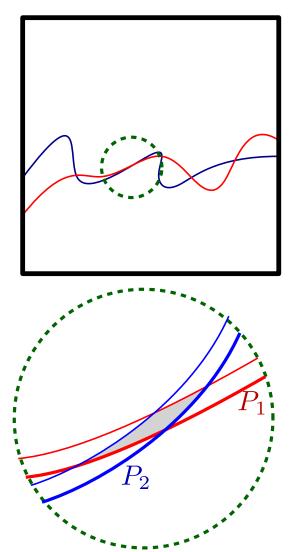


Setup:

$$\begin{split} P(x,y) &: YG(X) = F(X) \\ t &= \mathsf{Resultant}(F,G) > 0 \end{split}$$

 $\exists H(X), L(X) : GH + FL = 1$ Consider P_1 and P_2 : Imagine big overlap

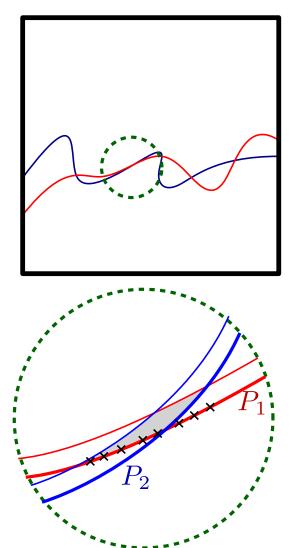
 P_1 and P_2 evaluate within [0,w] in a big interval I of length at least $\frac{1}{Q(n)}$



Setup: P(x,y): YG(X) = F(X) t = Resultant(F,G) > 0 $\exists H(X), L(X): GH + FL = 1$ Consider P_1 and P_2 : Imagine big overlap P_1 and P_2 evaluate within [0, w] in a big interval I of length at least $\frac{1}{Q(n)}$ Approach:

18/19

• Pick ℓ points in I on P_1



Setup: P(x,y): YG(X) = F(X) t = Resultant(F,G) > 0 $\exists H(X), L(X): GH + FL = 1$

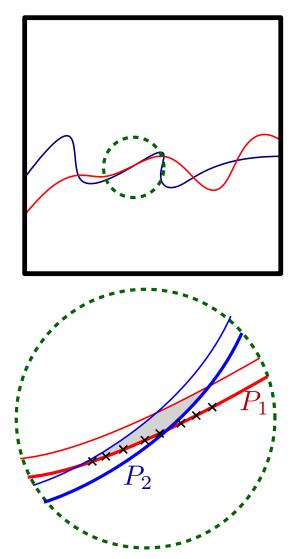
Consider P_1 and P_2 :

Imagine big overlap

 P_1 and P_2 evaluate within [0,w] in a big interval I of length at least $\frac{1}{Q(n)}$

Approach:

• Pick ℓ points in I on P_1



Setup:

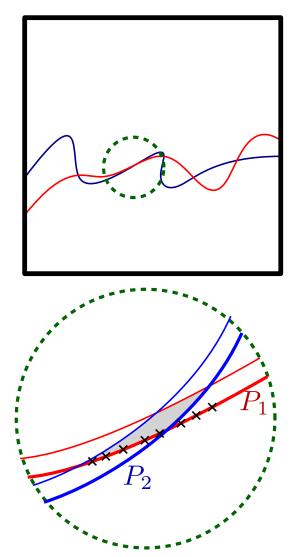
 $\begin{aligned} P(x,y) &: YG(X) = F(X) \\ t &= \mathsf{Resultant}(F,G) > 0 \end{aligned}$

 $\exists H(X), L(X) : GH + FL = 1$ Consider P_1 and P_2 : Imagine big overlap

 P_1 and P_2 evaluate within [0,w] in a big interval I of length at least $\frac{1}{Q(n)}$

Approach:

- Pick ℓ points in I on P_1
- V: Vector of monomials:
 - all monomials except yX^{Δ_G} .
 - X^i for i = 1, ..., k so we get ℓ mono. in total
 - Build an $\ell \times \ell$ matrix A:
 - Row i is the evaluation of V on the $i\mbox{-th}$ point



Setup: P(x, y) : YG(X) = F(X)t = Resultant(F, G) > 0

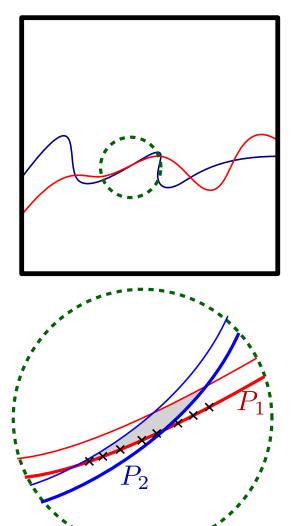
 $\exists H(X), L(X) : GH + FL = 1$ Consider P_1 and P_2 : Imagine big overlap

 P_1 and P_2 evaluate within [0,w] in a big interval I of length at least $\frac{1}{Q(n)}$

Approach:

- Pick ℓ points in I on P_1
- V: Vector of monomials:
 - all monomials except yX^{Δ_G} .
 - X^i for i = 1, ..., k so we get ℓ mono. in total
- Build an $\ell \times \ell$ matrix A:
 - Row i is the evaluation of V on the $i\mbox{-th}$ point

Claim: $|\det(A)| \ge \text{Resultant}(F,G)|I|^{\ell^2} - O(w)$



Tweak coeff of P_2 by smaller than δ to pass through the ℓ points \Rightarrow contradiction

Setup:

P(x,y): YG(X) = F(X) $t = \mathsf{Resultant}(F,G) > 0$

 $\exists H(X), L(X) : GH + FL = 1$ Consider P_1 and P_2 : Imagine big overlap

 P_1 and P_2 evaluate within [0,w] in a big interval I of length at least $\frac{1}{Q(n)}$

Approach:

- Pick ℓ points in I on P_1
- V: Vector of monomials:
- all monomials except yX^{Δ_G} .
- X^i for i = 1, ..., k so we get ℓ mono. in total
- Build an $\ell \times \ell$ matrix A:
 - Row i is the evaluation of V on the i-th point

Claim: $|\det(A)| \ge \text{Resultant}(F,G)|I|^{\ell^2} - O(w)$

Peyman Afshani

Thank you!

