Recent Results on Semialgebraic Range Searching Lower Bounds

Some Overview of Data Structure Lower Bounds

Contents:

1. Introduction
2. Pointer-machine Lower Bounds
3. A framework
4. An example of a LB
5. Semialgebraic
6. Overview of LB techniques

Introduction

- No general, unconditional framework

Introduction

- No general, unconditional framework
(we can't even prove a $n^{\omega(1)}$ lower bound for 3-SAT)

Introduction

- No general, unconditional framework
(we can't even prove a $n^{\omega(1)}$ lower bound for 3-SAT)
- Conditional: Conjecture Problem A is hard, then use reductions

Introduction

- No general, unconditional framework
(we can't even prove a $n^{\omega(1)}$ lower bound for 3-SAT)
- Conditional: Conjecture Problem A is hard, then use reductions
- Pointer Machine: Disallows random access, only applies when we need to report a large list. A Navigation bottleneck, free information/computation

Introduction

- No general, unconditional framework (we can't even prove a $n^{\omega(1)}$ lower bound for 3-SAT)
- Conditional: Conjecture Problem A is hard, then use reductions
- Pointer Machine: Disallows random access, only applies when we need to report a large list. A Navigation bottleneck, free information/computation
- Cell-probe: Can't go beyond $\Omega(\log n)$ static query time; Information bottleneck, free computation

Introduction

- No general, unconditional framework (we can't even prove a $n^{\omega(1)}$ lower bound for 3-SAT)
- Conditional: Conjecture Problem A is hard, then use reductions
- Pointer Machine: Disallows random access, only applies when we need to report a large list. A Navigation bottleneck, free information/computation
- Cell-probe: Can't go beyond $\Omega(\log n)$ static query time; Information bottleneck, free computation
- Semi-group: Limits what DS can store and do. Only for weighted counting, weights from a semi-group, i.e., no subtractions
- Group: Limits what DS can store and do. Allows subtractions but we only know how to do dynamic lower bounds

Introduction

- No general, unconditional framework (we can't even prove a $n^{\omega(1)}$ lower bound for 3 -SAT)
- Conditional: Conjecture Problem A is hard, then use reductions
- Pointer Machine: Disallows random access, only applies when we need to report a large list. A Navigation bottleneck, free information/computation
- Cell-probe: Can't go beyond $\Omega(\log n)$ static query time; Information bottleneck, free computation
- Semi-group: Limits what DS can store and do. Only for weighted counting, weights from a semi-group, i.e., no subtractions
- Group: Limits what DS can store and do. Allows subtractions but we only know how to do dynamic lower bounds

Must avoid icebergs!

The Pointer Machine Model

Range Reporting

Range Reporting:

- A general class of Computational Geometric problems
- Input: A set of n objects, e.g., points, given by coordinates.
- In 2D we have $\left(x_{i}, y_{i}\right), 1 \leq i \leq n$
- We want to build a Data Structure:
- Process the data using some preprocessing time, $P(n)$
- Store the process data using $S(n)$ units of storage, i.e., space

Range Reporting

Range Reporting:

- A general class of Computational Geometric problems
- Input: A set of n objects, e.g., points, given by coordinates.
- In 2D we have $\left(x_{i}, y_{i}\right), 1 \leq i \leq n$
- We want to build a Data Structure:
- Process the data using some preprocessing time, $P(n)$
- Store the process data using $S(n)$ units of storage, i.e., space

The Goal:

- Answer queries
- A query is a geometric region or object.
- Triangle
- Circle
- Point
- ...
- Output: List of all the input objects that intersect the query object

Range Reporting

Range Reporting:

- A general class of Computational Geometric problems
- Input: A set of n objects, e.g., points, given by coordinates.
- In 2D we have $\left(x_{i}, y_{i}\right), 1 \leq i \leq n$
- We want to build a Data Structure:
- Process the data using some preprocessing time, $P(n)$
- Store the process data using $S(n)$ units of storage, i.e., space

The Goal:

- Answer queries
- A query is a geometric region or object.
- Triangle
- Circle
- Point
- ...
- Output: List of all the input objects that intersect the query object
- k : Output size

A 2D Range Reporting Example

- Input: n points in 2D
- Query: A triangle Δ
- Output: List of k points inside Δ

A 2D Range Reporting Example

- Input: n points in 2D
- Query: A triangle Δ
- Output: List of k points inside Δ
- We want to spend $O(n)$ space
- Query time?

A 2D Range Reporting Example

- Input: n points in 2D
- Query: A triangle Δ
- Output: List of k points inside Δ
- We want to spend $O(n)$ space
- Query time?
- Answer: $O(\sqrt{n}+k)$

A 2D Range Reporting Example

- Input: n points in 2D
- Query: A triangle Δ
- Output: List of k points inside Δ
- We want to spend $O(n)$ space
- Query time?
- Answer: $O(\sqrt{n}+k)$
- Some people invented crazy techniques: cutting lemma, partition theorem, partition trees, etc.

A 2D Range Reporting Example

- Input: n points in 2D
- Query: A triangle Δ
- Output: List of k points inside Δ
- We want to spend $O(n)$ space
- Query time?
- Answer: $O(\sqrt{n}+k)$
- Some people invented crazy techniques: cutting lemma, partition theorem, partition trees, etc.
- This is optimal!

A 2D Range Reporting Example

- Input: n points in 2D
- Query: A triangle Δ
- Output: List of k points inside Δ
- We want to spend $O(n)$ space
- Query time?
- Answer: $O(\sqrt{n}+k)$
- Some people invented crazy techniques: cutting lemma, partition theorem, partition trees, etc.
- This is optimal!

Assume we have a data structure:

1. Works on any input of n points
2. Uses $O(n)$ space
3. Finds all the points inside any triangle
4. Query time is $O(Q(n)+k)$

A 2D Range Reporting Example

- Input: n points in 2D
- Query: A triangle Δ
- Output: List of k points inside Δ
- We want to spend $O(n)$ space
- Query time?
- Answer: $O(\sqrt{n}+k)$
- Some people invented crazy techniques: cutting lemma, partition theorem, partition trees, etc.
- This is optimal!

Assume we have a data structure:

1. Works on any input of n points
2. Uses $O(n)$ space
3. Finds all the points inside any triangle
4. Query time is $O(Q(n)+k) \quad \Longrightarrow Q(n)=\Omega(\sqrt{n})$

A 2D Range Reporting Example

- Input: n points in 2D
- Query: A triangle Δ
- Output: List of k points inside Δ
- We want to spend $O(n)$ space
- Query time?
- Answer: $O(\sqrt{n}+k)$
- Some people invented crazy techniques: cutting lemma, partition theorem, partition trees, etc.
- This is optimal!

Assume we have a data structure:

1. Works on any input of n points
2. Uses $O(n)$ space
3. Finds all the points inside any triangle
4. Query time is $O(Q(n)+k) \quad \Longrightarrow Q(n)=\Omega(\sqrt{n})$

A 2D Range Reporting Example

- Input: n points in 2D
- Query: A triangle Δ
- Output: List of k points inside Δ
- We want to spend $O(n)$ space
- Query time?
- Answer: $O(\sqrt{n}+k)$
- Some people invented crazy techniques: cutting lemma, partition theorem, partition trees, etc.
- This is optimal!

Assume we have a data structure:

1. Works on any input of n points
2. Uses $O(n)$ space
3. Finds all the points inside any triangle
4. Query time is $O(Q(n)+k) \Longrightarrow Q(n)=\Omega(\sqrt{n})$

Data Structure Lower Bounds

Theorem we want to prove

Assume we have a data structure:

1. Given any input of n points in 2D,
2. stores them using $O(n)$ space, s.t., it
3. finds all the points inside any given query triangle, using
4. query time of $O(Q(n)+k)$.

Then, we must have $Q(n)=\Omega(\sqrt{n})$

Data Structure Lower Bounds

Theorem we want to prove

Assume we have a data structure:

1. Given any input of n points in 2D,
2. stores them using $O(n)$ space, s.t., it
3. finds all the points inside any given query triangle, using
4. query time of $O(Q(n)+k)$.

Then, we must have $Q(n)=\Omega(\sqrt{n})$
\Uparrow
Theorem we want to prove
It is impossible to have a data structure that:

1. Given any input of n points in 2D,
2. stores them using $O(n)$ space, s.t., it
3. finds all the points inside any given query triangle, using
4. query time of $o(\sqrt{n})+O(k)$.

Data Structure Lower Bounds

Theorem we want to prove

Assume we have a data structure:

1. Given any input of n points in 2D,
2. stores them using $O(n)$ space, s.t., it
3. finds all the points inside any given query triangle, using
4. query time of $O(Q(n)+k)$.

Then, we must have $Q(n)=\Omega(\sqrt{n})$
\Uparrow
Theorem we want to prove Impossibility result!
It is impossible to have a data structure that:

1. Given any input of n points in 2D,
2. stores them using $O(n)$ space, s.t., it
3. finds all the points inside any given query triangle, using
4. query time of $o(\sqrt{n})+O(k)$.

The Model of Computation: A Pointer Machine

Assume, the input is a set P of n items (e.g., points) DS:

- Storage is a collection of cells

2
5

The Model of Computation: A Pointer Machine

Assume, the input is a set P of n items (e.g., points) DS:

- Storage is a collection of cells
- A cell stores one item
- A cell points to two other cells
- There is a special node called the root

The Model of Computation: A Pointer Machine

Assume, the input is a set P of n items (e.g., points) DS:

- Storage is a collection of cells
- A cell stores one item
- A cell points to two other cells
- There is a special node called the root

The Model of Computation: A Pointer Machine

Don't care how long it takes to build this!
\# of cells is the space usage (space complexity)

The Model of Computation: A Pointer Machine

Don't care how long it takes to build this!
\# of cells is the space usage (space complexity)
Given a query q, assume we need to report $P_{q} \subset P:$

The Model of Computation: A Pointer Machine

Don't care how long it takes to build this!
\# of cells is the space usage (space complexity)
Given a query q, assume we need to report $P_{q} \subset P$:

- $\forall x \in P_{q}$: We must visit a cell that stores x
- Only through pointer navigation
- $\#$ of pointer navigations $=$ query time

The Model of Computation: A Pointer Machine

Don't care how long it takes to build this!
\# of cells is the space usage (space complexity)
Given a query q, assume we need to report $P_{q} \subset P:$

- $\forall x \in P_{q}$: We must visit a cell that stores x
- Only through pointer navigation
- \# of pointer navigations = query time
- Computation is free!
- Information is free!

The Model of Computation: A Pointer Machine

Don't care how long it takes to build this!
\# of cells is the space usage (space complexity)
Given a query q, assume we need to report $P_{q} \subset P$:

- $\forall x \in P_{q}$: We must visit a cell that stores x
- Only through pointer navigation
- $\#$ of pointer navigations $=$ query time

We want to report $\{1,2,4,8\}$

The Model of Computation: A Pointer Machine

Don't care how long it takes to build this!
\# of cells is the space usage (space complexity)
Given a query q, assume we need to report $P_{q} \subset P$:

- $\forall x \in P_{q}$: We must visit a cell that stores x
- Only through pointer navigation
- $\#$ of pointer navigations $=$ query time

We want to report $\{1,2,4,8\}$

The Model of Computation: A Pointer Machine

Don't care how long it takes to build this!
\# of cells is the space usage (space complexity)
Given a query q, assume we need to report $P_{q} \subset P:$

- $\forall x \in P_{q}$: We must visit a cell that stores x
- Only through pointer navigation
- $\#$ of pointer navigations $=$ query time

We want to report $\{1,2,4,8\}$
We used 11 pointers \Rightarrow query time at least 11

The Model of Computation: A Pointer Machine

The Model of Computation: A Pointer Machine

- Query time must be $Q(n)+O(k)($ or $Q(n)+o(k \log n))$
- PM can simulate RAM w/ extra $O(\log n)$ factor
- LB in PM with $Q(n)+O(k \log n) \Rightarrow Q(n) / \log n+O(k)$ LB in RAM

A Framework Theorem

Unit square in 2D

A Framework Theorem

Unit square in 2D

Problem:

- Input: n points
- Goal: A data structure
- Query: A region inside the unit square
- Output: All the points inside the region

A Framework Theorem

Unit square in 2D

Problem:

- Input: n points
- Goal: A data structure
- Query: A region inside the unit square
- Output: All the points inside the region

Geometric Range Reporting: GRR

A Framework Theorem

Unit square in 2D

Problem:

- Input: n points
- Goal: A data structure
- Query: A region inside the unit square
- Output: All the points inside the region

Geometric Range Reporting: GRR

Framework Theorem:

(i) Assume we have a data structure that solves our GRR:

1. Given any input of n points
2. stores them using $S(n)$ space, s.t., it
3. answers any query in $O(Q(n)+k)$ time.

A Framework Theorem

Unit square in 2D

Problem:

- Input: n points
- Goal: A data structure
- Query: A region inside the unit square
- Output: All the points inside the region

Geometric Range Reporting: GRR

Framework Theorem:

(i) Assume we have a data structure that solves our GRR:

1. Given any input of n points
2. stores them using $S(n)$ space, s.t., it
3. answers any query in $O(Q(n)+k)$ time.

Assume we can build:

- n points
- m query regions, r_{1}, \ldots, r_{m}
- (Cond. I) Every r_{i} contains $\Omega(Q(n))$ points
- (Cond. II) Any α queries contain at most β points

A Framework Theorem

Unit square in 2D

Problem:

- Input: n points
- Goal: A data structure
- Query: A region inside the unit square
- Output: All the points inside the region

Geometric Range Reporting: GRR

Framework Theorem:

(i) Assume we have a data structure that solves our GRR:

1. Given any input of n points
2. stores them using $S(n)$ space, s.t., it
3. answers any query in $O(Q(n)+k)$ time.

Assume we can build:

- n points

$$
S(n)=\Omega\left(\frac{\sum\left|r_{i}\right|}{\alpha 2^{O(\beta)}}\right)
$$

- m query regions, r_{1}, \ldots, r_{m}
- (Cond. I) Every r_{i} contains $\Omega(Q(n))$ points
- (Cond. II) Any α queries contain at most β points

A Discrete Geometry View

- Input: n points
- Query: lines

A Discrete Geometry View

- Input: n points
- Query: lines

Build:

- n points
- (a lot of) m query regions, r_{1}, \ldots, r_{m}
- (Cond. I) Every r_{i} contains $\Omega(Q(n))$ points
- (Cond. II) Any α queries contain at most β points.

$$
S(n)=\Omega\left(\frac{\sum\left|r_{i}\right|}{\alpha 2^{O(\beta)}}\right)
$$

A Discrete Geometry View

- Input: n points
- Query: lines

Build:

- n points
- (a lot of) m query regions, r_{1}, \ldots, r_{m}
- (Cond. I) Every r_{i} contains $\Omega(Q(n))$ points
- (Cond. II) Any α queries contain at most β points.

$$
S(n)=\Omega\left(\frac{\sum\left|r_{i}\right|}{\alpha 2^{O(\beta)}}\right)
$$

- Every line is $Q(n)$-rich
- No $K_{\alpha, \beta}$ in incidence graph
- Lower bound: $S(n) \gg \frac{\# \text { of incidences }}{\alpha 2^{O(\beta)}}$

A Discrete Geometry View

- Input: n points
- Query: lines

Build:

- n points
- (a lot of) m query regions, r_{1}, \ldots, r_{m}
- (Cond. I) Every r_{i} contains $\Omega(Q(n))$ points
- (Cond. II) Any α queries contain at most β points.

$$
S(n)=\Omega\left(\frac{\sum\left|r_{i}\right|}{\alpha 2^{O(\beta)}}\right)
$$

- Every line is $Q(n)$-rich
- No $K_{\alpha, \beta}$ in incidence graph
- Lower bound: $S(n) \gg \frac{\# \text { of incidences }}{\alpha 2^{O(\beta)}}$

Well-known construction:

A Discrete Geometry View

- Input: n points
- Query: lines

Build:

- n points
- (a lot of) m query regions, r_{1}, \ldots, r_{m}
- (Cond. I) Every r_{i} contains $\Omega(Q(n))$ points
- (Cond. II) Any α queries contain at most β points.

$$
S(n)=\Omega\left(\frac{\sum\left|r_{i}\right|}{\alpha 2^{O(\beta)}}\right)
$$

- Every line is $Q(n)$-rich
- No $K_{\alpha, \beta}$ in incidence graph
- Lower bound: $S(n) \gg \frac{\# \text { of incidences }}{\alpha 2^{\circ(\beta)}}$

Well-known construction:
Slopes of $1,2,3, \ldots, \frac{n}{Q^{2}(n)}$

A Discrete Geometry View

- Input: n points
- Query: lines

Build:

- n points
- (a lot of) m query regions, r_{1}, \ldots, r_{m}
- (Cond. I) Every r_{i} contains $\Omega(Q(n))$ points
- (Cond. II) Any α queries contain at most β points.

$$
S(n)=\Omega\left(\frac{\sum\left|r_{i}\right|}{\alpha 2^{O(\beta)}}\right)
$$

- Every line is $Q(n)$-rich
- No $K_{\alpha, \beta}$ in incidence graph
- Lower bound: $S(n) \gg \frac{\# \text { of incidences }}{\alpha 2^{O(\beta)}}$

Well-known construction:
Slopes of $1,2,3, \ldots, \frac{n}{Q^{2}(n)}$
$\Omega\left(\frac{n}{Q(n)}\right)$ values for Y-intersepts

A Discrete Geometry View

- Input: n points
- Query: lines

Build:

- n points
- (a lot of) m query regions, r_{1}, \ldots, r_{m}
- (Cons. I) Every r_{i} contains $\Omega(Q(n))$ points
- (Cord. II) Any α queries contain at most β points.

$$
S(n)=\Omega\left(\frac{\sum\left|r_{i}\right|}{\alpha 2^{O(\beta)}}\right)
$$

- Every line is $Q(n)$-rich
- No $K_{\alpha, \beta}$ in incidence graph
- Lower bound: $S(n) \gg \frac{\# \text { of incidences }}{\alpha 2^{0(\beta)}}$

Well-known construction:
Slopes of $1,2,3, \ldots, \frac{n}{Q^{2}(n)}$
$\Omega\left(\frac{n}{Q(n)}\right)$ values for Y-intersects

No $K_{2,2}$
$Q(n)$
$I=\frac{n^{2}}{Q^{2}(n)}$ space lower bound
Optimal

A Discrete Geometry View

- Input: n points
- Query: lines

Build:

- n points
- (a lot of) m query regions, r_{1}, \ldots, r_{m}
- (Cond. I) Every r_{i} contains $\Omega(Q(n))$ points
- (Cond. II) Any α queries contain at most β points.

$$
S(n)=\Omega\left(\frac{\sum\left|r_{i}\right|}{\alpha 2^{O(\beta)}}\right)
$$

- Every line is $Q(n)$-rich
- No $K_{\alpha, \beta}$ in incidence graph
- Lower bound: $S(n) \gg \frac{\# \text { of incidences }}{\alpha 2^{O(\beta)}}$

Afshani, Cheng, SOSA'23:
$Q(n) \gg\left(\frac{n^{2}}{S(n)}\right)^{\frac{d-1}{d}}$
For $S(n)=O(n) \Rightarrow Q(n)=\Omega\left(n^{1-1 / d}\right)$ (only tight LB for $d>2$)

Semialgebraic Range Reporting

Input:

- n points in \mathbb{R}^{d}.
- Store in a DS
- Given a range R
- list them.
n space, $n^{1-1 / d}$ query time (low space)
n^{d} space, $\log ^{d-1} n$ query time (fast query)

Semialgebraic Range Reporting

Input:

- n points in \mathbb{R}^{d}.
- Store in a DS
- Given a range R
- list them.
n space, $n^{1-1 / d}$ query time (low space)
n^{d} space, $\log ^{d-1} n$ query time (fast query)

$$
S(n)=\frac{n^{d}}{Q^{d}(n)}
$$

Semialgebraic Range Reporting

Input:

- n points in $\mathbb{R}^{(d)}$.
- Store in a DS
- Given a range R
- list them.
n space, n^{1-1} query time (low space)
$n^{(d)}$ space, $\log ^{d-1} n$ query time (fast query)
$S(n)=\frac{n^{d}}{6 \sqrt{d}(n)}$

Semialgebraic Range Reporting

Input:

- n points in $\mathbb{R}^{(d)}$
- Store in a DS
- Given a range R
- list them.
n space, $n^{1-1 @}$ query time (low space)
$n^{(d)}$ space, $\log ^{d-1} n$ query time (fast query)

$$
S(n)=\frac{\frac{n}{d}}{\sqrt[6]{d}(n)}
$$

Semialgebraic Range Reporting

Input:

- n points in \mathbb{R}^{d}.
- Store in a DS
- Given a range R
- list them.

$$
S(n)=\frac{n^{d}}{Q^{d}(n)}
$$

Semialgebraic Range Reporting

Input:

- n points in \mathbb{R}^{d}.
- Store in a DS
- Given a range R
- list them.

$$
S(n)=\frac{n^{d}}{Q^{d}(n)}
$$

Semialgebraic Range Reporting

Input:

- n points in \mathbb{R}^{d}.
- Store in a DS
- Given a range R
- list them.
$S(n)=\frac{n^{d}}{Q^{d}(n)}$

Find all $\left(x_{i}, y_{i}\right)$ s.t.,
$\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2} \leq r^{2}$

Semialgebraic Range Reporting

Input:

- n points in \mathbb{R}^{d}.
- Store in a DS
- Given a range R
- list them.
$S(n)=\frac{n^{d}}{Q^{d}(n)}$

Find all $\left(x_{i}, y_{i}\right)$ s.t.,
$\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2} \leq r^{2}$

Semialgebraic Range Reporting

Input:

- n points in \mathbb{R}^{d}.
- Store in a DS
- Given a range R
- list them.
$S(n)=\frac{n^{d}}{Q^{d}(n)}$

Find all $\left(x_{i}, y_{i}\right)$ s.t.,
$\left(x_{i}-a\right)^{2}+\left(y_{i}-b\right)^{2} \leq r^{2}$
$x_{i}^{2}-2 a x_{i}+a^{2}+y_{i}^{2}-2 b y_{i}+b^{2} \leq r^{2}$
$z_{i}-2 a x_{i}+a^{2}+-2 b y_{i}+b^{2} \leq r^{2}$
$z_{i} \leq 2 a x_{i}+2 b y_{i}+r^{2}-a^{2}-b^{2}$
Point $\left(x_{i}, y_{i}, x_{i}^{2}+y_{i}^{2}\right)$ below halfspace

$$
H(a, b, r): Z \leq 2 a X+2 b Y+r^{2}-a^{2}-b^{2}
$$

Semialgebraic Range Reporting

Input:

- n points in \mathbb{R}^{d}.
- Store in a DS
- Given a range R
- list them.

$$
S(n)=\frac{n^{d}}{Q^{d}(n)}
$$

$$
S(n)=\frac{n^{3}}{Q^{3}(n)}
$$

Semialgebraic Range Reporting

Input:

- n points in \mathbb{R}^{d}.
- Store in a DS
- Given a range R
- list them.
$S(n)=\frac{n^{d}}{Q^{d}(n)}$
$S(n)=\frac{n^{3}}{Q^{3}(n)}$
n space, $n^{1-1 / 3}=n^{2 / 3}$ query time (low space) n^{3} space, $\log ^{2} n$ query time (fast query)

Semialgebraic Range Reporting

Input:

- n points in \mathbb{R}^{d}.
- Store in a DS
- Given a range R
- list them.
$S(n)=\frac{n^{d}}{Q^{d}(n)}$
$S(n)=\frac{n^{3}}{Q^{3}(n)}$
n space, $n^{1-1 / 2}=n^{1 / 2}$ query time (low space)
n^{3} space, $\log ^{2} n$ query time (fast query)
The polynomial
Method

Semialgebraic Range Reporting

Input:

- n points in \mathbb{R}^{d}.
- Store in a DS
- Given a range R
- list them.
$S(n)=\frac{n^{d}}{Q^{d}(n)}$

$S(n)=\frac{n^{3}}{Q^{3}(n)}$
n space, $n^{1-1 / 2}=n^{1 / 2}$ query time (low space)
n^{3} space, $\log ^{2} n$ query time (fast query)
The polynomial
Method

Semialgebraic Range Reporting

Input:

- n points in \mathbb{R}^{d}.
- Store in a DS
- Given a range R
- list them.
$S(n)=\frac{n^{d}}{Q^{d}(n)}$
$S(n)=\frac{n^{3}}{Q^{3}(n)}$
n space, $n^{1-1 / 2}=n^{1 / 2}$ query time (low space) n^{3} space, $\log ^{2} n$ query time (fast query)

The polynomial Method

Current knowledge: $\frac{n^{3}}{Q^{5}(n)} \leq S(n) \leq \frac{n^{3}}{Q^{4}(n)}$

Semialgebraic Range Reporting

Input:

- n points in \mathbb{R}^{d}.
- Store in a DS
- Given a range R
- list them.

$$
S(n)=\frac{n^{d}}{Q^{d}(n)}
$$

$S(n)=\frac{n^{3}}{Q^{3}(n)}$
n space, $n^{1-1 / 2}=n^{1 / 2}$ query time (low space)
n^{3} space, $\log ^{2} n$ query time (fast query) tight

The polynomial
Method

Current knowledge: $\frac{n^{3}}{Q^{5}(n)} \leq S(n) \leq \frac{n^{3}}{Q^{4}(n)}$

Fast Query Lower Bound: The General Approach

Unit square in 2D

- Input: n uniformly random points
- Query: $-w \leq P(x, y) \leq w$
- List the points in the query
- Goal: Lower bound for polylog $Q(n) ; Q(n)=\tilde{O}(1)$
- Space Lower Bound: roughly n^{β}
- β : Degrees of freedom

Fast Query Lower Bound: The General Approach

Unit square in 2D

- Input: n uniformly random points
- Query: $-w \leq P(x, y) \leq w$
- List the points in the query
- Goal: Lower bound for polylog $Q(n) ; Q(n)=\tilde{O}(1)$
- Space Lower Bound: roughly n^{β}
- β : Degrees of freedom

How to:

- Create n^{β} polynomials $P_{i}(x, y)$
- Area of $-w \leq P(x, y) \leq w$ is $\Theta(w)$
- $w \approx \frac{Q(n)}{n}=\tilde{O}(1)$: Each region is " $Q(n)$-rich"

Fast Query Lower Bound: The General Approach

Unit square in 2D

- Input: n uniformly random points
- Query: $-w \leq P(x, y) \leq w$
- List the points in the query
- Goal: Lower bound for polylog $Q(n) ; Q(n)=\tilde{O}(1)$
- Space Lower Bound: roughly n^{β}
- β : Degrees of freedom

How to:

- Create n^{β} polynomials $P_{i}(x, y)$
- Area of $-w \leq P(x, y) \leq w$ is $\Theta(w)$
- $w \approx \frac{Q(n)}{n}=\tilde{O}(1)$: Each region is " $Q(n)$-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

Fast Query Lower Bound: The General Approach

Unit square in 2D

- Input: n uniformly random points
- Query: $-w \leq P(x, y) \leq w$
- List the points in the query
- Goal: Lower bound for polylog $Q(n) ; Q(n)=\tilde{O}(1)$
- Space Lower Bound: roughly n^{β}
- β : Degrees of freedom

How to:

- Create n^{β} polynomials $P_{i}(x, y)$
- Area of $-w \leq P(x, y) \leq w$ is $\Theta(w)$
- $w \approx \frac{Q(n)}{n}=\tilde{O}(1)$: Each region is " $Q(n)$-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

Fast Query Lower Bound: The General Approach

Unit square in 2D

- Input: n uniformly random points
- Query: $-w \leq P(x, y) \leq w$
- List the points in the query
- Goal: Lower bound for polylog $Q(n) ; Q(n)=\tilde{O}(1)$
- Space Lower Bound: roughly n^{β}
- β : Degrees of freedom

How to:

- Create n^{β} polynomials $P_{i}(x, y)$
- Area of $-w \leq P(x, y) \leq w$ is $\Theta(w)$
- $w \approx \frac{Q(n)}{n}=\tilde{O}(1)$: Each region is " $Q(n)$-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

So far only one approach:
Create: $P_{1}(x, y), P_{2}(x, y), \ldots, P_{M}(x, y)$
Min. distance between coefficients is large
Prove it implies (main challenge)

The First Technique

Unit square in 2D

$$
P(x, y): \quad Y=\square X^{\Delta}+\square X^{\Delta-1}+\ldots+\square X+\square
$$

How to:

- Create $n^{\Delta+1}$ polynomials $P_{i}(x, y)$
- $-\frac{Q(n)}{n} \leq P(x, y) \leq \frac{Q(n)}{n}$
- Each region is " $Q(n)$-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

The First Technique

Unit square in 2D

How to:

- Create $n^{\Delta+1}$ polynomials $P_{i}(x, y)$
- $-\frac{Q(n)}{n} \leq P(x, y) \leq \frac{Q(n)}{n}$
- Each region is " $Q(n)$-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

The Second Technique

Unit square in 2D

How to:

- Create $n^{\binom{\Delta+d}{d}}$ polynomials $P_{i}(x, y)$
- $-\frac{Q(n)}{n} \leq P(x, y) \leq \frac{Q(n)}{n}$
- Each region is " $Q(n)$-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

The Second Technique

Unit square in 2D

How to:

- Create $n^{\binom{\Delta+d}{d}}$ polynomials $P_{i}(x, y)$
- $-\frac{Q(n)}{n} \leq P(x, y) \leq \frac{Q(n)}{n}$
- Each region is " $Q(n)$-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

The Main Open Question

Unit square in 2D

$$
P(x, y): \quad 0=\square X^{\Delta}+\square X^{\Delta-1} Y+\ldots+\square X^{i} Y^{j}+\ldots+\square Y+\square X+\square
$$

- In many problems, \square 's CANNOT be independent.
- \square is a polynomial of a_{1}, \ldots, a_{β}
- Some of them have to zero.
- Some of them have to constants
- Some of them depend on other coefficients

How to:

- Create n^{β} polynomials $P_{i}(x, y)$
- $-\frac{Q(n)}{n} \leq P(x, y) \leq \frac{Q(n)}{n}$
- Each region is " $Q(n)$-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

The Main Open Question

Unit square in 2D

$$
P(x, y): \quad 0=\square X^{\Delta}+\square X^{\Delta-1} Y+\ldots+\square X^{i} Y^{j}+\ldots+\square Y+\square X+\square
$$

- In many problems, \square 's CANNOT be independent.
- \square is a polynomial of a_{1}, \ldots, a_{β}
- Some of them have to zero.
- Some of them have to constants
- Some of them depend on other coefficients

How to:

- Create n^{β} polynomials $P_{i}(x, y)$
- $-\frac{Q(n)}{n} \leq P(x, y) \leq \frac{Q(n)}{n}$
- Each region is " $Q(n)$-rich"
- (main challenge) Intersection of two regions: $<\frac{1}{n}$

Hurdle:

- $P_{1}(x, y) H(x, y)=0$
- $P_{2}(x, y) H(x, y)=0$
- Have arbitrary large coefficient distance
- Infinitely many zeroes in common

The Third Technique

Unit square in 2D

How to:

- Create n^{β} polynomials $P_{i}(x, y)$
- $-\frac{Q(n)}{n} \leq P(x, y) \leq \frac{Q(n)}{n}$
- Each region is " $Q(n)$-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

The Third Technique

Unit square in 2D

$P(x, y): Y G(X)=F(X)$
G and F "far from" sharing a root
$Y G(X)-F(X)$ is irreducible

Distance $\frac{Q^{\text {poly } \Delta(n)}}{n}$ and small magnitude is enough to imply (main challenge)

How to:

- Create n^{β} polynomials $P_{i}(x, y)$
- $-\frac{Q(n)}{n} \leq P(x, y) \leq \frac{Q(n)}{n}$
- Each region is " $Q(n)$-rich"
- (main challenge) Intersection of two regions: $\ll \frac{1}{n}$

The End?

How to Main Challenge

Setup:
$P(x, y): Y G(X)=F(X)$
$t=\operatorname{Resultant}(F, G)>0$

How to Main Challenge

Setup:
$P(x, y): Y G(X)=F(X)$
$t=\operatorname{Resultant}(F, G)>0$
$\exists H(X), L(X): G H+F L=1$

How to Main Challenge

Setup:
$P(x, y): Y G(X)=F(X)$
$t=\operatorname{Resultant}(F, G)>0$
$\exists H(X), L(X): G H+F L=1$
Create lots of poly:

- A "grid" of side-length δ around P

How to Main Challenge

Setup:
$P(x, y): Y G(X)=F(X)$
$t=\operatorname{Resultant}(F, G)>0$
$\exists H(X), L(X): G H+F L=1$
Create lots of poly:

- A "grid" of side-length δ around P
- For each coeff. a of P :
- For each $i=0, \ldots, \frac{n}{Q^{C}(n)}$:
* Add δi to a

How to Main Challenge

Setup:
$P(x, y): Y G(X)=F(X)$
$t=\operatorname{Resultant}(F, G)>0$
$\exists H(X), L(X): G H+F L=1$
Create lots of poly:

- A "grid" of side-length δ around P
- For each coeff. a of P :
- For each $i=0, \ldots, \frac{n}{Q^{C}(n)}$:
* Add δi to a

Get:

- $M=n^{\beta}$ polys, P_{1}, \ldots, P_{M} (ignoring poly $Q(n)$ factors)
- Every two differ at by at least δ in one coeff.
- Every P_{i} in a small neighborhood of P (within radius $n \delta$)
- δ sufficiently small constant
- Region: $0 \leq P_{i}(x, y) \leq \frac{Q(n)}{n}=w$

How to Main Challenge

Setup:
$P(x, y): Y G(X)=F(X)$
$t=\operatorname{Resultant}(F, G)>0$
$\exists H(X), L(X): G H+F L=1$
Consider P_{1} and P_{2} :

How to Main Challenge

Setup:
$P(x, y): Y G(X)=F(X)$
$t=\operatorname{Resultant}(F, G)>0$
$\exists H(X), L(X): G H+F L=1$
Consider P_{1} and P_{2} :
Imagine big overlap

How to Main Challenge

How to Main Challenge

How to Main Challenge

Setup:
$P(x, y): Y G(X)=F(X)$
$t=\operatorname{Resultant}(F, G)>0$
$\exists H(X), L(X): G H+F L=1$
Consider P_{1} and P_{2} :
Imagine big overlap
P_{1} and P_{2} evaluate within $[0, w]$ in a big interval I of length at least $\frac{1}{Q(n)}$

How to Main Challenge

Setup:
$P(x, y): Y G(X)=F(X)$
$t=\operatorname{Resultant}(F, G)>0$
$\exists H(X), L(X): G H+F L=1$
Consider P_{1} and P_{2} :
Imagine big overlap
P_{1} and P_{2} evaluate within $[0, w]$ in a big interval I of length at least $\frac{1}{Q(n)}$

Approach:

- Pick ℓ points in I on P_{1}

How to Main Challenge

Setup:
$P(x, y): Y G(X)=F(X)$
$t=\operatorname{Resultant}(F, G)>0$
$\exists H(X), L(X): G H+F L=1$
Consider P_{1} and P_{2} :
Imagine big overlap
P_{1} and P_{2} evaluate within $[0, w]$ in a big interval I of length at least $\frac{1}{Q(n)}$

Approach:

- Pick ℓ points in I on P_{1}

How to Main Challenge

Setup:

$P(x, y): Y G(X)=F(X)$
$t=\operatorname{Resultant}(F, G)>0$
$\exists H(X), L(X): G H+F L=1$
Consider P_{1} and P_{2} :
Imagine big overlap
P_{1} and P_{2} evaluate within $[0, w]$ in a big interval I of length at least $\frac{1}{Q(n)}$

Approach:

- Pick ℓ points in I on P_{1}
V : Vector of monomials:
- all monomials except $y X^{\Delta_{G}}$.
- X^{i} for $i=1, \ldots, k$ so we get ℓ mono. in total
- Build an $\ell \times \ell$ matrix A :
- Row i is the evaluation of V on the i-th point

How to Main Challenge

Setup:
$P(x, y): Y G(X)=F(X)$
$t=\operatorname{Resultant}(F, G)>0$
$\exists H(X), L(X): G H+F L=1$
Consider P_{1} and P_{2} :
Imagine big overlap
P_{1} and P_{2} evaluate within $[0, w]$ in a big interval I of length at least $\frac{1}{Q(n)}$

Approach:

- Pick ℓ points in I on P_{1}
V : Vector of monomials:
- all monomials except $y X^{\Delta_{G}}$.
- X^{i} for $i=1, \ldots, k$ so we get ℓ mono. in total
- Build an $\ell \times \ell$ matrix A :
- Row i is the evaluation of V on the i-th point

Claim: $|\operatorname{det}(A)| \geq \operatorname{Resultant}(F, G)|I|^{\ell^{2}}-O(w)$

How to Main Challenge

Tweak coeff of P_{2} by smaller than δ to pass through the ℓ points \Rightarrow contradiction

Setup:
$P(x, y): Y G(X)=F(X)$
$t=\operatorname{Resultant}(F, G)>0$
$\exists H(X), L(X): G H+F L=1$
Consider P_{1} and P_{2} :
Imagine big overlap
P_{1} and P_{2} evaluate within $[0, w]$ in a big interval I of length at least $\frac{1}{Q(n)}$

Approach:

- Pick ℓ points in I on P_{1}
V : Vector of monomials:
- all monomials except $y X^{\Delta_{G}}$.
- X^{i} for $i=1, \ldots, k$ so we get ℓ mono. in total
- Build an $\ell \times \ell$ matrix A :
- Row i is the evaluation of V on the i-th point

Claim: $|\operatorname{det}(A)| \geq \operatorname{Resultant}(F, G)|I|^{\ell^{2}}-O(w)$

Thank you!

