
Separated nets in Euclidean space and Jacobians ofbiLipschitz mapsDimtri Burago �Bruce KleineryMarch 31, 1997AbstractWe show that there are separated nets in the Euclidean plane which are not biLipschitzequivalent to the integer lattice. The argument is based on the construction of a continuousfunction which is not the Jacobian of a biLipschitz map.1 IntroductionA subset X of a metric space Z is a separated net if there are constants a; b > 0 such that d(x; x0) > afor every pair x; x0 2 X , and d(z;X) < b for every z 2 Z. Every metric space contains separatednets: they may be constructed by �nding maximal subsets with the property that all pairs of pointsare separated by some distance a > 0. It follows easily from the de�nitions that two spaces arequasi-isometric if and only if they contain biLipschitz equivalent separated nets. One may ask if thechoice of these nets matters, or, in other words, whether any two separated nets in a given spaceare biLipschitz equivalent. To the best of our knowledge, this problem was �rst posed by Gromov[Gro93, p.23]. The answer is known to be yes for separated nets in non-amenable spaces (undermild assumptions about local geometry), see [Gro97, Why97]; more constructive proofs in the caseof trees or hyperbolic groups can be found in [Pap95, Bog96].In this paper, we prove the following theorem:Theorem 1.1 There exists a separated net in the Euclidean plane which is not biLipschitz equivalentto the integer lattice.The proof of Theorem 1.1 is based on the following result:Theorem 1.2 Let I := [0; 1]. Given c > 0, there is a continuous function � : I2 ! [1; 1 + c], suchthat there is no biLipschitz map f : I2 ! E2 withJac(f) := Det(Df) = � a:e:Remarks1. Although we formulate and prove these theorems in the 2-dimensional case, the same proofswork with minor modi�cations in higher dimensional Euclidean spaces as well. We only considerthe 2-dimensional case here to avoid cumbersome notation.2. Theorem 1.2 also works for Lipschitz homeomorphisms; we do not use the lower Lipschitzbound on f . Also, since any modulus of continuity on a map between separated nets implies thatit is Lipschitz, the nets described in Theorem 1.1 are not equivalent to the integer lattice even if wework in the larger category of maps with a modulus of continuity.�Supported by NSF grant DMS-95-05175ySupported by a Sloan Foundation Fellowship and NSF grants DMS-95-05175 and DMS-96-26911.1



3. After the �rst version of this paper had been written, Curt McMullen informed us that healso had a proof of Theorems 1.1 and 1.2. See [McM97] for a discussion of the the linear analog ofTheorem 1.2, and the (homogeneous) H�older analogs of the mapping problems in Theorems 1.1 and1.2. The problem of prescribing Jacobians of homeomorpisms has been studied by several authors.Using the idea of [Mos65], [DM90] proved that every �-Holder continuous function is locally theJacobian of a C1;� homeomorphism, and they then raised the question of whether any continuousfunction is (locally) the Jacobian of a C1 di�eomorphism. [RY94, Ye94] consider the prescribedJacobian problem in other regularity classes, including the cases when the Jacobian is in L1 or ina Sobolev space. Overview of the proofsTheorem 1.2 implies Theorem 1.1. Let � : I2 ! R be measurable with 0 < inf � � sup � < 1.We will indicate why � would be the Jacobian of a biLipschitz map f : I2 ! E2 if all separated netsin E2 were biLipschitz equivalent. Take a disjoint collection of squares Si � E2 with side lengthsli tending to in�nity, and \transplant" � to each Si using appropriate similarities �i : I2 ! Si, i.e.set �i := � � ��1i . Then construct a separated net L � E2 so that the \local average density" ofL in each square Si approximates ��1i . If g : L ! Z2 is a biLipschitz homeomorphism, consider\pullbacks" of gjSi to I2, i.e. pre and post-compose gjSi with suitable similarities so as to get asequence of uniformly biLipschitz maps gi : I2 � Zi ! E2 . Then extract a convergent subsequenceof the gi's via the Arzela-Ascoli theorem, and obtain a limit map f : I2 ! E2 with Jacobian �.Theorem 1.2. The observation underlying our construction is that if the Jacobian of f : I2 ! E2oscillates in a rectangular neighborhood U of a segment xy � I2, then f will be forced to stretch forone of two reasons: either it maps xy to a curve which is far from a geodesic between its endpoints,or it maps xy close to the segment f(x)f(y) but it sends U to a neighborhood of f(x)f(y) withwiggly boundary in order to have the correct Jacobian. By arranging that Jac(f) oscillates inneighborhoods of a hierarchy of smaller and smaller segments we can force f to stretch more andmore at smaller and smaller scales, eventually contradicting the Lipschitz condition on f .We now give a more detailed sketch of the proof.We �rst observe that it is enough to construct, for every L > 1; �c > 0, a continuous function�L;�c : I2 ! [1; 1+�c] such that �L;�c is not the Jacobian of an L-biLipschitz map I2 ! E2 . Given sucha family of functions, we can build a new continuous function � : I2 ! [1; 1 + c] which is not theJacobian of any biLipschitz map I2 ! E2 as follows. Take a sequence of disjoint squares Sk � I2which converge to some p 2 I2, and let � : I2 ! [1; 1 + c] be any continuous function such that�jSk = �k;min(c; 1k ) � �k where �k : Sk ! I2 is a similarity.Also, note that to construct �L;�c, we really only need to construct a measurable function withthe same property: if �kL;�c is a sequence of smoothings of a measurable function �L;�c which convergeto �L;�c in L1, then any sequence of L-biLipschitz maps �k : I2 ! E2 with Jac(�k) = �kL;�c willsubconverge to a biLipschitz map � : I2 ! E2 with Jac(�) = �L;�c.We now �x L > 1; c > 0, and explain how to construct �L;c. Let R be the rectangle [0; 1] �[0; 1N ] � E2 , where N � 1 is chosen suitably depending on L and c, and let Si = [ i�1N ; iN ] � [0; 1N ]be the ith square in R. De�ne a \checkerboard" function �1 : I2 ! [1; 1 + c] by letting �1 be 1 + con the squares Si with i even and 1 elsewhere. Now subdivide R into M2N squares using M evenlyspaced horizontal lines and MN evenly spaced vertical lines. We call a pair of points marked if theyare the endpoints of a horizontal edge in the resulting grid.The key step in the proof (Lemma 3.2) is to show that any biLipschitz map f : I2 ! E2with Jacobian �1 must stretch apart a marked pair quantitatively more than it stretches apartthe pair (0; 0); (1; 0); more precisely, there is a k > 0 (depending on L; c) so that d(f(p);f(q))d(p;q) >(1 + k)d(f(0; 0); f(1; 0)) for some marked pair p; q. If this weren't true, then we would have anL-biLipschitz map f : I2 ! E2 which stretches apart all marked pairs by a factor of at most(1 + �)d(f(0; 0); f(0; 1)), where � � 1. This would mean that f maps horizontal lines in R to\almost taut curves". Using triangle inequalities one checks that this forces f to map most markedpairs p; q so that vector f(q) � f(p) is � d(p; q)(f(1; 0) � f(0; 0)); this in turn implies that forsome 1 � i � N , all marked pairs p; q in the adjacent squares Si; Si+1 are mapped by f so that2



f(q) � f(p) � d(p; q)(f(1; 0) � f(0; 0)). Estimates then show that f(Si) and f(Si+1) have nearlythe same area, which contradicts the assumption that Jac(f) = �1, because �1 is 1 on one of thesquares and 1 + c on the other.Our next step is to modify �1 in a neighborhood of the grid in R: we use thin rectangles (whosethickness will depend on L; c) containing the horizontal edges of our grid, and de�ne �2 : I2 ![1; 1 + c] by letting �2 be a \checkerboard" function in each of these rectangles and �1 elsewhere.Arguing as in the previous paragraph, we will conclude that some suitably chosen pair of points inone of these new rectangles will be stretched apart by a factor > d(f(0; 0); f(1; 0))(1+k)2 under themap f . Repeating this construction at smaller and smaller scales, we eventually obtain a functionwhich can't be the Jacobian of an L-biLipschitz map.The paper is organized as follows. In Section 2 we prove that Theorem 1.2 implies Theorem 1.1.Section 3 is devoted to the proof of Theorem 1.2.2 Reduction of Theorem 1.1 to Theorem 1.2Recall that every biLipschitz map is di�erentiable a.e., and the area of the image of a set is equalto the integral of the Jacobian over this set. We formulate our reduction as the following Lemma:Lemma 2.1 Let � : I2 ! [1; 1 + c] be a measurable function which is not the Jacobian of anybiLipschitz map f : I2 ! E2 with Jac(f) := det(Df) = � a:e: (2.2)Then there is a separated net in E2 which is not biLipschitz homeomorphic to Z2.Proof. In what follows, the phrase \subdivide the square S into subsquares will mean that S is tobe subdivided into squares using evenly spaced lines parallel to the sides of S. Let S = fSkg1k=1 bea disjoint collection of square regions in E2 so that each Sk has integer vertices, sides parallel to thecoordinate axes, and the side length lk of Sk tends to1 with k. Choose a sequencemk 2 (1;1) withlimk!1mk =1 and limk!1 mklk = 0. Let �k : I2 ! Sk be the unique a�ne homeomorphism withscalar linear part, and de�ne �k : Sk ! [1; 1+c] by �k = ( 1� )���1k . Subdivide Sk into m2k subsquaresof side length lkmk . Call this collection Tk = fTkigm2ki=1. For each i in f1; : : : ;m2kg, subdivide Tki inton2ki subsquares Ukij where nki is the integer part of qRTki �kdL. Now construct a separated netX � E2 by placing one point at the center of each integer square not contained in [Sk, and onepoint at the center of each square Ukij .We now prove the lemma by contradiction. Suppose g : X ! Z2 is an L-biLipschitz homeomor-phism. Let Xk = ��1k (X) � I2, and de�ne fk : Xk ! E2 byfk(x) = 1lk (g � �k(x)� g � �k(?k)) (2.3)where ?k is some basepoint in Xk. Then fk is an L-biLipschitz map from Xk to a subset of E2 ,and the fk's are uniformly bounded. By the proof of the Arzela-Ascoli theorem we may �nd asubsequence of the fk's which \converges uniformly" to some biLipschitz map f : I2 ! E2 . By theconstruction of X , the counting measure on Xk (normalized by the factor 1l2k ) converges weakly to 1�times Lebesgue measure, while the (normalized) counting measure on fk(Xk) converges weakly toLebesgue measure. It follows that f�(( 1� )L) = Ljf(I2), i.e. Jac(f) = �. �3 Construction of a continuous function which is not a Ja-cobian of a biLipschitz mapThe purpose of this section is to prove Theorem 1.2. As explained in the introduction, Theorem 1.2follows from 3



Lemma 3.1 For any given L and c > 1, there exists a continuous function � : S = I2 ! [1; 1 + c],such that there is no L-biLipschitz homeomorphism f : I2 ! E2 withJac(f) = � a:e:Proof of Lemma 3.1. From now on, we �x two constants L and c and proceed to construct of acontinuous function � : I2 ! [1; 1+ c] which is not a Jacobian of an L-biLipschitz map. By default,all functions which we will describe, take values between 1 and 1 + c.We say that two points x; y 2 I2 are A-stretched (under a map f : I2 ! E2 ) if d(f(x); f(y)) �Ad(x; y).For N 2 N, RN be the rectangle [0; 1]� [0; 1N ] and de�ne a \checkerboard" function �N : RN ![1; 1 + c] by �N (x; y) = 1 if [Nx] is even and 1 + c otherwise. It will be convenient to introduce thesquares Si = [ i�1N ; iN ]� [0; 1N ], i = 1; : : : ; N ; �N is constant on the interior of each Si.The cornerstone of our construction is the following lemma:Lemma 3.2 There are k > 0; M; �, and N0 such that if N � N0, � � �N2 then the following holds:if the pair of points (0; 0) and (1; 0) is A-stretched under an L-biLipschitz map f : RN ! E2 whoseJacobian di�ers from �N on a set of area no bigger than � , then at least one pair of points of theform (( pNM ; sNM ); ( qNM ; sNM )) is (1+ k)A-stretched (where p and q are integers between 0 and NMand s is an integer between 0 and M).Proof of Lemma 3.2. We will need constants k; l; m; � 2 (0;1) andM; N 2 N, which will be chosenat the end of the argument. We will assume that N > 10 and c; l < 1. Let f : RN ! E2 be anL-biLipschitz map such that Jac(f) = �N o� a set of measure �. Without loss of generality weassume that f(x) = (0; 0) and f(y) = (z; 0), z � A.We will use the notation xipq := (p+M(i�1)NM ; qNM ), where i is an integer between 1 and N , andp and q are integers between 0 and M . We call these points marked. Note that the marked pointsin Si are precisely the vertices of the subdivision of Si into M2 subsquares. The index i gives thenumber of the square Si, and p and q are \coordinates" of xipq within the square Si.We will prove Lemma 3.2 by contradiction: we assume that all pairs of the form xipq ; xjsq are nomore than (1 + k)A-stretched.If xipq 2 Si is a marked point, we say that xi+1pq 2 Si+1 is the marked point corresponding toxipq ; corresponding points is obtained by adding the vector ( 1N ; 0), where 1N is the side length ofthe square Si. We are going to consider vectors between the images of marked points in Si andthe images of corresponding marked points in the neighbor square Si+1. We denote these vectorsby W ipq := f(xi+1pq ) � f(xipq). We will see that most of the W ipq 's have to be extremely close to thevector W := (A=N; 0), and, in particular, we will �nd a square Si where W ipq is extremely close toW for all 0 � p; q � M . This will mean that the areas of f(Si) and f(Si+1) are very close, sincef(Si+1) is very close to a translate of f(Si). On the other hand, except for a set of measure �, theJacobian of f is 1 in one of the square Si; Si+1 and 1 + c in the other. This allows us to estimatethe di�erence of the areas of their images from below and get a contradiction.If l 2 (0; 1), we say that a vector W ipq = f(xi+1pq )� f(xipq), (or the marked point xipq), is regularif the length of its projection to the x-axis is greater than (1�l)AN . We say that a square Si is regularif all marked points xipq in this square are regular.Claim 1. There exist k1 = k1(l) > 0, N1 = N1(l), such that if k � k1; N � N1, there is a regularsquare.Proof. Reasoning by contradiction, we assume that all squares are irregular. By the pigeon-holeprinciple, there is a value of s (between 0 andM) such that there are at least N2M+2 irregular vectorsW ijpjs, j = 1; 2; : : : J � N2M+2 , where ij is an increasing sequence with a �xed parity. This meansthat we look for l-irregular vectors between marked points in the same row s and only in squaresSi's which have all indices i's even or all odd. The latter assumption guarantees that the segments[xijpjs; xij+1pjs ] do not overlap. We look at the polygon with marked vertices(0; 0); x00s = (0; s=MN); xi1p1s; xi1+1p1s ; xi2p2s; xi2+1p2s : : : ; xiJpJs; xiJ+1pJs ; xNMs = (1; s=MN); (1; 0)4



The image of this polygon under f connects (0; 0) and (z; 0) and, therefore, the length of its projectiononto the x-axis is at least z � A. On the other hand, estimating this projection separately for theimages of l-irregular segments [xijpjs; xij+1pjs ], the \horizontal" segments [xij+1pjs ; xij+1pj+1s] and the two\vertical" segments [(0; 0); x00s] and [xNMs; (1; 0)] , one gets that the lengths of this projection is nobigger than ( N2M + 2)((1� l)AN ) + ((1 + k)AN )(N � N2M + 2) + 2 LN : (3.3)The �rst term in (3.3) bounds the total length of projections of images of irregular segments by thede�nition of irregular segments and total number of them. The second summand is maximum stretchfactor (1+k)A between marked points times the total length of remaining horizontal segments. Thethird summand estimates the lengths of images of segments [(0; 0); x00s] and [xNMs; (1; 0)] just bymultiplying their lengths by our �xed bound L on the Lipschitz constant.Recalling that this projection is at least z, which in its turn is no less than A, we get( N2M + 2)((1� l)AN ) + ((1 + k)AN )(N � N2M + 2) + 2 LN � A:One easily checks that this is impossible when k is su�ciently small and N is su�ciently large. Thiscontradiction proves Claim 1. �Let W = (AN ; 0).Claim 2. Given any m > 0, there is an l0 = l0(m) > 0 such that if l � l0 and k � l, thenjW �W ipq j � mN for every regular vector W ipq .Proof. Consider a regular vector W ipq = (X;Y ). Since W ipq is regular, X � (1�l)AN . On the otherhand, X2 + Y 2 � (1+k)2A2N2 and X � (1+k)AN . Thus the di�erence of the x-coordinates of W ipqand W is bounded by (l+k)AN < 2lAN . Substituting the smallest possible value (1�l)AN for X intoX2 + Y 2 � (1+k)2A2N2 , we get Y 2 � 2(l+k)A2N2 � 4lA2N2 . This implies thatN jW �W ipq j � 2Apl2 + l � 2Lpl2 + l: (3.4)The right-hand side of (3.4) tends to zero with l, so Claim 2 follows. �Claim 3. There are m0 > 0, M0 such that if m < m0 and M > M0, then the following holds: if forsome 1 � i � N and every p; q we have jW �W ipq j � mN , thenjArea(f(Si+1))�Area(f(Si))j < c2N2 : (3.5)Proof. We assume that i is even and therefore � takes the value 1 on Si and 1+ c on Si+1; the othercase is analogous. We let Q := f(Si) and R = f(Si+1).Q is bounded by a curve (which is the image of the boundary of Si). Consider the result~R := Q+W of translating Q by the vector W = (A=N; 0). The area of ~R is equal to the area of Q.The images of the marked points on the boundary of Si form an LNM -net on the boundary of Q,and the images of marked points on the boundary of Si+1 form an LNM -net on R. By assumptionthe di�erence between W and each vectorW ipq joining the image of a marked point on the boundaryof Si and the image of the corresponding point on the boundary of Si+1 is less than mN . We concludethat the boundary of ~R lies within the mN + 2LMN -neighborhood of the boundary of R. Since f isL-Lipschitz, the length of the boundary of R is � 4L=N . Using a standard estimate for the area ofa neighborhood of a curve, we obtain:jArea(R)�Area(Q)j = jArea(R)�Area( ~R)j � 2LN (mN + 2LMN ) + �(mN + 2LMN )2:Therefore (3.5) holds if m is su�ciently small and M is su�ciently large. �5



Proof of Lemma 3.2 concluded. Now assume m < m0, M > M0, l � l0(m), k � min(l; k1(l)),N � N1(l), and � � c8N2L2 . Combining claims 1, 2, and 3, we �nd a square Si so that (3.5) holds.On the other hand, since Jac(f) coincides with � o� a set of measure �, Area(f(Si)) � 1=N2 + �L2and Area(f(Si+1) � (1 + c)(1=N2 � �). Using the assumption that � � c8N2L2 we getArea(R) �Area(Q) � c2N2 ;contradicting (3.5). This contradiction proves Lemma 3.2. �Proof of Lemma 3.1 continued. We will use an inductive construction based on Lemma 3.2. Ratherthan dealing with an explicit construction of pairs of points as in Lemma 3.2, it is more convenientto us to use the following lemma, which is an obvious corollary of Lemma 3.2. (To deduce thislemma from Lemma 3.2, just note that all properties of interest persist if we scale our coordinatesystem.)Lemma 3.6 There exists a constant k > 0 such that, given any segment xy � I2 and any neigh-borhood xy � U � I2, there is a measurable function � : U ! [1; 1 + c], � > 0 and a �nite collectionof non-intersecting segments lkrk � U with the following property: if the pair x; y is A-stretched byan L-biLipschitz map f : U ! E2 whose Jacobian di�ers from � on a set of area < � , then for somek the pair lk; rk is (1 + k)A-stretched by f . The function � may be chosen to have �nite image.We will prove Lemma 3.1 by induction, using the following statement. (It is actually evenslightly stronger than Lemma 3.1 since it not only guarantees non-existence of L-biLipschitz mapswith a certain Jacobian, but also gives a �nite collection of points, such that at least one distancebetween them is distorted more than by factor L.)Lemma 3.7 For each integer i there is a measurable function �i : I2 ! [1; 1+ c] , a �nite collectionSi of non-intersecting segments lkrk � I2, and �i > 0 with the following property: For every L-biLipschitz map f : I2 ! E2 whose Jacobian di�ers from �i on a set of area < �i , at least onesegment from Si will have its endpoints (1+k)iL -stretched by f .Proof. The case i = 0 is obvious. Assume inductively that there are �i�1; �i�1, and a disjointcollection of segments Si�1 = flkrkg which satisfy the conditions of the lemma. Let fUkg be adisjoint collection of open sets with Uk � lkrk and with total area < �i�12 . For each k apply Lemma3.6 to Uk to get a function �̂k : Uk ! [1; 1 + c]; �̂k > 0, and a disjoint collection Ŝk of segments.Now let �i : I2 ! [1; 1 + c] be the function which equals �̂k on each Uk and equals �i�1 on thecomplement of [Uk; let Si = [Ŝk, and �i = min �̂k. The required properties follow immediately. �Lemma 3.1 and (Theorem 1.2) follows from Lemma 3.7.References[Bog96] Bogopolsky. In�nite commensurable hyperbolic groups are bi-Lipschitz equivalent.Preprint, 1996.[DM90] B. Dacorogna and J. Moser. On a partial di�erential equation involving the Jacobiandeterminant. Ann. Inst. H. Poincar�e Anal. Non Lin�eaire, 7(1):1{26, 1990.[Gro93] M. Gromov. Asymptotic invariants for in�nite groups. In Niblo and Roller, editors,Geometric group theory. London Mathematical Society, 1993.[Gro97] M. Gromov. Private communication, February 1997.[McM97] C. McMullen. Lipschitz maps and nets in Euclidean space. Preprint, 1997.[Mos65] J. Moser. On the volume elements on a manifold. Trans. Amer. Math. Soc., 120:286{294,1965.[Pap95] P. Papasoglu. Homogeneous trees are bi-Lipschitz equivalent. Geom. Dedicata, 54(3):301{306, 1995. 6
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