
Hyperbolic groups with low dimensional boundaryMichael Kapovich�Bruce KleineryMay 19, 1999AbstractIf a torsion-free hyperbolic group G has 1-dimensional boundary @1G, then@1G is a Menger curve or a Sierpinski carpet provided G does not split overa cyclic group. When @1G is a Sierpinski carpet we show that G is a quasi-convex subgroup of a 3-dimensional hyperbolic Poincar�e duality group. We alsoconstruct a \topologically rigid" hyperbolic group G: any homeomorphism of@1G is induced by an element of G.1 IntroductionWe recall that the boundary @1X of a locally compact Gromov hyperbolic space X isa compact metrizable topological space. Brian Bowditch observed that any compactmetrizable space Z arises this way: view the unit ball B in Hilbert space as thePoincar�e model of in�nite dimensional hyperbolic space, topologically embed Z inthe boundary of B, and then take the convex hull CH(Z) to get a locally compactGromov hyperbolic space with @1CH(Z) = Z. On the other hand when X is theCayley graph of a Gromov hyperbolic group G then the topology of @1X ' @1G isquite restricted. It is known that @1G is �nite dimensional, and either perfect, empty,or a two element set (in the last two cases the group G is elementary). It was shownrecently by Bowditch and Swarup [B2, Sw1] that if @1G is connected then it does nothave global cut-points, and thus is locally connected according to [BM]. The boundaryof G necessarily has a \large" group of homeomorphisms: if G is nonelementary thenits action on @1G is minimal, and G acts on @1G as a discrete uniform convergencegroup. It turns out that the last property gives a dynamical characterization ofboundaries of hyperbolic groups, according to a theorem of Bowditch [B3]: if Z isa compact metrizable space with jZj � 3 and G � Homeo(Z) is a discrete uniformconvergence subgroup, then G is hyperbolic and Z is G-equivariantly homeomorphicto @1G. In general the action Gy @1G is not e�ective, but if G is nonelementary,its ine�ective kernel is a �nite normal subgroup N C G; moreover every �nite normalsubgroup of G is contained in N . We let �G denote the quotient G=N .�Supported by NSF grant DMS-96-26633ySupported by a Sloan Foundation Fellowship, and NSF grants DMS-95-05175, DMS-96-26911,DMS-9022140. 1



There are two questions which arise naturally:Question A. Which topological spaces are boundaries of hyperbolic groups?Question B. Given a topological space Z, which hyperbolic groups have Z as theboundary?Regarding question A, all �nite-dimensional topological spheres and some homol-ogy spheres [DJ], the Sierpinski carpet and the Menger curve [Be] arise as bound-aries of hyperbolic groups. Moreover, according to Gromov and Champetier [Ch],\generic" �nitely presentable groups are hyperbolic and have the Menger curve as theboundary. On the other hand, as was noticed by Bestvina, it is unknown if higher-dimensional Universal Menger compacta [Bes1] appear as boundaries of hyperbolicgroups (Dranishnikov can construct hyperbolic groups with boundary homeomorphicto the 2-dimensional Menger compactum, [Dr]).Considerably less is known about Question B. If @1G is zero-dimensional then Gis a virtually free group [St, Gr, GH]. Recently it was proven in [Ga, CJ, T1] that anyhyperbolic group whose boundary is homeomorphic to S1 acts discretely, cocompactly,and isometrically on the hyperbolic plane. We call such a group virtually Fuchsian.The case when @1G ' S2 is a di�cult open problem:Conjecture (J. Cannon). If G is a hyperbolic group whose boundary is homeo-morphic to S2, then G acts isometrically and properly discontinuously on hyperbolic3-space H 3 .In section 7 we construct new examples of hyperbolic groups for which we answerQuestion B completely. These groups have a remarkable topological rigidity property:De�nition 1 A hyperbolic group G is said to be topologically rigid if every home-omorphism f : @1G! @1G is induced by an element of G.Our examples are the �rst known topologically rigid groups. The Cayley graph ofa topologically rigid group is a quasi-isometrically rigid metric space (every quasi-isometry is within bounded distance of an isometry). Previously known examples ofquasi-isometrically rigid metric spaces include quaternionic hyperbolic spaces and theCayley hyperbolic plane [Pa], higher rank symmetric spaces of noncompact type [KL],Cayley graphs of maximal non-arithmetic nonuniform lattices in isometry groups ofrank 1 symmetric spaces of dimension > 2 [Sch], and universal covers of compacthyperbolic n-manifolds with nonempty totally geodesic boundary1, n � 3. Topolog-ically rigid groups have an even stronger rigidity property than quasi-isometricallyrigid groups:IfG0 is a hyperbolic group whose boundary is homeomorphic to the bound-ary of a topologically rigid hyperbolic group G, then �G0 embeds in �G as a�nite index subgroup.1This was observed in a discussion Bernhard Leeb, Richard Schwartz, and the authors. Therigidity statement follows from a doubling construction and the technique of [Sch].
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The topologically rigid groups mentioned above have 2-dimensional boundary; weprove in Corollary 13 that this is the minimal dimension for the boundary of a topo-logically rigid group.The remaining results of our paper concern hyperbolic groups with one-dimensionalboundary.Theorem 1 Let G be a hyperbolic group which does not split over a �nite or virtuallycyclic subgroup, and suppose @1G is 1-dimensional. Then one of the following holds(see section 2 for de�nitions):1. @1G is a Menger curve.2. @1G is a Sierpinski carpet.3. @1G is homeomorphic to S1 and G maps onto a Schwartz triangle group with�nite kernel.It is probably impossible to classify hyperbolic groups whose boundaries are home-omorphic to the Menger curve (since this is the \generic" case), however it appearsthat a meaningful study is possible in the case of hyperbolic groups whose boundariesare homeomorphic to the Sierpinski carpet. Recall that the Sierpinski carpet S hasa canonical collection of peripheral circles (see section 2).Theorem 2 Suppose that @1G �= S. Then:1. There are only �nitely many G-orbits of peripheral circles.2. The stabilizer of each peripheral circle C is a quasi-convex virtually Fuchsiangroup which acts on C as a uniform convergence group. We call these subgroupsperipheral subgroups of G.3. If we \double" G along the collection of peripheral subgroups using amalgamatedfree product and iterated HNN-extension (see section 5), then the result is a hyperbolicgroup Ĝ which contains G as a quasiconvex subgroup.4. The boundary of Ĝ is homeomorphic to S2. Hence by [BM], [Bes2], Ĝ is a3-dimensional Poincar�e duality group in the torsion-free case.5. When G is torsion free, then (G;H1; : : : ; Hk) is a 3-dimensional relativePoincar�e duality pair (see [DD] for the de�nition), where H1; : : : ; Hi are the pe-ripheral subgroups of G.A similar result holds in the case of higher dimensional analogs of the Sierpinskicarpet, except that in part 2 one says that peripheral sphere stabilizers are hyperbolicgroups with spherical boundary.Known examples of groups with Sierpinski carpet boundary are consistent withthe following:Conjecture Let G be a hyperbolic group Sierpinski carpet boundary. Then G actsdiscretely, cocompactly, and isometrically on a convex subset of H 3 with nonemptytotally geodesic boundary.There is now some evidence for this conjecture. It would follow from a positivesolution of Cannon's conjecture together with Theorem 2, see section 5. Alternatively,3



in the torsion-free case, if one could show that (hyperbolic) 3-dimensional Poincar�eduality groups are 3-manifold groups, then Thurston's Haken uniformization theoremcould be applied to an irreducible 3-manifold with fundamental group isomorphic tothe group Ĝ produced in Theorem 2. Under extra conditions (such as coherence andthe existence of a nontrivial splitting) one can show that a 3-dimensional Poincar�eduality group is a 3-manifold group, [KK].The conjecture above leads one to ask which hyperbolic groups have planar bound-ary. Concretely, one may ask if a torsion-free hyperbolic group with planar boundaryhas a �nite index subgroup subgroup isomorphic to a discrete convex cocompact sub-group of Isom(H 3). Here is a cautionary example which shows that in general it isnecessary to pass to a �nite index subgroup: if one takes a surface of genus 1 withtwo boundary components and glues one boundary circle to the other by a degree2 map, then the fundamental group G of the resulting complex enjoys the followingproperties:1. G is torsion-free and hyperbolic.2. G contains a �nite index subgroup which is isomorphic to a discrete, convexcocompact subgroup of Isom(H 3). In particular, the boundary of G is planar.3. G is not a 3-manifold group.2 PreliminariesProperties of hyperbolic groups and spaces. For a proof of the following prop-erties of hyperbolic groups, we refer the reader to [Gr, ABC+, GH, B3].Let G be a nonelementary Gromov hyperbolic group, and suppose G acts dis-cretely and cocompactly on a locally compact geodesic metric space X. Then theboundary of X is a compact metrizable space @1X on which Isom(X) acts by home-omorphisms. For any f 2 Isom(X), we denote the corresponding homeomorphismof @1X by @1f . The action of G on @1X is minimal, i.e. the G-orbit of every pointis dense in @1X. Let @21X := @1X � @1X � Diag be the space of distinct pairsin @1X. Then the set of pairs of points (x; y) 2 @21X which are �xed by an in�nitecyclic subgroup of G is dense in @21X. We let �@21X := @21X=(x; y) � (y; x).The groupG acts cocompactly and properly discontinuously on @3X := f(x; y; z) 2(@1X)3 j x; y; z distinctg. There is a natural topology on X [ @1X which is a G-invariant compacti�cation of X, and this is compatible with the topology on @1X.Recall that a subset S of a geodesic metric space is C-quasi-convex if everygeodesic segment with endpoints in S is contained in the C-tubular neighborhoodof S. Quasi-convex subsets of �-hyperbolic metric spaces satisfy a visibility prop-erty (cf. [EbOn]):Given R; C; � 2 (0;1) there is an R0 with the following property (wemay take R0 = R + 10�). If X is a �-hyperbolic metric space, Y � X isC-quasi-convex, and x 2 X satis�es d(x; Y ) � R0, then given any two unitspeed geodesics 1; 2 starting at x and ending in Y , and any t 2 [0; R]we have d(1(t); Im(2)) < � and d(2(t); Im(1)) < �.4



As a consequence of the visibility property, if Yk � X is a sequence of C-quasi-convex subsets of a �-hyperbolic space X, and d(x; Yk) ! 1 as k ! 1, then asubsequence of Yk's converges to a single point � 2 @1X.Sierpinski carpets and Menger curves. The classical construction of a Sierpinskicarpet is analogous to the construction of a Cantor set: start with the unit square inthe plane, subdivide it into nine equal subsquares, remove the middle open square,and then repeat this procedure inductively on the remaining squares. If we takea sequence Di � S2 of disjoint closed 2-disks whose union is dense in S2 so thatDiam(Di)! 0 as i!1, then S2 �[iInterior(Di) is a Sierpinski carpet; moreoverany Sierpinski carpet embedded in S2 is obtained in this way [W]. Sierpinski carpetscan also be characterized as follows [W]: a compact, 1-dimensional, planar, connected,locally connected space with no local cut points is a Sierpinski carpet.We will use a few topological properties of Sierpinski carpets S:1. There is a unique embedding of S in S2 up to post-composition with a home-omorphism of S2.2. There is a countable collection C of \peripheral circles" in S, which are preciselythe nonseparating topological circles in S.3. Given any metric d on S and any number D > 0, there are only �nitely manyperipheral circles in S of diameter > D.The Menger curve may be constructed as follows. Start with the unit cube I3in R3 . Consider the orthogonal projections �ij : I3 ! Fij of the unit cube ontothe ij coordinate square, and let Sij � Fij be the Sierpinski carpet as constructedabove. The Menger curve is the intersection \i<j��1ij (Sij). The Menger curve isuniversal among all compact metrizable 1-dimensional spaces: any such space cantopologically embedded in the Menger curve. By [A1, A2], a compact, metrizable,connected, locally connected, 1-dimensional space is a Menger curve provided it hasno local cut points, and no nonempty open subset is planar.3 Proof of Theorem 1The fact that G does not split over a �nite group implies [St] that G is one-ended,and @1G is connected. Recall that by the results of [BM, B2, Sw1], the boundaryof a one-ended hyperbolic group is locally connected and has no global cut points;furthermore, if @1G has local cut points then G splits over a virtually in�nite cyclicsubgroup unless @1G ' S1 and G maps onto a Schwarz triangle group with �nitekernel. Therefore from now on we will assume that @1G has no local cut points.A 1-dimensional, compact, metrizable, connected, locally connected space Z withno local cut points is a Menger curve provided no point z 2 Z has a neighborhoodwhich embeds in the plane (see section 2). Hence either @1G is a Menger curve orsome � 2 @1G has a planar neighborhood U ; therefore we assume the latter holds.Lemma 3 Let � � @1G be a subset homeomorphic to a �nite graph. Then � is aplanar graph.Proof. Since the action of G on @1G is minimal, every G-orbit intersects the planarneighborhood U , and so every point of @1G has a planar neighborhood. Because5



@1G has no local cut points, we have @1G n � 6= ;. So we can �nd a hyperbolicelement g 2 G whose �xed point set f�1; �2g � @1G is disjoint from � (section 2).Hence for su�ciently large n, gn(�) is contained in a planar neighborhood of �1 or�2. �We recall [C, M] that a compact, metrizable, connected, locally connected spaceX with no global cut points is planar as long as no nonplanar graph embeds in X.Therefore @1G is planar. Finally, by [W], @1G is Sierpinski carpet. �4 Groups with Sierpinski carpet boundaryLet M be a compact hyperbolic manifold with nonempty totally geodesic boundaryand let G := �1(M) be its fundamental group. The universal cover ~M of M may beidenti�ed with a closed convex subset of H 3 which is bounded by a countable disjointcollectionP of totally geodesic planes. Each P 2 P bounds an open half-space disjointfrom ~M . ~M is obtained from H 3 by removing each of these open half-spaces, and@1 ~M � @1H 3 is obtained from @1H 3 ' S2 by deleting the open disks correspondingto these half-spaces. The closures of these disks are disjoint since the distance betweendistinct elements of P is bounded away from zero. As @1 ~M has no interior points inS2, it is a Sierpinski carpet (see section 2). Note that the peripheral circles of @1 ~Mare in 1-1 correspondence with elements of P, and therefore the conjugacy classesof G-stabilizers of peripheral circles are in 1-1 correspondence with P=G, the set ofboundary components of M . The stabilizer of a peripheral circle is the same as thestabilizer of the corresponding element of P, so these stabilizers are quasi-convex inG. The next theorem shows that similar conclusions hold for any hyperbolic groupwhose boundary is a Sierpinski carpet.Theorem 4 Let G be a hyperbolic group with boundary homeomorphic to the Sier-pinski carpet S. Then1. There are �nitely many G-orbits of peripheral circles in S.2. The stabilizer of each peripheral circle C is a quasi-convex subgroup G whoseboundary is C.Proof. We recall that G acts cocompactly on the space @3G := f(x; y; z) 2 (@1G)3 jx; y; z distinctg. Therefore if Ck � @1G is a sequence of peripheral circles, (xk; yk; zk) 2@3G and fxk; yk; zkg � Ck, then after passing to a subsequence we may �nd a sequencegk 2 G, (x1; y1; z1) 2 @3G so that (gkxk; gkyk; gkzk) converges to (x1; y1; z1). Butthis means that Diam(gk(Ck)) is bounded away from zero, so gk(Ck) belongs to a�nite collection of peripheral circles, and hence gk(Ck) is eventually constant. Weconclude that there are only �nitely many G-orbits of peripheral circles, and the sta-bilizer of any C 2 C acts cocompactly on the space of distinct triples in C. By [B2]Stab(C) is a quasi-convex subgroup of G, and @1Stab(C) = C. From now on we willrefer to stabilizers of peripheral circles as peripheral subgroups. By [Ga, CJ, T1]each peripheral subgroup is, modulo a �nite normal subgroup, a cocompact Fuchsiangroup in Isom(H 2). �6



5 Doubling Sierpinski carpet groups along peripheral sub-groupsIn this section we prove Theorem 2.Let G be a hyperbolic group with @1G ' S, and let H1; : : : ; Hk be a set ofrepresentatives of conjugacy classes of peripheral subgroups of G. We de�ne a graphof groups G as follows. The underlying graph has two vertices and k edges (no loops).Each vertex is labelled by a copy of G, the ith edge is labelled by Hi, and the edgehomomorphisms Hi ! G are given by the inclusions. We let Ĝ be the fundamentalgroup of G.Next we construct a tree of spaces on which the group Ĝ acts in a natural way.Let X0 be a �nite Cayley 2-complex for G, and let Xi be a �nite Cayley 2-complexfor the group Hi. The inclusion Hi ,! G is induced by a cellular map hi : Xi ! X0between the 2-complexes. Let h : [Xi ! X0 be the corresponding map from thedisjoint union of the Xi's to X0, and let X denote the mapping cylinder of h.Let DX be the double of X along the collection of subcomplexes Xi; i = 1; :::; k.Consider now the universal cover gDX of DX with the deck transformation group Ĝ.Let Y be the 1-skeleton of gDX. The 1-skeletons of the subcomplexes Xi; i = 1; :::; klift to disjoint edge subspaces of Y . A vertex subspace of Y is obtained as follows:take a connected component C of the complement of the edge spaces in Y , take theclosure �C, and then add in all edge spaces which intersect �C. Each vertex space is acopy of the 1-skeleton of the universal cover of X. Let T be the graph correspondingto the decomposition of Y into vertex and edge subspaces: vertices v of T correspondto vertex spaces Yv � Y , the edges e correspond to the edge subspaces Ye � Y . Anedge e is incident to a vertex v if and only if Ye is contained in Yv. It is standard thatthe graph T is actually a tree (compare [SW]). Let V and E denote the collectionsof vertices and edges in T respectively. If v 2 T we let Ev denote the collection ofedges containing v.Let � : DX ! DX be the natural involution of DX. A map � : Y ! Y is areection if it is a lift of � and it �xes some point; each reection �xes some edgespace in Y , and each edge space Ye is the �xed point set of precisely one reection re.Let � be the group generated by the reections in Y . The group � is normalized by Ĝsince conjugation of a reection by an element of Ĝ yields another reection; likewiseĜ is normalized by �. Let v 2 T be any vertex. Then � is the free product of ordertwo subgroups of the form hrei where e 2 Ev. The vertex space Yv is a fundamentaldomain for the action of � on Y . The group � preserves the tree structure of Y , so wehave an induced action of � on T by tree automorphisms, each reection re acting onT as an inversion of the edge e. The action of � on T naturally induces an action of� on @1T . The space Y is a connected graph, and we give it the natural path-metricwhere each edge in Y has unit length.Lemma 5 1. The space Y is Gromov-hyperbolic.2. Edge and vertex spaces are all K-quasi-convex in Y for some K.3. There is a function C(R) such that for every R, the intersection of R-neighborhoodsof any two distinct vertex or edge spaces has diameter at most C(R) unless the spacesare incident. 7



Proof. The space Y is quasi-isometric to Cayley graph of Ĝ. The group Ĝ is Gromov-hyperbolic by [BF2, BF3]. The assertions 2 and 3 follow from [Mi] and [Sw2]. �We have a coarse Lipschitz projection p : Y ! T which maps (Yv � [e2EvYe) tov for each v 2 V , and maps each edge space to the midpoint of the correspondingedge of T . If  : [0;1) ! @1Y is a unit speed geodesic ray, then p �  is a coarseLipschitz path with the bounded backtracking property2 by the quasi-convexity ofvertex/edge spaces. Hence p �  maps into a �nite tube around a geodesic ray � inT . If p �  is unbounded in T , then the equivalence class of the ray � is uniquelydetermined by  and we label  with the associated boundary point [� ] 2 @1T . Bythe quasi-convexity of edge spaces, if  hits an edge space for an unbounded sequenceof times, then it remains in a quasi-convex tubular neighborhood of the edge space (ofuniformly bounded thickness). In this case, we know that  eventually remains in abounded neighborhood of a unique edge space by property 3 in Lemma 5, and we label with this edge. If neither of the above two cases occurs, then for each edge e of thetree, we know that  eventually lies in one of the two components of the complementof the edge space Ye, and we label the edge with an arrow pointing in the directionof the corresponding subtree of T . There must be some (and at most one) vertexv 2 T such that all edges emanating from v have arrows pointing toward v; otherwisewe could follow arrows and leave any bounded set. There must be an unboundedsequence of times tk such that (tk) lies in the vertex space Yv (by the constructionof the edge labelling); by quasi-convexity of Yv, this means that  eventually lies inthe R-neighborhood of Yv; in this case we label  by v. Equivalent geodesic rays aregiven the same label. We get a labelling map @1Label : Y ! (T [ @1T ) which isclearly �-equivariant.We now examine the topology of @1Y . This space is metrizable and we �x a metricd on @1Y ; in what follows we will implicitly use d when discussing metric propertiesof @1Y . Recall that each vertex space Yv is quasi-isometric to G ' ~X; since byLemma 5 every subspace Yv is quasi-convex in Y , we conclude that @1Yv � @1Y is aSierpinski carpet. Similarly, the peripheral circles of the Sierpinski carpet @1Yv arein 1-1 correspondence with the boundaries of edge spaces Ye � Yv.By the visibility property of the uniformly quasi-convex edge spaces, there is atmost one boundary point of @1Y labelled by any � 2 @1T . For each edge e in T , theset of points in @1Y labelled by e is the ideal boundary of the edge space Ye, i.e. acircle. For each vertex v 2 T , the set of points labelled by v is@1Yv � [e2Ev@1Yei.e. the Sierpinski carpet @1Yv minus the union of its peripheral circles.Our next goal is to describe the topology of @1Y using the tree T . Choose v 2 T .Every edge e of T separates T into two subtrees, and we let Tv;e � T be the subtreedisjoint from v. We de�ne the outward subset, Outv;e, for a pair (v; e) 2 V �E tobe the collection of points of @1Y labelled by elements of Tv;e[@1Tv;e. The visibilityproperty of Y implies that for a �xed v 2 T and any � > 0 there are only �nitelymany edges e � T so that the diameter of Outv;e exceeds �. Outward subsets of @1Y2A map c : [0;1)! T has the bounded backtracking property if for every r 2 (0;1) thereis an r0 2 (0;1) such that if t1 < t2, and d(c(t1); c(t2)) > r0, then d(c(t); c(t1)) > r for every t > t2.8



are open since a geodesic ray  with @1 2 Outv;e will eventually leave any tubularneighborhood of the edge space Ye, and so nearby boundary points correspond torays which eventually lie in the same component of the complement of Ye in Y . Itfollows that if � 2 @1T , and ek is the sequence of edges occurring in the ray v�, thenthe sequence of outward sets Outv;ek is a nested basis for the topology of @1Y at thepoint labelled by �. The closure of Outv;e is Outv;e [ @1Ye because the complementto Outv;e [ @1Ye is Outw;e where w is the endpoint of e furthest from v (obviously@1Ye � Outv;e).Lemma 6 Suppose �k 2 @1Y converges to �1 2 @1Y . Then one of the followingholds.1. �1 is labelled by a boundary point Label(�1) 2 @1T . In this case Label(�k)converges to Label(�1) in the compact space T [ @1T .2. �1 is labelled by a vertex v 2 T . In this case, for any subset E � Ev containingall but �nitely many elements of Ev, the sequence �k eventually lies in@1Yv [ ([e2EOutv;e):3. �1 is labelled by an edge e0. In this case, if v; w are the endpoints of e0 thenfor any subset E � Ev containing all but �nitely many elements of Ev, and any subsetF � Ew containing all but �nitely many elements of Ew, the sequence �k eventuallylies in @1Yv [ @1Yw [ ([e2EOutv;e) [ ([e2FOutw;e):Proof. Case 1. If v is any arbitrary vertex of T , and e1; e2; : : : is the sequence of edgescomprising the geodesic ray v�1 � T , then Outv;ej � @1Y is a neighborhood basisfor �1. Therefore Label(�k) converges to Label(�1) by the de�nition of the topologyon T [ @1T .Case 2. If this weren't the case, then a subsequence of �k would converge to anelement of Outv;e = Outv;e [ @1Ye for some e =2 E . This contradicts the fact that �1is labelled by v.Case 3. Similar to case 2. �Proposition 7 @1Ĝ is homeomorphic to S2.Proof. Let G0 be the fundamental group of a compact hyperbolic 3-manifold M withnonempty totally geodesic boundary. Recall (see section 2) that @1G0 is a Sierpinskicarpet. Using the notation developed above (decorated with \primes"), Ĝ0 is thefundamental group of the double of M , so @1Ĝ0 is homeomorphic to S2. We willconstruct a homeomorphism between @1Ĝ0 and @1Ĝ.Choose vertices v 2 T and v0 2 T 0, and a bijection Ev ! Ev0 . This inducesan isomorphism between Coxeter groups � ! �0, which we will use to identify �with �0. There is a unique �-equivariant isomorphism T [ @1T ! T 0 [ @1T 0 whichinduces the given bijection Ev ! Ev0 ; we will use primes to denote correspondingedges and vertices. Choose an enumeration v = v1; v2; : : : of vertices of T so that9



d(vk;[j<kvj) = 1. Choose a homeomorphism f1 : @1Yv ! @1Y 0v0 . Using reectionsfrom � we inductively extend f1 to a homeomorphism fk : [ki=1@1Yvi ! [ki=1@1Y 0v0i foreach k, so that the resulting map f1 : [1i=1@1Yvi ! [1i=1@1Y 0v0i is �-equivariant. Byconstruction, f1 is compatible with label maps, i.e. the following diagram commutes:[1i=1@1Yvi f1�! [1i=1@1Y 0v0iLabel??y Label??yT [ @1T id�! T [ @1TWe claim that f1 extends continuously to a homeomorphism f : @1Y ! @1Y 0.In view of the naturality of our construction it is enough to show that f1 extendsto a continuous map f : @1Y ! @1Y 0 ' @1Ĝ0 ' S2, since the inverse map maybe produced by exchanging the roles of G and G0. Pick a sequence �k 2 @1Y whichconverges to some � 2 @1Y . We will show that f1(�k) converges.Case 1: � is labelled by some � 2 @1T . In this case there is a unique �0 2 @1Y 0which is labelled by �0 2 @1T 0. We know that if ei (resp e0i) is the sequence of edges ofthe ray v� (resp v0�0), then the outward sets Outv;ei (resp. Outv0;e0i) form a basis for thetopology of @1gDX (resp. @1Y 0) at � (resp. �0). Since f1 maps Outv;ei \ [1i=1@1Yvito Outv0;e0i \ [1i=1@1Y 0v0i, the sequence f1(�k) converges to �0.Case 2: � is labelled by a vertex v 2 T . For each k either �k 2 @1Yv or �k 2 Outv;ekfor a unique ek 2 Edgev. By Lemma 6, in the latter case Diam(Outv;ek) ! 0 ask !1. Construct a sequence �k 2 @1Yv so that �k = �k when �k 2 @1Yv, and �k 2@1Yek = Outv;ek \ @1Yv otherwise. Note that limk!1 �k = � since Diam(Outv;ek)!0. The sequence f1(�k) converges to f1(�) since fj@1Yv is continuous. Observe thatd(f1(�k); f1(�k)) is zero when �k 2 @1Yv and is at most Diam(Out0v0;e0k) otherwise.Since each ek occurs only �nitely often, Diam(Out0v0;e0k)! 0 solimk!1 f1(�k) = limk!1 f1(�k) = f1(�):Case 3: � is labelled by an edge e0 2 T . We leave this case to the reader, as it issimilar to case 2. �Corollary 8 If G is torsion-free, then so is Ĝ, and in this case Ĝ is a 3-dimensionalPoincar�e duality group by [BM], [Bes2]. By [DD], if one splits a PD(n) group over aPD(n�1) subgroup, then the vertex groups (together with the incident edge subgroups)de�ne relative PD(n) pairs; therefore (G;H1; : : : ; Hk) is a relative Poincar�e dualitypair. In particular �(G) = 12Pi �(Hi) < 0.Corollary 9 Let G be a torsion-free hyperbolic group with Sierpinski carpet boundary.Suppose eitherA. Cannon's conjecture is trueorB. Every 3-dimensional Poincar�e duality group with a nontrivial splitting is thefundamental group of a closed 3-manifold.10



Then G is the fundamental group of a compact hyperbolic 3-manifold with totallygeodesic boundary.Proof. Let H1; : : : ; Hk, Ĝ, �, be as in the �rst part of this section. If A holds,then Ĝ is the fundamental group of a closed hyperbolic 3-manifold M . Since Ĝsplits nontrivially by its very de�nition, if B holds then Ĝ = �1(M) where M is aclosed irreducible 3-manifold. M is Haken since its fundamental group splits, and soThurston's uniformization theorem implies that M admits a hyperbolic structure. Ineither case we have Ĝ acting on H 3 discretely, cocompactly, and isometrically.The reection group � acts on Ĝ by conjugation, with each reection centralizinga unique quasi-convex edge subgroup of Ĝ. By Mostow rigidity, � acts isometricallyon the universal cover ofM normalizing the action Ĝy H 3 . G � Ĝ is a quasi-convexsubgroup, and so it acts on H 3 as a convex cocompact subgroup. The limit set ofG in @1H 3 is a Sierpinski carpet, and because every peripheral subgroup of G iscentralized by a unique reection in � � Isom(H 3), the peripheral circles are �xedby reections in �. Thus each peripheral circle of the limit set of G is a round circle,and so the convex hull of the limit set is a convex subset bounded by disjoint totallygeodesic hyperbolic planes. It follows that G is the fundamental group of a compacthyperbolic manifold with totally geodesic boundary. �6 ExamplesWe now use Theorems 1 and 2 to see that some classes of hyperbolic groups haveMenger curve boundary.We �rst remark that a torsion-free hyperbolic group with Sierpinski carpet bound-ary has negative Euler characteristic by Corollary 8. So if G is a torsion-free hyper-bolic group with 1-dimensional boundary, G doesn't split over a trivial or cyclic group,and �(G) � 0, then @1G is a Menger curve.Theorem 10 Let G be a torsion-free 2-dimensional hyperbolic group that does notsplit over trivial and cyclic subgroups and which �ts into a short exact sequence:1! F ! G! Z! 1where F is �nitely generated. Then @1G is the Menger curve.Proof. In view of Theorem 1, it is enough to show that @1G cannot be a circle ora Sierpinski carpet. If @1G ' S1, then G contains a �nite index closed surfacesubgroup G0. But then we would have an exact sequence 1 ! F 0 ! G0 ! Z ! 1,where F 0 = F \ G0 is �nitely generated, which is absurd. Now suppose @1G is aSierpinski carpet. Note that if F admits a �nite Eilenberg-Maclane space, then it iseasy to see that �(G) = �(F )�(Z) = 0, so @1G cannot be a Sierpinski carpet by theremark above. However there are examples such that F is not a �nitely presentablegroup (see [R]). We now consider the general case. Then (G;H1; : : : ; Hk) is a relativePoincare duality pair. Let K0 be a �nite Eilenberg-Maclane space for the group G, letD be a disjoint union of �nite Eilenberg-Maclane spaces for the groups H1; : : : ; Hk,11



and let K be the mapping cylinder for a map D ! K0 which induces the given mapsHi ,! G. We view D as a subcomplex of K. Consider the �nite cyclic coverings(Kn; Dn)! (K;D)which are induced by the homomorphisms G ! Z ! Zn. Then each pair (Kn; Dn)again satis�es relative Poincare duality in dimension 3, soH�(Kn; Dn;Z=2) �= ~H3��(Kn;Z=2)We will use the notation bj(L) to denote the rank ofHj(L;Z=2). Thus limn!1 b1(Dn) =1 and b1(Kn) � b1(F ) + 1 <1. Consider the exact sequence of the pair (Kn; Dn)::::! H1(Kn;Z=2)! H1(Dn;Z=2)! H2(Kn; Dn;Z=2)! :::Since b1(Kn) is bounded by b1(F ) + 1 and limn!1 b1(Dn) = 1, it follows thatlimn!1Dim(H2(Kn; Dn;Z=2)) =1. This contradicts the fact thatH2(Kn; Dn;Z=2) �=H1(Kn;Z=2). �Now let F be a �nitely generated free group and � : F ! F be an irreduciblehyperbolic automorphism (see [BF2] for the de�nition). Consider the extension1! F ! G! Z! 1induced by �. The group G is hyperbolic by [BF2]. The cohomological dimension ofG is 2 by the Mayer-Vietoris sequence, thus the boundary of G is 1-dimensional by[BM].Corollary 11 @1G is the Menger curve.Proof. We will show that the group G does not split over a cyclic (possibly trivial)subgroup. Suppose that it does. Then we have the corresponding action of G on aminimal simplicial tree T with cyclic edge stabilizers. Consider the restriction of thisaction on the subgroup F . Let T 0 � T be the minimal F -invariant subtree, then T 0is Z-invariant (since Z normalizes F ), thus T 0 = T . By Grushko's theorem (in thecase of trivial edge stabilizers) and the generalized accessibility theorem [BF1] (in thecase of in�nite cyclic stabilizers), the quotient T=F is a �nite graph �. The actionof Z = hzi projects to action on �, after taking a �nite iteration of � (if necessary)we may assume that z acts trivially on �. Since G does not contain Z2-subgroups,the edge stabilizers for the action of F on T must be trivial. Thus we get a freeproduct decomposition of F so that each factor is invariant under some iterate of z.This contradicts the assumption that the corresponding automorphism � : F ! F ishyperbolic. �Theorem 12 Let G be a �nite graph of groups. Suppose1. Each vertex group is a torsion-free hyperbolic group whose boundary is either aMenger curve or a Sierpinski carpet; and at least one vertex group has Menger curveboundary.2. Each edge group is a �nitely generated free group of rank at least 2, and includesas a quasi-convex subgroup of each of the corresponding vertex groups.3. If T is the Bass-Serre tree for G, and e1; e2 � T are two edges emanating fromthe same vertex v 2 T , then their stabilizers intersect trivially.Then the fundamental group G of G is a hyperbolic group with Menger curve boundary.12



Proof. Conditions 2 and 3 imply that G is hyperbolic by [BF2], and vertex groupsare quasi-convex subgroup of G by [Mi, Sw2]. G is torsion-free since all vertex groupsare torsion-free. G has cohomological dimension 2 by the Mayer-Vietoris sequence,so @1G has dimension 1 by [BM].We claim that G does not split over trivial or in�nite cyclic groups. To see this,let T be the Bass-Serre tree of G, and let S be the Bass-Serre tree of a splitting ofG over trivial and/or cyclic groups. Consider two adjacent vertices v1; v2 2 T , letGvi � G be their stabilizers, and let Ge be the stabilizer of the edge joining them.Since Gvi does not split over trivial or cyclic subgroups [B2], Gvi has a nonempty�xed point set in S. If si 2 S is �xed by Gvi , then the segment joining s1 to s2 willbe �xed by Ge. Since Ge is free of rank at least 2, we see that s1 = s2. Therefore byinduction we �nd that G has a global �xed point in S, which is a contradiction.If the stabilizer of v 2 T has Menger curve boundary, then by the quasi-convexityof Gv in G, the Menger curve embeds in @1G. This shows that @1G cannot behomeomorphic to S1 or the Sierpinski carpet. By Theorem 1 @1G is a Menger curve.�7 Topologically rigid groupsIn this section we will construct some examples of topologically rigid groups. Beforeproceeding, we �rst note a consequence of Theorem 1.Corollary 13 Let G be a nonelementary hyperbolic group with Dim(@1G) � 1.Then G is not topologically rigid.We will sketch a proof of the corollary, and leave the details to the reader.Case I: G has more than one end. Then G splits as an amalgamated product orHNN extension over a �nite group. Let Gy T be the action of G on the Bass-Serretree associated to such a splitting, so there is only one edge orbit in T . Following alongthe same lines as in section 5, we construct a tree of spaces X, with vertex and edgespaces corresponding to vertices and edges in T . For each vertex v 2 T , the vertexspace Xv � X is quasi-convex in X and as in section 5 we may label points in @1Xwith elements of T [ @1T . The outward sets (see section 5) are open and closed in@1X. If e1 and e2 are incident to a vertex v then they lie in the same Gv-orbit (sinceG=T has only one edge). Outv;e1 and Outv;e2 are disjoint and homeomorphic, so wemay de�ne a homeomorphism of @1X by swapping them while holding everythingelse �xed. This construction yields a continuum of homeomorphisms of @1X, soG! Homeo(@1X) cannot be surjective.Case II: G is 1-ended. If @1G is homeomorphic to S1, the Sierpinski carpet, orthe Menger curve then G cannot be topologically rigid since each of these spaces hasuncountable homeomorphism group. Therefore by Theorem 1 we may assume thatG splits as an amalgamated free product or HNN extension over a virtually cyclicgroup. Let Gy T be the action of G on the Bass-Serre tree associated with such asplitting. If e is an edge in T , e = v1v2, then Outv1;e� @1Xe and Outv2;e� @1Xe areopen and closed in @1X � @1Xe, and are preserved by Ge. Take a g 2 Ge so that@1G �xes both points in @1Ge, and de�ne a homeomorphism f : @1X ! @1X by13



fjOutv1;e = @1gjOutv1;e and fjOutv2;e = idjOutv2;e. This type of construction will givea continuum of homeomorphisms of @1X, so again G ! Homeo(@1X) cannot besurjective. �Our construction of topologically rigid groups is based on the idea (realized pre-cisely in Proposition 16) that a homeomorphism of S2 must be a M�obius transforma-tion provided it preserves a su�ciently rich family of round circles. We begin withan analogous statement for homeomorphisms of S1.Line con�gurations in H 2 . Let L be a locally �nite collection of geodesics inH 2 so that the complementary regions of [L2LL are bounded, and we assume thatthere is a cocompact lattice � � Isom(H 2) stabilizing L. Let �@21H 2 be the space ofunordered distinct pairs in @1H 2 , and let @1L be the collection of pairs of endpoints@1L for L 2 L, @1L := f@1L j L 2 Lg � �@21H 2 . Note that if L1; L2 2 L and@1L1 \ @1L2 6= ; then L1 = L2. Let Stab(@1L) � Homeo(@1H 2) be the group ofhomeomorphisms of @1H 2 which preserve @1L � @21H 2 .Lemma 14 1. If L1; L2 2 L have nonempty intersection and g 2 Stab(@1L) �xes@1L1 [ @1L2 pointwise then g = id.2. f@1 j  2 �g � Homeo(@1H 2) is a �nite index subgroup of Stab(@1L).Proof. Our arguments essentially follow [CB, Proof of Theorem 2.7]. We will identifythe space of geodesics in H 2 with @21H 2 .(1) Suppose L1; L2 2 L and g 2 Stab(@1L) �xes @1L1[@1L2 pointwise. If �1; �2are the connected components of @1H 2 �@1L1, then g(�i) = �i since j@1L2\�ij = 1and @1L2 is �xed by g. Observe that �i := f@1L\�i j L 2 L and jL \ L1j = 1g � �iis a discrete subset of �i with the order type (with respect to the ordering on �i ' R)of the integers, and g(�i) = �i. But g �xes the point @1L2\�i 2 �i and is orientationpreserving, so gj�i = id�i . Therefore g �xes @1L for every L 2 L with L \ L1 6= ;.The incidence graph of L is connected, so we may apply this argument inductively tosee that g �xes @1L for every L 2 L. The set [L2L@1L is dense in @1H 2 , so g = id.This proves the �rst assertion of the lemma.(2) We now show that every sequence gk 2 Stab(@1L) has a subsequence whichis constant modulo �, which proves that [Stab(@1L) : �] < 1. Pick L1; L2 2 Lsuch that L1 intersects L2 in a point p. For each k let gk�Li 2 L be the unique linewith @1(gk�Li) = gk(@1Li). Then (gk�L1) \ (gk�L2) = pk for some pk 2 H 2 , and wemay choose a sequence k 2 � such that sup d(k(pk); p) = R < 1. Then the lines(k � gk)�Li lie in the �nite set fL 2 L j L \ B(p; R) 6= ;g, so after passing to asubsequence we may assume that (k � gk)j@1Li independent of k for i = 1; 2. By theprevious paragraph the sequence k � gk 2 Homeo(@1H 2) is constant. �Plane con�gurations in H 3 . Below we prove an analog of Lemma 14 for a collectionH of totally geodesic hyperplanes in H 3 .Let H be a locally �nite collection of totally geodesic planes in H 3 , with stabilizerG := fg 2 Isom(H 3) j g(H) 2 H for every H 2 Hg. Let @1H := f@1H j H 2 Hg.We assume that H satis�es the conditions:1. G is a cocompact lattice in Isom(H 3).14



2. The complementary regions of [H2HH are bounded.3. If H 2 H, then reection in H does not preserve the collection H.Such examples will be constructed later in this section.The local �niteness of H implies that there are �nitely many G-orbits in H, andthat the stabilizer of each H 2 H acts cocompactly on H.De�nition 2 We will say that three circles @1H1; @1H2; @1H3, where Hi 2 H, arein standard position if the three planes Hi intersect transversely in a single pointx 2 H 3 .Note that if the circles @1H1; @1H2; @1H3 are in standard position and C1; C2; C3is another unordered triple of circles which bound elements of H, then C1; C2; C3 is instandard position if and only if there is a homeomorphism f : @1H1[@1H2[@1H3 !C1 [ C2 [ C3 which carries elements of H to elements of H.Let Stand denote the collection of unordered triples of circles in standard position.We will say that two elements of Stand are incident if they have exactly two circlesin common.Lemma 15 1. The incidence graph of Stand is connected.2. If  � @1H 3 is homeomorphic to S1, then either  = @1H for some H 2 H,or there is an H 2 H so that @1H intersects both components of @1H 3 � .Proof. The union [H2HH determines a polygonal subcomplex in H 3 with connected1-skeleton. Therefore the assertion 1 follows.To prove the assertion 2, let U and U 0 denote the connected components of @1H 3�. We may �nd H; H 0 2 H so that @1H � U; @1H 0 � U 0. Since the incidence graphfor H is connected we can �nd a chain of planes H0 = H;H1; :::; Hn = H 0 in H sothat consecutive planes intersect each other. We see that either  = @1Hj for someHj in this sequence or for some Hj the circle @1Hj intersects both U and U 0. �Proposition 16 Let Stab(@1H) be the group of homeomorphisms of @1H 3 whichpreserve @1H, Stab(@1H) := fg 2 Homeo(@1H 3) j g(@1H) 2 @1H for all H 2 Hg.Then Stab(@1H) = f@1g j g 2 Gg.Proof. Suppose f@1H1; @1H2; @1H3g 2 Stand, f 2 Stab(@1H), and f(@1Hi) =@1Hi for 1 � i � 3. Then for 1 � i � 3 we may consider the collection Li ofgeodesics in Hi of the form Hi\H for H 2 H�Hi. Part 1 of Lemma 14 then impliesthat fj@1Hi = id@1Hi.Now suppose f@1H1; @1H2; @1H3g; f@1H1; @1H2; @1H4g 2 Stand are incident,f 2 Stab(@1H), and fj@1Hi = id@1Hi for 1 � i � 3. Then f(@1H4) = @1H4since H4 is the unique element of H whose boundary contains the 4 element set@1H4 \ (@1H1 [ @1H2). Therefore by the previous paragraph we have fj@1H4 =idH4 . Since the incidence graph of Stand is connected we see by induction thatfj@1H = id@1H for all H 2 H, and this forces f = id@1H3 .Reasoning as in Lemma 14 we conclude that [Stab(@1H) : G] <1.15



LetG0 � G be a �nite index normal subgroup of Stab(@1H). Each f 2 Stab(@1H)normalizes the action G0 y @1H 3 , so by Mostow rigidity each f is a M�obius trans-formation. Therefore for every f 2 Stab(@1H) we have f = @1g for some g 2 G. �Constructing topologically rigid groups. Let G0 � G be a �nite index torsion-free subgroup of G. Let fH1; : : : ; Hkg be a set of representatives of the G0-orbits inH, and let Gi := Stab(Hi). For any 1 � i � k, the set of geodesics fH \ Hi j H 2H�Hi; H\Hi 6= ;g � Hi is �nite modulo the action of Gi. Hence for each 1 � i � k,there is a �nite collection Zi of conjugacy classes of maximal cyclic subgroups of Giwith the property that for any g 2 G0�Gi, the intersection gGjg�1\Gi is an element ofZi. We now construct a double3 G0 along the collection of subgroups Gi := Stab(Hi),1 � i � k as follows: construct a graph of groups G with two vertices v1; v2 and kedges e1; : : : ; ek, where Gvi is isomorphic to G0 and Gei is isomorphic to Gi. IdentifyGvi with G0. We choose the embeddings �ij : Gei ! Gvj so that the image coincideswith Gi � G0, but so that the �ij's satisfying the following condition:(Twisting) ��1i1 (Zi) \ ��1i2 (Zi) = ;.Let Ĝ := �1(G), let T be the Bass-Serre tree associated with G, and let V andE denote the collections of vertices and edges in T respectively. Ĝ acts (discretely,cocompactly) on a tree of spaces X constructed as in section 5, with vertex spacesXv; v 2 V and edge spaces Xe; e 2 E.Lemma 17 Ĝ is a hyperbolic group. All vertex and edge groups Gx; x 2 V [ T arequasi-convex subgroups of Ĝ.Proof. By [BF3], [Sw2], [Mi] it su�ces to show that there is an upper bound onthe length of essential annuli (see [BF3], section 1) in the graph of groups G. Orequivalently, we need to show that there is an upper bound on the length of anysegment in T which is �xed by a nontrivial element g 2 Ĝ. We claim that if e1; e2; e3are 3 consecutive edges in the tree T , then Ge1 \Ge2 \Ge3 is trivial; for the twistingcondition implies that the intersections Ge1 \Ge2 and Ge2 \Ge3 are cyclic subgroupsof Ge2 with trivial intersection. �Lemma 18 1. For every vertex v 2 V , @1Xv � @1X is a 2-sphere.2. For every edge e 2 E, @1Xe � @1X is a circle.3. If v1 6= v2 2 V then @1Xv1 \ @1Xv2 � S1 implies that v1 and v2 are theendpoints of an edge e 2 E, and @1Xv1 \ @1Xv2 = @1Xe.4. [v2V @1Xv is dense in @1X.5. Pick e 2 E, and let T1; T2 � T be the two subtrees that one gets by removingthe interior of the edge e. Then @1X�@1Xe has two connected components, namelythe closures of ([v2Ti@1Xv)� @1Xe in @1X � @1Xe for i = 1; 2.The proof of the lemma is similar to arguments from section 5, so we omit it.3If we double G0 without \twisting" the edge inclusions then the resulting group Ĝ is not hy-perbolic. But it acts on a CAT (0) space X so that Homeo(@1X) contains Ĝ as a �nite indexsubgroup. 16



Lemma 19 If  � @1X is homeomorphic to S1 and  separates @1X, then  =@1Xe for some e 2 E.Proof. We �rst claim that  � @1Xv for some v 2 V . Otherwise by Alexander duality@1Xv� is connected for every v 2 V , and (@1Xv1 [@1Xv2)� is connected for anypair of adjacent vertices v1; v2 2 V . By induction this implies that [v2V @1Xv � is connected. By part 4 of Lemma 18 we conclude that @1X �  is connected, acontradiction.Hence we may assume that  � @1Xv for some v 2 V . Suppose  6= @1Xe forany e 2 E adjacent to v. Then any point � 2 @1X �  lies in the same componentof @1X �  as one of the two components of @1Xv � . By Lemma 15 we can �ndan edge e adjacent to v so that @1Xe intersects both of the components U1; U2 of@1Xv � . So we may connect U1 to U2 within @1Xw �  where w is the otherendpoint of e. This contradicts the assumption that  separates @1X. �Thus, any homeomorphism f : @1X ! @1X preserves the collection of circlesf@1Xe; e 2 Eg.Let C denote the collection of unordered triples of circles Ci = @1Xei ; ei 2 E,which are in standard position, i.e. there exists a triple H1; H2; H3 2 H which arein standard position and a homeomorphism f : @1H1[@1H2[@1H3 ! C1[C2[C3which carries each circle @1Hi to one of the circles Cj(i). We de�ne the incidencerelation for elements of C the same way as before, let �(C) denote the associatedincidence graph. Thus C contains the subsets Sv where Sv consists of triples of circlesin standard position which are contained in @1Xv. Then the incidence graph �(Sv)is isomorphic to the incidence graph of S, thus it is connected (see part 1 of Lemma15). For each vertex v 2 V the union of triples of circles fC1; C2; C3g 2 Sv is densein @1Xv.Lemma 20 The subgraphs �(Sv) are the connected components of �(C).Proof. It is enough to show that any fC1; C2; C3g 2 C is contained in @1Xv for somev 2 T , since there is at most one @1Xv containing any given pair of circles.Pick fC1; C2; C3g 2 C, with Ci = @1Xei for ei 2 E. Note that d(ei; ej) � 1 for1 � i; j � 3 for otherwise we would have Ci \Cj = ;. Also, observe that if two of thecircles lie in some @1Xv, then the third one must too (because j@1Xe \ @1Xvj � 2unless @1Xe � @1Xv). Clearly this forces the edges ei to share a vertex. �De�ne the incidence graph with the vertex set fgeoXv; v 2 Tg, where the verticesv; w are connected by an edge if and only if @1Xv \ @1Xw � S1. Lemma 18 impliesthat this graph is isomorphic to the tree T .Proposition 21 Any homeomorphism f : @1X ! @1X preserves the collection ofspheres f@1Xv; v 2 V g. In particular, f induces an isomorphism of the tree T .Proof. The homeomorphism f induces an automorphism f# of the graph �(C), thusit preserves its connected components. Therefore for each v 2 V there is w = f#(v)such that f#�(Sv) = �(Sw). However [T2SvC17



is dense in @1Xv. Thus f preserves the collection of spheres f@1Xv; v 2 V g. Theparagraph preceeding Proposition implies that f induces an automorphism of the treeT . �Theorem 22 The homeomorphism group of @1X contains bG as a subgroup of �niteindex. Therefore Homeo(@1X) is a topologically rigid hyperbolic group.Proof. For every v 2 V , we identify @1Xv with @1H 3 via a homeomorphism whichcarries the collection f@1Xe j e 2 E; v � eg to @1H; this homeomorphism is uniqueup to a M�obius transformation by Proposition 16.Suppose f 2 Homeo(@1X) and fj@1Xv = idj@1Xv for some v 2 V . Then f �xes@1Xe pointwise for every e 2 E containing v. Hence if v0 2 V is adjacent to v thenf(@1Xv0) = @1Xv0 . By Proposition 16 fj@1Xv0 is a M�obius transformation. Eitherfj@1Xv0 = idj@1Xv0 or fj@1Xv0 is a reection. But condition 3 on H rules out thelatter possibility. Therefore by induction we conclude that f �xes @1Xw for everyw 2 V , and so f = id.Pick v 2 T , and consider the possibilities for fj@1Xv where f 2 Homeo(@1X).There are clearly only �nitely many such possibilities up to post-composition with ele-ments of Ĝ; therefore by the preceding paragraph Ĝ has �nite index inHomeo(@1X).�
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Figure 1: The hyperbolic polyhedron �.An example of a plane con�guration H.We now construct a speci�c example of a plane con�guration H satisfying thethree required conditions. We start with the 3-dimensional hyperbolic polyhedron �described in Figure 1: the edges of the polyhedron are labelled with 2 and 3, theyindicate that the corresponding dihedral angles of the polyhedron are �=2 and �=3respectively. Such a polyhedron exists by Andreev's theorem [An]. Note that � has an18



order 3 isometry � which is a rotation around the geodesic segment CE and reectionsymmetries in each of three quadrilaterals, two of which are depicted in Figure 2.The polyhedron � contains three squares which \bisect" �; one of them �1 =PQRS which is indicated in Figure 1, the other two �2; �3 are obtained from �1 byapplying the rotation �.
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Figure 2: Symmetries of the hyperbolic polyhedron �.Lemma 23 The bisectors �1; �2; �3 are realized by totally-geodesic 2-dimensional poly-gons in � which are orthogonal to the boundary of �. More precisely, for each1 � j � 3 there is a totally geodesic plane Hj � H 3 which intersects the samefour edges of � as �j and Hj intersects the faces of � orthogonally.Proof. It is enough to prove the assertion for �1, the other two polygons are obtainedvia the rotation �. The proof is similar to [Ka]: we �rst split open the cube �combinatorially along the bisector �1 into two subcubes �+ and ��. Each polyhedron�+;�� has a face F+; F� which corresponds to the bisector �1. We assign the label2 to each edge of �� is contained in F�. Andreev's theorem again implies that�+ and �� can be realized by polyhedra in H 3 (we retain the names �� for thesepolyhedra). Our goal is to show that the homeomorphism F+ ! F� (which is givenby identi�cation with the bisector �1) is isotopic (rel. vertices) to an isometry ofthe hyperbolic polygons. The polyhedron � admits a reection symmetry which�xes the rectangle EJCA, and this symmetry also acts on the polyhedra �+;�� andquadrilaterals F� so that the �xed point sets are the geodesic segments correspondingto PR. However it is clear that there exists a unique (up to vertex preserving isotopy)hyperbolic structure on quadrilateral PQRS so that the edges are geodesic, anglesare �=2; �=3; �=2; �=3 and the quadrilateral has an order 2 isometry �xing PR. Thuswe have a natural isometry F+ ! F� and we can glue �+ to �� using this isometry.The result is a hyperbolic polyhedron 	 which is combinatorially isomorphic to �this isomorphism preserves the angles. Thus by uniqueness part of Andreev's theorem(alternatively one can use Mostow rigidity theorem) the polyhedra �;	 are isometric.19



On the other hand, the polyhedron 	 contains totally geodesic 2-dimensional polygonF+ = F� which is orthogonal to the boundary of 	. �
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Figure 3: \Bisectors" of the hyperbolic polyhedron �.We retain the notation �j (j = 1; 2; 3) for the totally-geodesic 2-dimensionalhyperbolic polygons orthogonal to @� which realize the bisectors �j. These polygonssplit � into 8 subpolyhedra Pi; i = 1; :::; 8, which are combinatorial cubes. Note thatthe dihedral angles between �j; j = 1; 2; 3 are all equal and are di�erent from �=2(otherwise the combinatorial cube Pi which contains the vertex E would have all rightangles which is impossible in hyperbolic space).
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Figure 4: Symmetry of the bisector �1.Now we construct the collection of planes H as follows: let R � Isom(H 3) bethe discrete group generated by reections in the faces of �; the polyhedron � is afundamental domain for R. The 2-dimensional hyperbolic polygons �j = Hj \ � areorthogonal to @�, the plane Hj is invariant under the subgroup Rj of R generated by20
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