Algebraic combinatorics, homework 2.

Exercise 1. Let P be a finite poset and $d : P \to P$ a bijection preserving the order (if $x \leq y$ then $f(x) \leq f(y)$). Show that f^{-1} preserves the order. Prove that this last statement is false if we do not assume that P is finite.

Exercise 2. For a given $k \geq 1$, let f_n be the number of rooted k-ary trees (i.e. trees in which each node has 0 or k children) with n nodes (convention: $f_0 = 1$). We note $f(x) = \sum_{n \geq 0} f_n x^n$. Prove that

$$f(x) = 1 + x f(x)^k.$$

Give a simple expression for f_n.

Exercise 3. Let N_n be the set of circular sequences (of 0’s and 1’s) of length n. Let M_d be the number of circular sequences of length d that are not periodic.

Prove that

$$|N_n| = \sum_{d|n} |M_d|.$$

Independently, show that

$$\sum_{d|n} d |M_d| = 2^n.$$

Conclude that

$$|N_n| = \frac{1}{n} \sum_{d|n} \phi\left(\frac{n}{d}\right) 2^d,$$

where ϕ is Euler’s totient function.

Exercise 4. Let L be a finite lattice, and $f(a, b)$ be a function from L^2 to \mathbb{R}. Let

$$F(a, b) = \sum_{c \leq a} f(c, b).$$

Prove that

$$\det (F(a \wedge b, b))_{a,b \in L} = \prod_{x \in L} f(x, x).$$

Deduce that

$$\det(gcd(i, j))_{i,j=1}^n = \prod_{k=1}^n \phi(k).$$

1 More precisely, if

$$\tau_n : \{0,1\}^n \to \{0,1\}^n \quad \text{ with } \quad \tau_n : (a_1, a_2, \ldots, a_n) \mapsto (a_n, a_1, \ldots, a_{n-1})$$

then a and b in $\{0,1\}^n$ are considered to be the same element in N_n if $\tau^k_n a = b$ for some $k \geq 0$.

2 In other words, M_d is the set of elements $a \in \{0,1\}^d$, identified up to the above shift, such that $\tau^d_n a = a$ implies $d \mid k$
Exercise 5. Let N_d be the number of monic irreducible polynomials of degree d over the finite field \mathbb{F}_q with q elements. Prove that
\[
\frac{1}{1 - qx} = \prod_{d=1}^{\infty} \left(\frac{1}{1 - x^d} \right)^{N_d}.
\]
Conclude that $\frac{q^n}{n} = \sum_{d|n} N_d \frac{1}{n/d}$, and
\[
N_d = \frac{1}{n} \sum_{d|n} \mu\left(\frac{n}{d}\right) q^d.
\]