Stochastic calculus, homework 5, due October 24th.

Exercise 1. Amongst the following processes, which ones are \(\mathcal{F} \)-martingales, where \(\mathcal{F} \) is the natural filtration of \((B_s, s \geq 0)\) (i.e. \(\mathcal{F}_t = \sigma(B_u, 0 \leq u \leq s) \))? \(B_t^2 - t, B_t^3 - 3 \int_0^t B_s ds, B_t^3 - 3tB_t, tB_t - \int_0^t B_s ds. \)

Exercise 2. Let \(B \) and \(\tilde{B} \) be two independent standard Brownian motions, and \(\rho \in [0, 1] \). Prove that \(\rho B + \sqrt{1 - \rho^2} \tilde{B} \) is a standard Brownian motion.

Let \(B = (B^{(1)}, \ldots, B^{(d)})' \) be a column vector with independent standard Brownian motions as entries. Let \(U \) be an orthogonal matrix. Show that the entries of \(UB \) are also independent Brownian motions.

Exercise 3. Prove that
\[
E \left((S_t - K)_+\right) = xN(d_1(t)) - KN(d_2(t))
\]
where \(S_t = xe^{\sigma B_t - \frac{\sigma^2 t}{2}} \) and \(B \) is a standard Brownian motion. In the above formula, we used the notations \(d_1(t) = \frac{1}{\sigma \sqrt{t}} \log \left(\frac{x}{K} + \frac{\sigma^2 t}{2} \right), d_2(t) = d_1(t) - \sigma \sqrt{t} \), and \(N(x) = \int_{-\infty}^{x} e^{-u^2/2} \sqrt{2 \pi} du \).

Exercise 4. Let \(c \) and \(d \) be two strictly positive numbers, \(B \) a standard Brownian motion and \(T = T_c \wedge T_{-d} \).

Prove the following Laplace transform identity: for every real number \(s \),
\[
E \left(e^{-s^2 t/2} \right) = \frac{\cosh(s(c - d)/2)}{\cosh(s(c + d)/2)}.
\]
By Taylor-expanding in \(s \), what are the expectation and variance of \(T \)?

Hint for the Laplace transform: follow the usual strategy applying a stopping time theorem to a pertinent martingale. This martingale is of exponential type.

Exercise 5: bonus. Prove that
\[
P \left(\sup_{s \leq u \leq t} B_u > 0, B_s < 0 \right) = 2P(B_t > 0, B_s < 0) = 2 \left(\frac{1}{4} - \frac{1}{2\pi} \arcsin \sqrt{\frac{s}{t}} \right).
\]
What is the distribution of \(g_t = \sup\{s \leq t : B_s = 0\} \)?