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Abstract

We prove that the bulk eigenvectors of sparse random matrices, i.e. the adjacency matrices of Erdés-
Rényi graphs or random regular graphs, are asymptotically jointly normal, provided the averaged degree
increases with the size of the graphs. Our methodology follows [6] by analyzing the eigenvector flow under
Dyson Brownian motion, combining with an isotropic local law for Green’s function. As an auxiliary
result, we prove that for the eigenvector flow of Dyson Brownian motion with general initial data, the
eigenvectors are asymptotically jointly normal in the direction g after time 7, < t < r, if in a window
of size r, the initial density of states is bounded below and above down to the scale 7., and the initial
eigenvectors are delocalized in the direction g down to the scale 7.

1 Introduction

In this paper, we consider the following two models of sparse random matrices H with sparsity p =
p(N):

1. (Erdds-Rényi Graph Model G(N,p/N)) H := A/+/p(1 — p/N), where A is the adjacency matrix of the
Er6s-Rényi graph on N vertices obtained by drawing an edge between each pair of vertices randomly
and independently, with probability p/N.

2. (p-Regular Graph Model Gy ) H := A/\/p—1, where A is the adjacency matrix of the uniform
random p-regular graph on N vertices, i.e. a uniformly chosen symmetric matrix with entries in {0, 1}
such that all rows and columns have sum equal to p and all diagonal entries vanish.

Given a graph G on N vertices with adjacency matrix A, many interesting properties of graphs are re-
vealed by the eigenvalues and eigenvectors of A. Such phenomena and the applications have been intensively
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investigated for over half a century. To mention some, we refer the readers to the books [7,8] for a general dis-
cussion on spectral graph theory, the survey article [22] for the connection between eigenvalues and expansion
properties of graphs, and the articles [9,10,28-31,33-35] on the applications of eigenvalues and eigenvectors
in various algorithms, i.e., combinatorial optimization, spectral partitioning and clustering.

We study the spectral properties of sparse random graphs from the random matrix theory point of view,
i.e. the local eigenvalue statistics and the eigenvector statistics. It is expected that: i) the gap distribution
for the bulk eigenvalues N(\;41 — A;) is universal, with density approximately given by Wigner surmise;
ii) the distribution of the second largest eigenvalue is given by the Tracy-Widom distribution (the largest
eigenvalue of GOE); iii) the eigenvectors are asymptotically normal. For Wigner type random matrices, it
is proved in a series of papers [5, 13-20,25,26,37] for the bulk and [21,32,36] for the edge, that the eigenvalue
statistics are universal; it is proved in [0, 24, 38] that the eigenvectors are asymptotically normal. Sparser
models are harder to analyze. The bulk universality for both Erd6s-Rényi graphs and regular graphs in the
regime p > 1 were proved in [11,12,23]. The edge universality was only proved for Erdds-Rényi graphs in
the regime p > N'/3 in [11,12,27]. Less was known for the distribution of eigenvectors. To our knowledge,
only recently, in [1], Backhausz and Szegedy proved that the components of almost eigenvectors of p-regular
graphs with fixed p converges to normal distribution in weak topology. However the proof heavily depends
on the special structure of regular graphs and is hard to be generalized to other models.

Let H be the normalized adjacency matrix of G(N,p/N) or Gy, in the sparse regime, i.e. p = p(N) <
N. We denote its eigenvalues as A\; < Ay < --- < Ay and the corresponding normalized eigenvectors
w1, U, -+ ,wy. The main goal of this paper is to prove that the bulk eigenvectors for H in the regime p > 1
are asymptotically jointly normal. Comparing with [1], our results give explicitly the variance of the limit
distribution, the asymptotical normality holds in any direction, and the argument does not depend on the
special symmetry of the models.

Theorem 1.1. Fix arbitrary small constant 6,k > 0. Let H be the normalized adjacency matriz of sparse
Erdés-Rényi graphs G(N,p/N) with sparsity N° < p < N/2; or the normalized adjacency matriz of p-regular
graphs G, with sparsity NO < p < N?2/37%. Fig a positive integer n > 0 and a polynomial P of n variables.
Then for any unit vector ¢ € RN, such that ¢ L e (where e = (1,1,--- ,1)*//N), and deterministic indexes
11,19, ,in € [kN, (1 — k) N], there exists a constant 0 > 0 depending on § such that

|]E[P(N<qvui1>2»N<qvui2>2’ T aN<Q>uin>2)] - E[P(JVlzﬂ/VZza T 7</V712)H < CN?D? (11)

provided N is large enough, where w; are eigenvectors of H, A; are independent standard normal random
variables.

In particular, Theorem 1.1 implies that the entries of eigenvectors are asymptotically independent Gaus-
sian. Indeed, for any fixed ¢ € N and deterministic ¢ € [sN, (1 — k)N], a1,...,a¢ € [1,N], possibly
depending on N, we have v N (u;(vy), ..., ui(cg)) = (M, ..., A7), a vector with independent normal entries
(provided the sign of the first entry of w;, say, is uniformly and independently chosen).

The proof of Theorem 1.1 consists of three steps, analogous to the three-step strategy developed in a
series of papers [16,17,20,23] for proving bulk eigenvalue universality:

1. Establish the (isotropic) local semicircle law for sparse random matrices down to the optimal scale
(log N)/N.

2. Analyze the eigenvector flow of Dyson Brownian motion to derive asymptotical normality of eigenvec-
tors for sparse random matrices with a small Gaussian component.



3. Prove by comparison that the eigenvector statistics of sparse random matrices are the same as those
of ones with a small Gaussian component.

For the first step, the local semicircle laws for sparse random matrices were established in [12] for
Erdés-Rényi graphs, and in [3] for p-regular graphs. For the third step, a robust comparison argument was
developed in [23], and our case follows directly. The main content of this paper is the second step. We study
the eigenvector flow of Dyson Brownian motion with general initial data. For any N x N real deterministic
matrix H, we define the following random matrix process, the Dyson Brownian motion:

dhu (t) = dwu(t)/\/ﬁ (12)

where Wy = (w;;(t))1<i,j<n is symmetric with (w;;(t))1<icij<n a family of independent Brownian motions
of variance (1 + §;;)t . We denote Hy = (hy;(t))1<ij<n, and so Hy = H is our original matrix. We
denote the eigenvalues of H; as A(t) : A1(t) < Ao(t) < -+ < An(t) and the corresponding eigenvectors
wy(t), uz(t), -+ ,un(t), where we write the j-th entry of u;(t) as u;;(t).

Under some local regularity conditions (see Assumption 1.3 and 1.4) of the initial matrix Hy, we first
prove the isotropic local law for Green’s function of H;. With it as input, combining with the rigidity
estimates of eigenvalues from [26], we analyze the eigenvector moment flow of Dyson Brownian motion
following the approach developed by the first and last author in [6]. We prove that the eigenvectors of H;
corresponding to “bulk” eigenvalues are asymptotically normal after short time. Our result can be viewed
as a local version of [6, Theorem 7.1] with general initial data.

1.1 Preliminary notations

A fundamental quantity is the Stieltjes transform of the empirical eigenvalue distributions of H;, we denote
the resolvent of H; by G(t;2) := (H; — 2)~1, and the Stieltjes transform as

my(z) := NTrGtz NZ)\

for z € C, the upper half complex plane. Often, we will write z as the sum of its real and imaginary parts
z = E +1n where E = Re[z],n = Im[z].

We denote by pg.; the free convolution of the empirical eigenvalue distribution of Hy, ie. pg =
1I/N > 05,0 and the semicircle law with variance ¢, and mg. ; the Stieltjes transform of pg ;. The den-
sity pgc,+ is analytic on its support for any ¢ > 0. And the function my; solves the equation

1
Mict(2) = mo(z + tmge (2 E gi(t,2), gi(t,z) = 0) = 7 — s (e) (1.3)
4 c,t

where refer to [1] for a detailed study of free convolution with semi-circle law. For any ¢ > 0, we denote the
classical eigenvalues of pg ¢ by 7;(t), which is given by

i (1) Sup{/m pros(z)da > ;V} i€ [1,N]. (1.4)

z —0o0

Throughout the paper we use the following notion of overwhelming probability.



Definition 1.2. We say that a family of events F(u) indexed by some parameter(s) u holds with overwhelm-
ing probability, if for any large D > 0 and N > N(D,u) large enough,

PIF(u)] > 1- NP, (1.5)
uniformly in u.

We use C' to represent a large universal constant, and ¢ for a small universal constant, which may
depend on other universal constants, i.e., ¢ in the control parameter ¥ defined in (1.6), constants b and ¢ in
Assumption 1.3 and 1.4, and may be different from line by line. We write X <Y or X = O(Y), if there
exists some universal constant such that | X| < CY. We write X <, Y, or X = O(Y) if there exists some
constant Cy, which only depends on & (and possibly other universal constants), such that | X| < CrY. We
write X < Y if there exists some small constant ¢, such that N¢|X| < Y.

Now we can state the assumptions on the initial matrix Hy. In Sections 2 and 3, we fix an arbitrarily
small number ¢ > 0, and define the control parameter

¥ = N*. (1.6)

We fix an energy level Ey, radius 1/N < r < 1, and mesoscopic scales 1/N < 7, < r, where r and 7, will
depend on N. For example, the reader can take n, = /N, r = N~'/2 in mind. We will study the eigenvectors
corresponding to the “bulk” eigenvalues, which refer to eigenvalues on the interval [Ey —r, Eg +r]. We show
that after short time, the projections of those “bulk” eigenvectors on some unit vector q are asymptotically
normal.

The first assumption is the same as in [26], which imposes the regularity of density of Hy around
Ey.

Assumption 1.3. We assume that there exists some large constant a > 0 such that
1. The norm of Hy is bounded, ||Hp|| < N°.
2. The Stieltjes transform of Hj is lower and upper bounded

a ! <Im[mg(2)] < a, (1.7)
uniformly for any z € {E +1: E € [Ey —r,Ep +7],m. <1 < 1}

Besides the information of eigenvalues of the initial matrix Hy, we also need the following regularity
assumption on its eigenvectors.

Assumption 1.4. We assume that for some unit vector q, there exists some small constant b > 0 such that
(g, G(0, 2)) — mo(2)] < N°, (1.8)

uniformly for any z € {E+1m: E € [Ey — 1, Eg+r],n. <1 < 1}, where mg is the Stieltjes transform of Hy.

1.2 Statement of Results

Let Ey and r be the same as in Assumption 1.3. For any 0 < k < 1, we denote

ID(Ey) :=[Ey — (1 — k)r, Eg + (1 — k)r],



and the spectral domain:

D.:={:=E+m:E €I (Ey),*/N<n<1—rr} (1.9)
Theorem 1.5. We assume that the inital matriz Hy satisfies Assumption 1.3 and 1.4. Fix k > 0, positive
integer n > 0 and polynomial P of n variables. Then for any n, < t < r and unit vector g € RN, there
ezists a constant 0 > 0 depending on a,b,r,t such that
s [E[P (Vg we@)P) )]~ E [P ((H12)0)] | < ON7, (1.10)

|I|=n:
VEEIL AL (DETS, (Eg)

provided N is large enough, where sup is over all possible index sets I, and A} are independent standard
normal random variables.

As a corollary, we have the following local quantum unique ergodicity statements for “bulk” eigenvec-
tors.

Corollary 1.6. We assume that the initial matric Hy satisfies Assumption 1.5. We further assume that
there exists a small constant b such that

1 1 _
Vo mo(z) = N Tr(Hy — 2)~* (1.11)
uniformly for any z € {E+wm : E € [Ey —r,Ey +r],n. <n < r}. Then the following quantum unique
ergodicity holds: Fiz k > 0. For any n, < t < r and € > 0, there exists a constant 0 > 0 depending on
a,b,r,t such that

|(Ho — 2);;" — mo(2)d5] <

N
N
sup P Y awui,| >N <CN* (N7 +al; ), (1.12)
ki (t)€TS,. (Eo) lall: P

provided N is large enough, where a = (a1, az,--- ,an), such that Y, a; = 0 and max; |a;| < 1, and its norm
lally = > lail.

Acknowledgements. The authors thank Antti Knowles for pointing out an error in an early version of
this paper.

2 Local Law

In this section, we prove the following isotropic local law for the resolvent of H;. If we write Hy = UpAoUy,
where Ay = diag{A1(0),--- ,An(0)}, and Uy is the orthogonal matrix of its eigenvectors. Theorem 2.1 states
that G(t, z) is well approximated by Uy diag{g1(t, 2), g2(t, 2), - - - , gn (¢, 2) }UF where g; are defined in (1.3).
It implies that the Green function becomes regular after adding a small Gaussian component.

Theorem 2.1. Under the Assumption 1.3, fic k > 0. Then for any n. < t < r, unit vector q =
(q1,q2, -+ ,qn)* € RN, uniformly for any z € D, (as in (1.9)), the following holds with overwhelming
probability,

N
(@.G(t,2)a) =D (ui(0),9)%4i(t, 2)

i=1

2 N
< J%Im [;(ui(o),q>29i(t,z)] , (2.1)

provided N is large enough, where u;(0) are eigenvectors of Hy, and g; are defined in (1.3).



2.1 Rigidity of Eigenvalues

In [26], the eigenvalues of H; are detailed studied under the Assumption 1.3. In this section we recall
some estimates on the locations of eigenvalues from [26]. For the free convoluted density pg. :, we have the
following deterministic estimate on its Stieltjes transform and classical eigenvalue locations (as in (1.3) and
(1.4)) from [26, Lemma 7.2].

Proposition 2.2. Under the Assumption 1.3, fix k > 0. Then for any n. <t < r and N large enough, the
following holds: uniformly for z € {E +1n: E € I.(Ey),0 < n < 1—kr}, the Stieltjes transform mycy,

C™' <Imfme(2)] < C, (2.2)

and
Imies(2)] < Z l9i(t,2)] < Clog N, (2.3)

where C' is a constant depending on the constant a in Assumption 1.3, and g;(t,z) are as in (1.3); for the
classical eigenvalue locations, uniformly for any index i such that ~;(t) € IF(Ey), we have

|0yvi(t)| < C'log N. (2.4)

Proof. (2.2) is the same as [26, (7.7) Lemma 7.2]. For (2.3), we denote E + 17 := z 4 tmy (), and divide
the sum into the following dyadic regions: We divide the sum into the following dyadic regions:

Uo={i:[X(0) = Bl i}, Un={i: 2" <|N(0) = E| <2"7}, 1< n < [~logy(i)].

For the eigenvalues which do not belong to U,U,,, we have |A;(0) — E| > 1. Since 7 2 t > 1., we have

Un| < EN: 2(2nﬁ)2 < 2Im[mo(E +17)]2"7N < C2"iN
TS N0) - E—a2nif? S ’

Thus we can bound (2.32)

ﬂogz N [—logy U,
Z|g1 N Z Z —177| N o= 1~ +1< ClogN. (2.5)
= €Uy, n=0
Finally for (2.4), we have |0;y;(t)| = | Re[mge,(vi(2))]] < C'log N. O
The following result on eigenvalue rigidity estimates of H; is from [26, Theorem 3.3].

Theorem 2.3. Under the Assumption 1.5, fit k > 0. Then for any n. < t < r, and N large enough, with
overwhelming probability, the followings hold:

[m4(2) = e (2)] < DNy~ (2.6)
uniformly for z € Dy; and for the eigenvalues,
IAi(t) = %) <N
uniformly for any indez i such that \;(t) € IJ(Ey).



2.2 Isotropic Local Law

Before we start proving Theorem 2.1, we need some reductions. We write Hy as Hy = UpAoUj, where Ay =

diag{A\1(0),--- ,An(0)}, and Uy is the orthogonal matrix of its eigenvectors. Since H; 4 Hy + /tW, where
W is a standard Gaussian orthogonal ensemble, i.e., W = (w;;)1<igjgn 1S symmetric with (w;;)1<icj<n @
family of independent Brownian motions of variance (146;;)/N, we have the following equality in law:

(q,G(t,2)q) =(q, (UoAoUg + VIW — 2)"'q) = (q, Us(Ao + VIU; WUy — 2)~ U q)
i<q, Uo(Ag + VIW — z)_1U5q> = (Ujq, (Ao + VW — z)_1U§q>.

Therefore, Theorem 2.1 can be reduced to the case that H; = Ag + VIW:

Y2 =,
Wi z_; @it Z)} « (2.7)

< Im

N
<q7 G(ta Z)q> - Z qzzgi(tv Z)
i=1

The entry-wise local law of the matrix ensemble Ay + v/tW (so called deformed Gaussian orthogonal
ensemble) was studied in [26]. In the following we recall some estimates on the entry-wise local law from
[26, Theorem 3.3]. To state it we need to introduce some notations. For any index set T € [1, N], we
denote [H); jgr the minor of H; by removing the columns and rows indexed by T, and its resolvent by
GD(t,z) == ([H¢); j¢r — 2)~'. Recall the definition of g; from (1.3):

1
Xi(0) — 2z — tmget(2)

gi(t,z) = (2.8)

For the simplicity of notation, if the context is clear, we may simply write g; (¢, z) as g;. Roughly speaking, the
following theorem states that the resolvent matrix G(t, z) is close to the diagonal matrix diag{gi, g2, - , g~}

Theorem 2.4. The initial matriv Hy = diag{A1(0), A\2(0),--- ,An(0)} satisfies Assumption 1.3 and fix
k > 0. Then for any n. < t < r and N large enough, with overwhelming probability, the following hold.
Uniformly for any z € Dy: for the diagonal resolvent entries,

‘GE?)(W) —gi(t,2)| < %Igi(tw)ﬁ (2.9)

and for the off-diagonal resolvent entries,

(T) Y : Y 1/2
637 0:2)] < g mindlan(t,2)] g4, 2)1} < 5 (ot 2l (1)) (210)

where T is any index set of size |T| < log N.
Proof of Theorem 2.1. From the discussions above, we can assume that Hy = Ag is diagonal, and take

H, = Ay + VW, where W is the standard Gaussian orthogonal ensemble. The quadratic term in (2.1) can
be written as a sum of diagonal terms and off-diagonal terms:

N
(q,G(t,2)q) = ZGiin‘g + Z G945,
i—1 it



where ¢ = (¢1, 92, - ,qn ). The proof consists of two parts, the first part is trivial, we prove that the leading
order term is the sum over diagonal terms; the second part is more involved, we show that the sum over
off-diagonal terms is negligible by moment method.

For the diagonal terms, from (2.9) in Theorem 2.4 and (2.32) in Proposition 2.8, with overwhelming
probability we have

N
Yt
iy — Zgqu 7ﬁz 7Im Zqz 9i (2.11)
=1
For the second part we prove that for any integer k£ > 0, uniformly for z € D,;, we have

lo N

E [\Z|2k] <LV Z= g Gijqiqi, Y = w g [E qlgzl . (2.12)
i#]

where the implicit constant depends only on k. Then it will follows from the Markov inequality that | Z| <

P2 Im[zij\;1 429i]/v/Nn holds with overwhelming probability. By Assumption 1.3, we have the following
trivial lower bound for Im [}, ¢2g;],

N N
[ e] -2 2
We expand E[|Z|?/], and introduce the shorthand notation Xp,, ,p,, := Gy, ,b,, for 1 < i < k, and
Kbyi 1by; = Gy, 1y, for k+1 <0 <2k,
E [|Z]?*] Z%l%g Qo B[ X b, Xogbs + Xoay 10y (2.14)
where b = (by,b2,- - ,bsx) and the sum ), is over all b’s such that by;_1 # by, for 1 <4 < 2k. To obtain

an efficient control on E[Xy, p, Xpap, =+ Xbye 164, ) We need to understand the correlations between these off-
diagonal resolvent entries G;; for ¢ # j. Heuristically, G;; mainly depends on the matrix entry h;;, weakly
depends on the matrix entries on the same row and column, and the dependence on the rest of the matrix
H is negligible. Therefore the correlations of G;; and G, are negligible if {i, j} N {m,n} = 0. In the rest
of this section, we will make this heuristic argument more rigorous.

We denote the index set T = {by,ba, - ,bag—_1, bar }. Recall the following Schur complement formula
A-z B ' _((A-z2-B*(C-2"'B)"" «
B C—z o * *

where A, B and C are block matrices. We take A = [H¢]; jer, B = [Hi|igr jer and C = [Hi|igr jer, Where
[H¢]i jer is the submatrix of Hy with row and column indices 7, j € T, and [Hy];gt jer and [Hy]; jer are defined

analogously. Recall that G(T) (¢, z) is the resolvent of the submatrix [H]; j¢r and mg)(z) =TrGM/N is its
Stieltjes transform. Schur complement formula gives the following resolvent identity:

-1
[Gliger = ([Hiliser — 2 = [Hiligr eGP [Hilign jen )

= (oliger + VAW liger — = =t (Whigrjer G Whigren)) = (D(:) — €))7



where D(z) and £(z) are two |T| x |T| matrices, which depend on the index set T,

D = [Aolijer — 2z —tmgey, &= EM 4@ LB e ¢ (mET) — mfcyt)
(2.15)

3 * T
5(2) = _\/i[W}i,jET7 5(3) =1 ([W]iQT,jETG(T) [W]ifT,jET — mi )> .

With overwhelming probability, uniformly for any z € Dy, the error term £(z) is much smaller than D(z) in
the sense of matrix norm. In fact, for £V, by (2.6) and notice the deterministic estimate from interlacing
of eigenveallues |m; — mgT)| < |T|/Nn, with overwhelming probability, t|m§T) — mye | < Pt/(Nn). For £,
with overwhelming probability, its entries are uniformly bounded by v (t/N )1/ 2. For £B) with overwhelming
probability, we have the following estimate

0;50 Pt Irn[m(T)}l/2 Pt
57(13)n =t <wmzwn i mn) G(T) GET) 2=t L N )
Z J N %: | J | /N7 /N7

where the first inequality follows from the large deviation estimate [20, Appendix B], and the second in-
equality follows from (2.6). Since £(z) is a |T| x |T| matrix, where |T| < 4k, and with overwhelming
probability, its entries are uniformly bounded, so is its norm: ||E(2)|| <k ¢ (t +n)//Nn. For z € D,, we
have Im[z + tmgc1(2)] 2 (9 + t), which implies |D(z)|| 2 (n+¢). As a result, there exists a constant Cj,
which depends only on k, the following holds: uniformly for any z € D,

v
VN7

with overwhelming probability. We define the event A, such that (2.16) holds. Since it holds with over-
whelming probability, for sufficiently large IV, we can assume that

1€ < Cr

I1D(2)l (2.16)

]P)(Ac) < N7(4a+6)k. (217)
By Taylor expansion, on the event A, we have
f-1 ,
(Gliger= (D=6 =3 D' (D) +(D-&) " (D7)
£=0

where f is a large number, and we will choose it later. In the rest of the proof, we denote
GO =D (DM, o<e<f-1, G :=(D-& (D)

For 1 < €< f—1orf =00, wedefine X\ , =G , for1<i<k and X\? , =G, for
2 —1024 24 —1024 2 —10924 2i—10924
A

2k. We remark that G and X implicitly depend on the 1ndex set T. With these notations,

Koo 1byy = ZXbm 1bas (oo) Lo 1< < 2k,

b2L71b21



where we used the fact that by; 1 # bo;, and D! = diag{g; }ser is a diagonal matrix; therefore, when £ = 0,
the term Xégi)_lb% vanishes. On the event A, |[(D —&)~Y| <g 1/n and [|ED™Y| <k 0/ (Nn)'/2, they together
imply:

’X(OO)

b2i—1b2;

sy ()
~k N\ T A
n \vVNn
In the following we show that: once we take f sufficiently large, these terms X lg;x;_)

do not contribute to (2.12). Since Xj,, ,p,,’s are all uniformly bounded by 1/7, and the sum SN | |gi| is
trivially bounded by N'/2, we have

‘Z|2k Z b1 9bs * " Qbyy, [Xblngb3b4 e Xb4k—1b4k 1A] + o (Nan_QkP(AC)) (218)

by, are negligible, and

By our choice of set A, i.e. (2.17), combining with the estimate (2.13), we have N2¥n=2FP(A°¢) < (N29+2y) =2k
Y2k Therefore,

|Z|2k quhqbz * by, [Xb1bszsb4 T Xb4k_1b4k ]-A] +0 (y2k) , (219)

where Y is as in (2.12). We separate the leading term of the product of those Xp,, ,5,; as

2k f—1 2k Jj—1 2k f—-1
Xorba Xogby  Xbye_1by = H Z b21 1hay T Z (H Xb2i1b217> Xlgsjzlb% H Z b21 1b2; | ° (2.20)
=1 \i=1

i=1 =1 i=j+1 =1

If we take f = [4k(a+1)/c], then on the event A, the second term on the righthand side of (2.20) is bounded,

2k /j—1 ok f-1
Z (H Xb?l 1b2l> Xb(ZOjOEIij H ZXZSfB—lb%

i=1 i=j+1 6=1
2%k 2k

- (H Xb2z 1b2’> b(zojoilsz H (sz'i*lb% B Xlgjiojlbzi)
= i=j+1

Ak <¢>f < 4RV

S\ vy ) S

where in the last inequality we used 1) = N°® (as in (1.6)) and n > ¢*/N, since z € D, (as in (1.9)). This
combining with (2.19) leads to

14 12 log
EIZP] = Y Dt wE (XX X0, 14 O (40%). (221)
1<y, Lo <f—1 b

By the Cauchy-Schwarz inequality, we have

bak—1bag

2
B [xin - X 4] | < B (XS0 xie, ] }P[AC] (2.22)

bak— 1b4k bak—1bak

(ta1)
+IEUXM2 x(fen

10



In the following we bound the first term on the righthand side of (2.22), the second term can be treated in

exactly the same way. By our definition of X éii)_l by, S» We have
(41) (L2k) _ P &
Xb1b2 e Xb4k_1b4ki| =E [ Z H gaiga"iaégaé o gaziazfrlgazfrl ) (223)
a:bCai=1
where a represents arrays a§ € T = {by,ba, -+ ,bsr}, with indices 1 < i < 2k and 1 < j < ¢; + 1; the

above sum is over all the possible arrays a containing b, denoted by l~) C a, in the sense that al = boi 1
and aj_,, = by; for 1 < i < 2k. For the tilde notation, Ggi = g, and gaia@_'_l = gai'ai‘_*_l for 1 <9<k, and
N - J J ) 7
a . — a* S _ Ox
9a3 "= Ga and 5a}a§+ =& aiat,, for k+1 < i < 2k.
Since by our definition g; are all deterministic, we can separate the deterministic part and the random
part of (2.23):

2k 2k £;+1 2k ¢;
E E H gai 5aia§ga§ . gazi azﬁlgazﬁl H H Sa;aéﬂ . (2.24)
a:bCai=1 a:bCai=1 j=1 i=1j=1

For the control of the expectation of the product of gij, we have the following proposition, whose proof we
postpone to the next section.

Proposition 2.5. For any indices by, ba, -+ ,boy € T, we have
: oz ; (¥log N)“(t +n)
‘]E {51;11;251;3};4 : "Ebz,_;,lby} Se (Nn) P2 X(b1, b2, -+, bag). (2.25)
where x is an indicator function such that x = 1 if any number in the array (b1,ba, - ,ba) occurs even

number of times, otherwise x = 0.
Notice that x((a,d}, ) i<cicora<ice) = x((af, a’)1cicar) = x(b). With Proposition (2.5), we can

bound (2.24) as

2k 2k £;+1
- A& - 5 . Y(t +n)log N
E l Z Hgaigaiaggag o gﬂéiaéﬁlgaéiﬂ] S‘k Z ( (N )1/2 (2.26)

a:bCai=1 a:bCa i=1 j=1

where we used the fact that > ¢; < 2k(f — 1) < 8k?*(a+ 1)/, so the implicit constant depends only on k.
Combining (2.23), (2.24) and (2.37) together,

£1 4 4
Z ’qbl Qb2 e qb4kE |:XIE1bZXIE3i4)1 Xlg4ik)1b4kj|
b

Z 1_19‘17 ajayJay - g% ag, +1gai +1‘| (2.27)

= Z (961G + - Qb | E
b

a:bCa i=1
2 2k £;+1
Y(t+n)log N 2 b
<o (EDIEN) T S S o T
N b a:bCa i=1 i=1 j=1

11



Given b, the sum y ..o
2k,1 < j <l +1, and a® = by;_1 and ae 1 = by for 1 < i < 2k, Slnce any array {a h<i<ok, 1<j<g 11
induces a partltlon P of its index set {(3, ]) 1 <4< 2k1 < ] < 4; + 1}, such that (i, j) and (i, j) are
in the same block if and only if a} = aé,,. For any array a with b C a and x(b) = 1 (as in Proposition

p is over all the possible arrays a such that a' €T = {by,ba, -+ ,bg}, for 1 <

(2.5)), we denote the frequency representation of the array (b1, ba, - ,bax) = (ai,aj, ., ,ai", a?ka) as
vldl'ygb ooqdnwhere 2 < dy,da, -+ ,d, are all even, and n = |T|. Notice that >_d; = 4k counts the total
number. We also denote the frequency representation of ((a )1<]<g +1)1<i<2k 8S Vg 1+”'yd2+r2 coeydnt T

where r; > 0. Similarly, > d; + 7 = 2k + > ¢; counts the total number. We summarize here the relations
between d;, r; and ¢;, which will be used later:

dodi=4k, 26+ =) L

Example 2.6. If we take k =3, b =(1,2,2,3,4,5,3,5,2,1,2,4) and a = ((1,3,2,2);(2,4, 1,
(3,5);(2,5,1,1); (2,4,3,4,4,4,4)), then b C a. The partition P induced by a is {{(1,1),(2,3), (3
(03, (L0, Gy, .40, 5, D (6,17, (1,20, 2.8), (16,30 (12, 3. 1) (6,2, (6.4). 6,5, (6.6). (6.7
{(3,3),(4,2),(5,2)}}. The frequency representations of b and a are given by 1224423252 and 1°263%*4753 re-
spectively. d; and r; are given by di = 2,dy = 4,d3 = 2,dy = 2,d5s = 2 and r1 = 3,70 = 2,13 = 2,14 =
5,r5 = 1. Since dy,da, -+ ,ds are all even, x(b) = 1.

Notice that the frequencies d; and d; + r; are uniquely determined by the partition P, in fact d; + r; are
the sizes of blocks of P. Moreover since b is uniquely determined by a, first adding up terms corresponding
to a such that b C a, and then summing over b is equivalent to first summing over arrays a corresponding
to the same partitions P, which we denote by a ~ P, and then summing over different partitions with each
block size at least two.

2k £;+1 2%k £;+1

>N« H |90} 9aj, => > x( H |9ai %aj, .,

b a:bCa i=1 i=1 j=1 P a~P i=1 i=1 j=1

n
< Z Z H |q%|di|gwldi+n

P 1<y, ,yn SN i=1

di/2
<k ZHIm Zngz]

t—|—77 r1+d /2

(2.28)

Z Im Z q; 9:]
X + n Z 4, )

where in the first inequality we use (2.32) in Proposition 2.8 and d; > 2, and for the last inequality we used
>~ d; = 4k. Therefore by substituting (2.28) into (2.27), we have

>4 2 12k
(t1) y (£2) (€21) P(t +n)log N Im [} ¢7gi]
Xb: ’%1 vy qb4k |:Xb111)2Xb324 o Xb412c’ilb4k:| S‘ ZP: < (Nn)1/2 (t i n)zz 4;

wIm[qugi]logN 2" Ylog N 2 ok
<;< VNG ) () =

(2.29)

12



in the last inequality, we used that ¥ log N/v/Nn < 1 and the total number of partition is bounded by
(3~ 4; + 2k)!, which is a constant depending on k.

Following the same argument, one can check that

> NTIm [¥ ¢?g:] (¥1og N)?

Therefore, by combining (2.21), (2.22), (2.29) and (2.30), it follows
EHZ\%] Sk y2k +N2ky2kP<Ac) 5]@ ka.

41) 3 (£2) (L2r)
b, by " * Qb4k |:‘Xb1;;2Xb3?74 ”Xb4ik—1b41«

2k
) < NZRYR - (2.30)

This finishes the proof for isotropic law Theorem 2.1. O

The following is an easy corollary of Theorem 2.1:

Corollary 2.7. Under Assumption 1.3 and 1.4, for any n. <t < r, 0 < k < 1, we have that

2
{a, G(t,2)q) — mic(2)| < % + %

uniformly for any z € D,;, with overwhelming probability, provided N is large enough.

(2.31)

Proof. By Assumption 1.4, we have

N N
(u; (0 1
> ( S P v

i=1

1
N‘”

uniformly for any z € {E+w: E € [Ey—r, Eg+7],m. <1 < r}. Wedenote z = E+41ij := z+tmg(z). From
Proposition 2.2, we know that for any z € Dy, Im[z + tmyc(2)] 2t + 1> n. and [tmge(2)] S tlog N < kr
provided N is large enough. Therefore, we have that Z € {E+wm: E € [Ey—r,Ey+7],n. <n < 1}. As a
consequence,

,q)? [R5 i(0), )2
Im[ZA —Z—tmfct( ‘|_Imlz /\I(O)—g

Combining with Theorem 2.1, it follows that

N s 2
(a.G(t,2)a) — Y Ai<o><—2(0_)’;>zfc,t<z>

i=1

N

VN

Therefore with overwhelming probability we have

N w 2
(q,G(t, 2)q) — Z )\i(o)<_12(0—)’1:17ilfc,t<z)

(g, G(t; 2)@) — mic,i(2)] <

uniformly for any z € D,. O
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We take the event A; of trajectories (A(t))o<i<r such that:

1

1. Eigenvalue rigidity holds: sup, < <¢/n [ms(2) — mic,s(2)| < 9(Nn)~" uniformly for z € Dy; and

SUPyy <s<ctote/N [Ai(8) —7i(s)] < N ~! uniformly for indices i such that ~;(s) € I*(Ejp).
2. When we conditioning on any trajectory A € A, with overwhelming probability, the following holds

1 Y
su ,G(t,2)q) — Myt (2)| € — + —=—=
togsgthrZ/N |<q ( )q> fc t( )| Nb m

uniformly for z € D.

As a consequence of Theorem 2.3 and 2.1, and notice we can take the parameter ¢ (as in (1.6)) arbitrarily
small, the event A; holds with overwhelming probability.

2.3 Auxiliary results

Proposition 2.8. The initial matriz Hy = diag{A1(0),--- ,An(0)} satisfies Assumption 1.3. Fix k > 0.
Then for any k > 2 and m > 0, we have

N k/2
m < Im [ dlg;
Z;CIﬂgi(t,Z”kJr Sk (tErn)k/;]“"’ (2.32)
and for any m > 0, we have
N 1/2
m N1/2 Im Z qsgl
Z lgillgi(t, )]t < @ +[7I)1+m ] ) (2.33)
i=1
and
N
Nlog N
Z lgi(t, )" < (t—&—()ii)m’ (2.34)
i=1

uniformly for any z € D, where g; are as in (2.8).

Proof. We denote E +17j := 2z 4 tmye 4(z). From Proposition 2.2, 7 = Im[z + tmg ¢ (2)] = (74 t), which gives
us a rough bound for g;(t, z) :

lgi(t, 2)| S (E+m) 7" (2.35)

With the trivial bound (2.35), (2.32) and (2.33) are reduced to the case m = 0. For (2.32), we have the basic
inequality Y zF < (32 x?)k/g if £ > 2. Therefore,

N N k/2 9 k/2 - 5 Gk/2
D atlgilt 2)|* < (Zqﬂgi(t,zn?) = (W”]O <, I([qu]

Im([z + tmge t+ m)k/2

14



For (2.33), by Cauchy’s inequality
N N 12 /N
> aillgi(t, 2)* < (Zlgi(t,Z)F) <Z|Qi|2|gi(tv’z)|2>
i—1 i=1 i=1

- < m > g )1/2 m[Yate] |
Im[z + tmyc 4 (2)] Im[z + tmgc . (2)]

1/2

B N1/2 Im[mfc,t(z)]1/2 Im [Z q?gi] 1/2 < NY/2Tm [Z qizg,-] 1/2
B t+n ~ t+n ’
where we used Im[my ¢(2)] < C from (2.2). Finally, (2.34) in the case m = 0 is the same as (2.3). O

Proof of Proposition 2.5. Recall the decomposition & = €1 + £2) + £6) from (2.15). If we condition on
the submatrix [W]; j¢r, EM is diagonal and non-random, £® depends on [W]ijer, and €3 depends on
Wigrt, jer, so they are independent. (2.25) can be decomposed into the following three estimates: with
overwhelming probability

14
o . bt
ET |:51511l)72515;l))4 e 515215)—15722] < (JVU X(bla b2a T 7b2€)7 (236)
52) §(2) | 3(2) AN
ET |:gb1b2gb3b4 e 5b21{—1b214:| 5[ (N) X(bl’ b27 e ,bzg), (237)
14
5(3) 3(3 5(3 Ytlog N
Er {5151122 51531)24 e 515215)—15722] SZ (\/m X(bh ba, -+ ’b2€)’ (238)

where Er is the expectation with respect to rows and columns of W indexed by T.

For (2.36), since £ is diagonal and by (2.6) in Theorem 2.3, with overwhelming probability, ¢/m!" —
Mict| < Yt/(Nn), we have

s(1) &(1) (1)
’]ET |:€b1b25b3b4 T 5b2e71b2z}

e L V4
Yt Pt
< (NU i];ll:(sb’zi—lbzi < N777 X(bl;an to 7b2f)'

For (2.37), it is a product of normal variables, which does not vanish only if each variable occurs even number
of times. Thus (2.37) follows, and the implicit constant is from the moment of normal variables, and can be
bounded by (2¢ — 1)!.

In the following we prove (2.38). The entries of £3) are given by
5(3) —¢ §b2i—1b2i552i—1627‘, G(T)
boi_1boi — Z Wha;—1B2i—1 WhaiBa; — N B2i—1B2i"
B2i—1,B2:¢T
Therefore, the lefthand side of (2.38) is bounded by

14

) 2i—1b2:9B2;—182: (T) (T)

t E Er |J:[ (wb2i—1[32i—lwb2i,32i - N ’Gﬁlﬁz T Gﬁz[—lﬁZZ
B1B2,+B2e¢T i=1
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For each monomial of resolvent entries G%Q e Ggl_l 45, We associate it with a labeled graph G in the

following procedure: We denote the frequency representation of the array (81, 2, -+ , Ba¢) as 'yllvgz ey

where d; > 1 is the multiplicity of v;, and v = |{B1, B2, , B2¢}|. We construct the labeled graph G with
vertex set {y1,72, -+, Y} and £ edges (B2;—1,P2:) for 1 < i < € (if 2,1 = Pai, the edge (B2i—1, f2i) is a
self-loop). We denote s the number of self-loops in G. For any vertex 7; € G, its degree is given by d;,
where self-loop adds two to the degree. It is easy to see that (2.38) follows from combining the following two
estimates:

1
Se eP(G)x (b, ba, -, bag), (2.39)

L
Obai1b3:0B2i_1 B
Ep [H <wb2i1/32i1wb2i,321: - %

=1

where the implicit constant is from the moment of normal variables, and can be bounded by (2¢ — 1)!!; and
with overwhelming probability, uniformly for any z € D,

(T) (T)
Z ‘Gﬁ1ﬁ2 o GBZZ—lBQZ
B1B2,--B2rgT

log N)*N*/?
p(G) Se (@log V)" N7 Ogﬁf />2 : (2.40)

where p(G) is an indicator function, which equals one if each vertex of G is incident to two different edges,
otherwise it is zero. For any graph G with p(G) = 1, we count the total number of edge-vertex pairs, such
that the vertex is incident to the edge: each self-loop contributes to 1, and each non self-loop contributes to
two, so the total number is s+ 2(£ — s); since each vertex of G is incident to at least two different edges, the
total number is at least 2v. Therefore, we have the following relation between v, s and £:

20<2(0—5)+s=20—s. (2.41)

For the first bound (2.39), we denote the set B = {(b;, 8;) }1<j<2¢. Then the product in (2.39) can be
rewritten as

L

Obas1b2:9B2i_1Ba: e1(b e
H (wb2i1[3211wb2i,@2i - % H Wy ! ﬂ) wbﬁ 1/N) 2(b7ﬁ)’
i=1 (b,8)eB
where e1(b,8) = |{1 < : exact one of (ba;—_1, B2i-1), (b2i, B2i) is (b, 8)} and ea(b,B) = [{1 <

(bzl,l,ﬁgl,l) (bgl,ﬁgl) = ( ,B)}|. Since for (b,8) € B, wyp are independent normal random varlables
(2.39) does not vanish only if e (b, 8) is even and ey (b, 8) + e2(b, 8) > 2 for any (b, 8) € B, which implies
p(G)x(b1,ba, -+ ,byy) = 1. Therefore, we have

el(bB) e2(b,8) | < 1
Er (bg[Bw —1/N) Y/ Nowmes 1O NE 4 men ez(bvﬁ)p(g)x(b17b27 ,bag)
€
1
= Wp(g)x(bhbz, o, bog),

and (2.39) follows.
For the second bound (2.40), by Proposition 2.4, with overwhelming probability we have

‘ (T) ‘ < { w(lgBZi—1||gﬂ2i )1/27 Bai—1 = B,
Paiz1fai ¢(|gﬁ2171|‘952i|)1/2/\/ N ’ 621'—1 7é ﬁQi-
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In terms of the graph G, the first bound corresponds to self-loops, and the second bound corresponds to non
self-loop edges. In the graph G, there are s self-loops and £ — s non self-loop edges. The product of resolvent
entries can be bounded as

ya v

(M (T Y 4

G5152 o Gﬁztz—lﬁzf r(9) g\/]\7777475 H |g’”| 2 p(9),
=1

with overwhelming probability. Notice that p(G) = 1 implies that d; > 2. The index set (81,82, -, Sa2r)
induces a partition P on the set {1,2,---,2¢} such that ¢ and j are in the same block if and only if 8; = j;.
If two index sets induce the same partition, they correspond to isomorphic graphs (when we forget the
labeling). Therefore, for (2.40), we can first sum over the index sets corresponding to the same partition
and then sum over different partitions:

(T) (T) _ (T) (T)
Z ’Gﬁlﬁb T Gﬁ2€—162( p(g) - Z Z ’Gﬁlﬁz o G62€—162€ p(g)
B, ,B20¢T P (Bi,,B2e)~P

e v
<ijf’e_ > Illss
P n

Y1 e €T =1

v

d Pt Nnlog N
oDy —— [
7 VN7 i=1 nz

Nnlog N)V Nnlog N)¢—s/2 log N)¢Nt/2

> (Nn) =)/ (Nn)=)/2pf ~t nt/2

where the second inequality follows from (2.34), in the third inequality, we used ), d; = 2¢, for the second
to last inequality, we used the bound v < £ — s/2 from (2.41), and in the last inequality, we bounded the
total number of different partitions by (2¢)!. O

3 Short Time Relaxation

The Dyson Brownian motion 1.2 induces the following two dynamics on eigenvalues and eigenvectors,

 dbgi(t) 1 1
AAn(t) = = + N; IWORSYON b (3.1)
1 dbpe(t) 1 .

where By = (b(t))1<i,j<n is symmetric with (b;;(t))1<i<j<n a family of independent Brownian motions with
variance (1 + 6;;)t. Following the convention of [0, Definition 2.2], we call them Dyson Brownian motion for
(3.1) and Dyson vector flow for (3.2).

In order to study the Dyson vector flow, the moment flow was introduced in [0, Section 3.1], where the
observables are the moments of projections of the eigenvectors onto a given direction. For any unit vector
q € RV, and any index 1 < k < N, define: 2;(t) = vV N{q, uy(t)), where with the v/N normalization, the
typical size of zj is of order 1. The normalized test functions are

Qtrdm =] 27 [ a(2de) =" where a(24) = (25 — 1)1, (3.3)
=1

colm
(=1
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These indices, {(i1,71);- - - (4m, Jm)} With distinct ix’s and positive ji’s can be encoded as a particle config-
uration 1 = (m1,72,--- ,nmn) on [1, N] such that n;, = ji for 1 <k <mandn, =0if p & {i1,42, - ,im}-
The total number of particles is N'(n) := > 1y = >_ jr. We denote the particles in non-decreasing order by
r1(n) < 22(N) < -+ < Tpr(m(n). If the context is clear we will drop the dependence on 1. We also say the

support of 1 is {41,492, - ,im }. It is easy to see that this is a bijection between test functions Qﬂ“'”’jm

and
7 i1,.00m
particle configurations. We define n* to be the configuration by moving one particle from i to j. For any
pair of n particle configurations n: 1 < z1 <o < <y, < Nand & 1<y <yo - <yn <N, we define

the following distance:

n
d(n,§) = Z |Ta = Yal- (3.4)
a=1
We condition on the trajectory of the eigenvalues, and define
H j1yeeesdm
g () = EP(Qu ol () | ), (3.5)
where m is the configuration {(i1,j1),...,(im,Jm)}. Here X denotes the whole path of eigenvalues for

0 <t < 1. The dependence in the initial matrix Hy will often be omitted so that we write f; = ffg We

will call f; the eigenvector moment flow, which is governed by the following generator Z(t) [6, Theorem
3.1]:

Theorem 3.1. [Eigenvector moment flow] Let ¢ € RN be a unit vector, 2z, = VN{(q,ur(t)) and c;j(t) =
(Ni(£)=X;j(t))"2/N. Suppose that fi(n) is given by (3.5) where n denote the configuration {(i1,j1), - - -, (ims Jm)}-
Then f; satisfies the equation

Ocfe = B) [, (3.6)
B) fe(n) = ci ()20 (1 + 2n5) (fe(n™) — fi(m)) . (3.7)
i#j

An important property of the eigenvector moment flow is the reversibility with respect to a simple explicit

equilibrium measure:
k

11 <1 - 212> . (3.8)

i=1

N
w(n) =[] o(m), ¢(k) =
p=1
And for any function f on the configuration space, the Dirichlet form is given by

S alm) @) fm) =Y w(m) Y cim(l+2n) (F(n¥) — f(m)” .

n n i#]

We are interested in the eigenvectors corresponding to eigenvalues on the interval [Ey — r, Eg + 7],
and we only have local information of the initial matrix Hy. However, the operator %(t) has long range

interactions. We fix a short range parameter ¢, and split Z(t) into short-range part and long range part:
B(t) = L (t) + ZL(t), with

(Zfm = > )21+ 2m) (f(n) = fi(n)), (3.9)
0<|j—k|<e

(Zfm = eu®2n;(L+2m) (fi(n’™) = fi(m) -
|j—Fk|>¢

18



Notice that . and & are also reversible with respect to the measure 7 (as in (3.8)). We denote by Ug(s,t)
(U (s,t) and Ug(s,t)) the semigroup associated with Z (- and .Z) from time s to t, i.e.

8 Ug(s,t) = B(t)Ug(s,1).

For any 7, < t < r, In the rest of this section, we fix time ¢y and the range parameter ¢, such that
N K to < t < tg+ £/N, which we will choose later. We will show that the effect of the long-range operator
Z(t) is negligible in the sense of L™ norm, i.e. f;(n)~ Ugx(to,t)f:,(n); and the short-range operator .7 (t)
satisfies certain finite speed of propagation estimate, and (3.9) converges to equilibrium exponentially fast
with rate N. As a consequence, fi(n) = 1 and Theorem 1.5 follows.

3.1 Finite Speed of Propagation

In this section, we fix some small parameter 0 < k < 1, and define the following efficient distance on n
particle configurations:

d(n, &) = wax ##{i € [1,N] 2 7i(to) € 15(Eo), i € [7a; yal}, (3.10)
wheren: 1 <z <o < <z < Nand & 1<y <y2--- <yn <N, and 7;(to) are classical eigenvalue

locations at time ¢ (as in (1.4)).

In this section, we will condition on A(tg) = A for some “good” eigenvalue configuration A. We call an
eigenvalue configuration A good if we condition on A(tg) = A, for N large enough the following holds with
overwhelming probability:

L. sup;, < o<y [ms(2) — Mg s(2)| < ¢(Nn)~!, uniformly for any z € Dy;
2. sup;, <oy |Ni(8) — 7i(s)| < N1, uniformly for indices i such that ~;(t) € I7(Ey).

By Theorem 2.3, combining with a simple continuity argument, A(tg) is a good eigenvalue configuration with
overwhelming probablity.

Lemma 3.2. Under the Assumption 1.3, for any n. < t < r, we fiz time ty and the range parameter £,
such that n, < tg <t < to+L/N < r. For any n particle configurations : 1 < x1 < 22 < - < xp <N,
and &: 1 <y1 <ya- <yn <N, with J(n,f) > l/2, then there exists a universal constant c, for N large
enough, the following holds with overwhelming probability:

e Y

N

sup U (to,5)dn(§) ; (3.11)

to<s<t

if we condition on A(tg) = X, for any good eigenvalue configuration X.

Proof. Thanks to the Markov property of Dyson Brownian motion, we know that the conditioned law
(A(®)) 10| A(to) = A is the same as Dyson Brownian motion starting at A. In the proof, we will neglect the
conditioning in (3.11), and simply think it as a Dyson eigenvalue flow starting at A. We denote v = N/¢ and
rs(1n,€) = Us(to, s)0n(€). We define a family of cut-off functions g,, parametrized by w € R by demanding
that inf, g, (z) = 0 and define g/, by considering the following three cases:
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1. w < Ey— (1 —2k)r. Define

1 if e I3, (F
go(e)= {1 1o EBlbo)
0 ifxé¢ I3 (Eo)

2. w € I}, (Ey). Define

1 ifx>w, z el (Eo)
() =4 -1 ifz<w, vl (E)
0 ifxgll (Ey)

3. w> Ey+ (1 —2k)r. Define

~1 ifze Il (B
(@) = : 2 (Eb)
0 if x ¢IQK(EO)

It is easy to see that for any fixed x, as a function of w, g/, (x) is non-increasing. We take x a smooth,
nonnegative function, compactly supported on [—1,1] with [ x(z)dz = 1. We also define the smoothed
version of gu, ©i(x) = [ gy () (® — y)vx(ry)dy. Then ¢; is smooth, ||¢}]le <1 and [¢}|| < v. Moreover,
vi(7i(to)) < 1/v, and ¢;(z) all vanish for z < Ey — (1 — 2k)r —¢/N or « > Ey + (1 — 2.5)r + £/N. From the
monotonicity of g/, (x), for any a < b, we have A\, (t9) < Ap(t0), so

Pal() = ¢p(x) > 0. (3.12)

We define the stopping time 7, which is the first time s > ¢y such that either of the following fails: 1)
Ims(2) — mees(2)| < Y(Nn)~! uniformly for z € Dy; i) |Ni(s) — 7i(s)| < Y N~ uniformly for indices i
such that 7;(s) € I(Ey). By our assumption that A(tp) is a good configuration, we have that 7 > t with
overwhelming probability. Recall the inverse Stieltjest transform, pe o(E) = lim, o Im[mg. s(E +in)]/m. By
Proposition 2.2, the densities pec s(E) and N='3" 8y, (s) are lower and upper bounded on If(Ej), on the
scale 7 > ¢*/N. Thus, there exists some universal constant C such that for any ¢y < s < ¢, and interval [
centered in I7(Ey), with |I| > ¢*/N,

CHIIN < #{i:vi(sAT) €T}, #{i: Ni(sAT) € I} < C|IIN. (3.13)
For any configuration £ with n particles we define

03(€) =D Pan Ny (SAT)),  6a(&) =€) 0,(€) := $5(E)rans(m,€), Xoi= > m(€)va(€)%,
a=1 13

where 7 is the reversible measure with respect to the eigenvector moment flow (as in (3.8)).

We denote X; := sup, <,<; Xs (by our definition, X is always positive). We claim that (3.11) follows
from the estimate

E[Xt*] < CweC(t—to)ulogN7 (314)
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where C' is a constant depending on n. In fact, (3.14) implies that

E f S<uP<t eQNz/ Son 1 Pra (Aya (s/\‘r)),rg/\T(,'77 5) < C«eC(t—tO)ulogN. (315)
L0 SX

Under the assumption that ci(m &) > L/2, there exists some index 1 < a < n (by symmetry, we can assume
Zo < Yo) such that

#{i 1 vi(to) € I;,(Eo),i € [Ta,yal} = ¥1/2,

then it follows from (3.13) that |[Vz, (o), Vy. (to)| N3, (Eo)| 2 ¥¢/N, and thus ¢, (Vy., (t0)) — @z (V2. (t0)) 2
Wl/N. We can lower bound ¢, (A, (s AT)) as

Pxq ()‘ya (8AT)) 2¢z, ()‘ya (to)) = |z, ()‘ya (8AT)) = P, (’Yya (s AT))I

|0 (Yo (s AT)) = @a, (Y (£0))- (3.16)

For the second term in (3.16), since either v, (s A7) € IL(Ep), and |y, (S AT) — Yy, (s AT)| < ¥/N, or

Vyu (SAT) & IL(Ep), and @z, (Ay, (SAT)) = @z, (Vy. (sAT)) = 0. In both cases |¢q, (Ay, (SAT)) — @z, (Vy. (SA
7)) S /N. For the third term in (3.16), we have

[P0 (Vya (8 AT)) = P (W (f0))] < /t &' (Vo (0 ATy, (0 AT)I(s = to) Slog N < ¢L/N,

where we used (2.4). As a consequence we have ¢, (A, (sAT)) 2 ¥l/N, for any to < s < t. It then follows
by combining with (3.15),

E[ sup ronr(n,€)%] < e
togsgt

Since A(tg) is a good eigenvalue configuration, with overwhelming probability we have 7 > t, Therefore,
(3.11) follows by the Markov inequality.

In the following we prove (3.14). We decompose X as Xy, = M, + A, where M, is a continuous
local martingale with M;, = 0, and A, is a continuous adapted process of finite variance. We denote
Af 1= supy cocp As, and My := sup, < <, |M]|. Then we have that X < M, + Aj. For M we will bound
it by Burkholder-Davis-Gundy inequality:

E [(M;)Q] < CE Ut<dMs,dMs>] . (3.17)

to

For A}, since A; is a finite variance process, we will directly upper bound 9s; A, and

EMﬂ<EPm+/Q&&v®®} (3.18)

to
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By the Ité’s formula we have

N o V(D€) &) LN ki (erdls
X, = (e u;q 261 +26) (28] 1 L) un(€)0n(0a(s 17 (3.19)
+Z 2nr (1, €)(ds(€), des (€)) (320)
+2Z E)rsnr(n,€)dos(€) (3.21)
- Z T(€) Y en26(1+26)(vs(€) — vs(€))7d(s A T). (3.22)
3 [k—jl<e

The martingale part comes from (3.21),

dby, y., (sNAT)
dMs =2 ) m(&)vs % Ay (S AT)) —0=—

Since [|¢}]lco < 1, we have

2
AM,, dM,) <, 2= X2ds AT,
( <0 X

Therefore, combining with (3.17), we have
2 1/2 t 2 1/2 ¢ 2
E [(M*) } ) U Xsds] - 7/ E[X2]ds (3.23)
k N LU N /i,

To understand (3.18) and (3.23), we need an upper bound of JA,, which is the finite variance part of
dX,. Thanks to the choice of p;’s, we can directly upper bound (3.19) and (3.20) in terms of X,. For (3.21),
we upper bound it by taking advantage of its cancellation with (3.22).

Firstly, for (3.19), we need the following estimate: for |k — j| < ¢,

¢ (€M) L 98

¢s(8)  Ps(€M)

We assume that j < k, then there exists 1 < p < ¢ < n such that y,—1 < j < y, (we set yo = 0) and
Yg—1 < k = yq (recall y, = y4(£)) and

—2| SV = A2 (3.24)

“Ps(ékj ZW’% Ya-1Vi) = Pra(Ay)]

Since Yo — (Ya—1 V j) < k —j < £, by our choice of stopping time 7, if Ay, ,v; < Eg — (1 — k)r, then
Ayy S E—(1—k)r+C¢/N, where C is from (3.13), and both ¢, (A, ,v;j) and ¢z (A, ) vanish. Especially
we have ¢z, (Ay,_1vj) — Yo (Ay,) = 0. Similarly, if A, > E+(1—k&)r, then Ay, ,v; = E+(1—k)r—Cl/N,
and @z, (Ay,_1vj) — Pza(Ay.) = 0. Therefore,

|05 (€") = s (€)] S [Ny,vi (s AT), Ay, (s AT NIL(Eo)| S min{|A;(s A7) = Ak(s A7), 71
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where we used (3.13) again. This estimate leads to (3.24):

. . . 2
¢s(€%) | 6s(6) ’ v(ps(E%) — ¢s(8)) v(ps(8) — vs(€7)) > 2
+ — — 2| = |exp — exp S v — A
6. 5.6 2 2 i
Combining with (3.24), it follows that
L2 y vl
G S Y AO Y 260420 @dsnn) S0 S XA AT (325)
13 |k—j]<e
For (3.20), we have the bound
n /2 by 2
(3.20) = 2 X, az::l Wd(s AT)Sn %Xsd(s AT). (3.26)
For (3.21), the finite variance part is given by
Z v ( Z vl (Aya) + 292 (M) d(s AT) (3.27)
E a=1
- d(sAT)
2 —_— 2
+2v> w(€ Z Z W (3.28)
3 a=1 \kfya|>4 &
= d(s A T)
3 a=1 O<|k7ycx|<e *
By our choice of the cutoff function, |v) (Ay.) + 22 ()| S V2
2
(3.27) <, NXSd(S AT). (3.30)

For (3.28), we either have \, ¢ I3, (Eo), then ¢}, (A, ) =0;o0r A, € I3, (FEp), in this case, by a dyadic
decomposition argument similar to (2.5), we have :

1 1
— <logN.
k:|k—Zy(,|>Z Ay (SAT) = Ap(s A T)

Therefore we always have that

(3.28) Svlog NXsd(s A T). (3.31)
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Finally to bound (3.29), we symmetrize its summands

2wa(€)vs(£)QZw;a(Aya)% > d(siﬁj\)k
I3 a=1

A
0<|k—yal<t Y

SIS L) SREHE SINTES 5 Sk ) SRERID SRy

0<k—i<l 3 QYo =1 0<i—k<el

e ID M L) S CINGE I DETACO R SRR

o<k—ige " £ QYo =1 QY=

F Y IV Ane | X 40— X 0] romXdenn), 632

O<k—i<t " ¢ ya=i awa=Fk

where in the last inequality, we replaced ¢} (Ax) by ¢}._(A;). By our choice of ¢y, @ (Ni) — @l (Ax)| <
" (o) |loolNi — Ak] < v|[Ai — Ag|, and there are at most 2¢n choices for the pairs (k, ), so the error is at
most O(v?4(X,/N) = O(nvXy).

In all the following bounds, we consider ¢ and k as fixed indices. We also introduce the following subsets
of configurations with n particles, for any 0 < ¢ < p < n:

Ay ={6:&+&=p} Apg={€€A,: & =g}

We denote £ = (£,&,- - ,&y) the configuration exchanging all particles from sites 4 and k, i.e. & = &,
§k = ¢ and & = & if j # i, k. We denote the locations of particles of the configuration & 1 < g3 <2+ <
< N. Using w(€) = 7T(£) we can rewrite the sum over £ in (3.32) as

ZZ Z Sooeh - Y e
=04¢=0¢&€Ap, QYo =1 a:ya=k
>
q=0¢

Z Z ST 00— 3 @)
p=0 €A,

QYo =1 aya==k

n

ZZ Z PO E A Ol (3.33)
p=0 q=0 £€.A,,

a:fa=k QYo =1

For i < k, both index sets {a : yo =k} U{a: §o =k} and {a : yo =i} U{a : Jo = i} has cardinality p, and
the j-th largest number in the first set is larger than its counterpart in the second set. By (3.12), for any
a < b, we have ¢/, (z) > ¢} («). This implies that

DT )= D @ )= D )= D el (). (3.34)

aYa =1t a:yo=k a:go=k a:Ya =1t
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Equations (3.33) and (3.34) together with A\; < A\x give

e [ D wh )= DD @ (A

p 0 q= Oﬁequ Yo =1 a:ya=k
n p

ZZ Z 0 ) | D e )= DD @ ()
p=0q¢=0¢&cA,, Yo =1 a:yo=k

1 2 2
S ?r(s) |vs<s> —vs(é)

, (3.35)

where we used, in the second inequality, |1}, [l < 1.

Note that transforming £ into € can be achieved by transferring a particle for i to &k (or k to i) one by one
at most n times. More precisely, if £ € A, 4 such that ¢ < p—q, we can define §;; = 5;“, for 0 <j<p—2q.
Then & = € and £, o, = £ and

T€(€ — v@ < D MO(E) — €S Y TEn(€)? — valE)]

Jj=0 Jj=0

where in the last inequality we used 7(&) <

~n

|)\i_>\k|§: (£)|9( |\|)\_>\|Z |s s(§)|

Vs — v ki 2 )
<y ne et if)g)) +C£N 7€) (01(6) + 0s(6)°
3 ’ 3

7(€;). Therefore we can bound (3.35) as

where we used AM-GM inequality. Finally, we obtain the following bound

0, (€) — v, (£F9))2
(3.29) Z Z ( ](\f())\ _ iﬁ)g)) d(sA7)+ CrXd(sAT). (3.36)
0<|i—k|<é v

Notice that the first term in (3.36) cancels with (3.22). Thus, (3.30), (3.31) and (3.36) together lead to

(3.21) 4+ (3.22) < vlog NXgd(s A T) (3.37)

(3.25), (3.26) and (3.37), all together, give the following upper bound on the finite variance part of X:

0sAs Sy viog N X. (3.38)

With (3.38), it is easy to estimate E[X;] and E[X?]. For X;, by taking expectation on both sides of
(3.38), we have

O:E[X;] < viog NE[X;].
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Therefore
E[Xf] Sn ec(ifft())lllog]\/v7 (339)

following from Gronwall’s inequality, where C' is a constant depending on n. Similarly for X?, by ito’s
formula, we have

dX? =2X,dX; + (dX5,dX,)
=2X.dM;, +2X ,dA, + (dM;,dM;). (3.40)
We take expectation on both sides of (3.40) and obtain,
OE[X?] <, vlog NE[X?] + 2N 'E[X?] <, viog NE[X?Z].
Again by Gronwall’s inequality, we have
E[X7] Sy @0 tovios N (3.41)

(3.17), (3.23), (3.39) and (3.41) together implies:

* *\ 2 1/2 *
E[X;] <E[(M;)’] " +E[4]]
y t 1/2 t Cltmto)wlog N
<— E[Xf]ds) +E[X;,] +vlogN | E[X,]ds <, eCltto)vios
\/N (/to o tO
This finishes the proof of (3.14). O

We can take the event A of trajectories (A(s))ogs<t such that: conditioning on the trajectories (A(s))o<s<t,
the short-range operator U o satisfies,

sup U (to,s)0p (&) < eV (3.42)
to<s<t

for any pair of n particle configurations 1 and & (notice that the total number of n particle configurations is
bounded by N™) such that d(n, &) > £/2. Since with overwhelming probability A(¢y) is a good eigenvalue
configuration, combining with the Lemma 3.2, we know that As holds with overwhelming probability.

Thanks to the semi-group property of U, for any (A(s))ogs<t € A2, we claim, for N large enough, the
following hold: conditioning on the trajectories (A(s))ogsgt, the short-range operator U satisfies,

sup  Ug(s',5)0p(&) < e, (3.43)

to<s/<s<t

for any pair of n particle configurations n and & such that ci(n,é') > Yf. We prove the statement by
contradiction. Assume there is a pair 19 and &y with d(no, &) = ¥¢ and time tg < s’ < s < ¢ such that
(3.43) fails. We take a function

h= > 4

d(n,mo)<pe/2

26



on the space of n particle configurations. By triangular inequality, for any n such that cZ(n, M0) < YL/2, we
have d(n, &) = y£/2. Therefore by (3.42), for sufficiently large N,

U (to,s)h(€&) < NMe2Y, (3.44)

By the same argument for (3.44), we have

U (to, s') > by | (o) SN"e T <
d(n,mo)>pe/2

DN | =

Notice that Uy (g, s’) preserves the constant function, we have

1
U&"(th S)h(€0) = Uy(sla S)Uy(to, Sl) 1- Z 57] (EO) > gUy’(Sla 8)5”]0 (EO) > 6—01[)/27
d(n,m0)>ve/2

which gives a contradiction with (3.44). Therefore, we have the following corollary of Lemma 3.2:

Corollary 3.3. For any trajectory (X(s))ocs<t € A2 as defined in (3.42), conditioning on (A(s))ogs<t, the
short-range operator Uy satisfies: uniformly, for any function h on the space of n particle configurations,
and particle configuration € which is away from the support of h in the sense that d(n, &) = WL, for any n in
the support of h, it holds

sup  Usr(s', 8)h(€) < [|hllooN"e ™.

to<s/<s<t

3.2 Short time relaxation

Lemma 3.4. Under the Assumption 1.3, for any n, < t < r, we fiz time tyg and the range parameter £,
such that n, < tog <t <tog+ /N < r. The Dyson Brownian motion W (as in (1.2)) for 0 < s < t induces
a measure on the space of eigenvalues and eigenvectors (X(s),u(s)) for 0 < s < t. The following event A of
trajectories holds with overwhelming probability:

1. The eigenvalue rigidity estimate holds: sup,, < [ms(2) — Mg s(2)] < ¢(Nn)~" uniformly for z € Dy;

and sup;, << |Ai(s) — 7i(s)] < YN~ uniformly for indices i such that ~;(s) € I} (Eo).
2. When we condition on the trajectory A € A, with overwhelming probability, the following holds

sup S 1 w
zZ)q < —
|<q’ G( ’ ) > me7S(Z)| = Nb + WI’

tgésgt

(3.45)

uniformly for z € D.

3. Finite speed of propagation holds: uniformly, for any function i on the space of n particle configura-
tions, and particle configuration € which is away from the support of h in the sense that d(n, &) > ¥/,
for any 1 in the support of h, it holds

sup Uy (s, 8)h(€) < ||hlleeN"e™ Y. (3.46)

to<s/<s<t
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Let the indices by, b2, by —d1 and by + do be such that among all the classical eigenvalue locations at time
to, Yoy (t0)5 Vos (t0)s Vb1 —dy (o) and Yp,t4, (to) are closest to Eg— (1 —7x/4)r, Eg+(1—Tk/4)r, Eg— (1—3k/2)r
and Fy + (1 — 3k/2)r respectively. We further define d = min{d;,ds}. We collects some facts here, which
will be used throughout the rest of this section:

1. mg(z) is the Stieltjes transform of empirical eigenvalue distribution N1 Zi\;l dni(s), and (q,G(s,2)q)

can be viewed as the Stieltjes transform of the weighted spectral measure: Zi\;(uz(s), q>25)\i(5). The
imaginary part of Stieltjes transform contains full information of the spectrum. (2.2) and Lemma 3.4
implies the following statements in terms of averaged density of eigenvalues and eigenvectors of Hj:
there exists some universal constant C' such that for any ¢ty < s < t, and interval I centered in I7,(Ep),
with |I| > ¢*/N, we have

CTYIIN < #{i:yi(s) € I}, #{i: \i(s) € I} < C|I|N. (3.47)
especially, C~'rN < d < CrN; and with overwhelming probability

CTHNIIS Y (g.uils)® < Ol (3.48)
X (s)eT

2. Since ¢/N < r, for any index i € [by — d — 3¢, ba + d + 31{], we have v;(tg) € Ign/él(Eo). Therefore,
for any to < s < ¢, [Ai(s) — 7i(to)| < [Ai(s) —7i(s)| + [ri(s) —i(to)| < /N + Clog N(s —to) <,
and \;(s) € IT(Ey), where we used (2.4). Moreover, the eigenvector u;(s) is localized in the direction
q with high probability,

N{q,ui(s))* < v* Iml{g, G(s, (Ni(s) + 1" /N))g)] S ¥ (3.49)

We define the following flattening and averaging operators on the space of functions of configurations
with n points:

(Flat, () = { TP I el Av() =5 Y Pl (350)

1, otherwise,
a€[1,d]

We can write
Av(f)(n) = anf(n) + (1 —ay) (3.51)
for some coefficient a,, € [0,1] (an =0if n ¢ [b1 —d,bo +d], an =1if n C [b1,b2]). We will only use the
elementary property
lan — ag| < d(n,§)/d, (3.52)
where the distance is defined in (3.4).
For a general number of particles n, consider now the following modification of the eigenvector moment
flow (3.6). We only keep the short-range dynamics (depending on the short range parameter £) and modify

the initial condition to be flat when there is a particle outside the interval we are interested, i.e. [Eg—r, Eg+
r):

Orgr = Y(t)gt,

910 (m) = (Avfi) (), (3.53)
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for n = 1, we write these functions as f;(k) and g;(k) when 7 is the configuration with 1 particle at k. We
remind the reader that f;(n) can be define either by (3.5) or by the solution of the equation (3.6).

Before we prove our main results, we still need the following lemma on the L., control on the difference
of the full operator Ug and the short-range operator U g:

Lemma 3.5. For any eigenvalue trajectory X € A as defined in Lemma (3.4), we define the eigenvector
moment flow as in Theorem 3.1. we have the following L., control on the difference of the full operator Ug
and the short-range operator U g :

(U (to, ) fr, — Usr(to,t) fro) ()] S " N(t —t0) /0 (3.54)
where & is any n-particle configuration supported on [by — d — 20, by + d + 2¢{].

Proof. By Duhamel’s principle

[(Usr(to,t) fro — Usm(to, t) f1,) (§)] =

/ ’Uy<s,t>$<s>uga<to,s>ftods<£>\

0

[usts t)-f(s)fsds(@‘

to

For any m corresponds to the configuration {(i1,j1), - - - ; (¢m, jm) }, With support in [b; — d + 3¢, bs + d + 314],
ie., i1,49,  ,im € [b1 —d+ 39, bo +d+ 3f] . Then by (3.49), with overwhelming probability, we have
(N{g,u;,(s))?)”" < ¥» uniformly for any 1 < p < m, which leads to the following priori bound on the
eigenvector moment flow:

fsm) S [’ SO R). (3.55)

We remark that k € [1, N] can be any index. Since (3.49) is local, only holds for eigenvectors corresponding
to eigenvalues in the interval I"(Ep), in general we do not have control on N{q,ux(s))?. However, it still
follows from (3.55),

JAUES XIS S e AR

L&) s Y NOy — )2

li—k|=¢

p=1 k:|ip,—k|>¢

Notice that i, € [by — d + 3, by +d + 3¢L], and thus X; (s) € I (Ep). A similar dyadic decomposition as
in (2.5), combining with (3.47) and (3.48), we have

[logy N/£]

fs(k) fs(k)
2 N(Xi, — k)% 2 2 N(Ai, — Ax)?

kilip—k|>¢ g=1 k2910 k—ip| <290
[logy N/ £
2 N/ N N
S Y mp 2 LW
22442 ~ oy
q=1 k29— 10| k—i,|<29¢

Similarly, we also have

Z N(\; 1—)\ )2 S%’
kilip—K| 20 » k
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and it follows

2l S N

Notice that d(supp(.Z(s)fs — Flatgsye(L(s)fs)), €} = 1f. Therefore by the finite speed of propagation
(3.46) in Lemma 3.4 of U, we have

(U (5,6)2L(5) f5)(€) = Use (s, t)Flatgyape(L(5) f5)(€) + Oe™ /) <, 4" N/L.

where in the last inequality, we used that U is a contraction in L. (3.54) follows, since we gain a factor
t — to from integration of time. O

(3.56)

By Lemma 3.4, the event A holds with overwhelming probability. Theorem 1.5 easily follows from the
following Theorem.

Theorem 3.6. Fiz any n, <t < r. For any eigenvalue trajectory (X(s))ogs<t € A defined in Lemma 5.4,
let f be a solution of the i particle eigenvector moment flow (5.6) with initial matriz Hy and eigenvalue
trajectories (X(s))ogs<e- Then for N large enough we have

1

< —

S |fe(m) — 1] Sa o
nCIby+9L,bg—l]

(3.57)

where the constant 0 > 0 depending on a,b,r,t.

Proof. The proof is an induction on the number 7 of particles. For any 1 such that A (n) =nand n C
[b1 + ¥, ba — L], we have
[fe(m) — g:(m)| < [(Ug(to, t) fro — Uz (to,t) fro) (M) + [Us(to, ) (fro — AV fro)(m)]
<p YN (t —to) /0 4 e~ V/2, (3.58)

where we bounded the first term by Lemma 3.5, and the second term by finite speed of propagation (3.46),
since f, — Avf;, vanishes for any € such that & C [by, ba].

In the following we prove that sup,, [{g:(n)} — 1| < N~! by a maximum principle argument. For a given
to < s < t, let 7, corresponding to the particle configuration {(ji, k1), ..., (jm,km)}, be such that

gs(m) = sup  {gs(n)}.
n:N(n)=n

If gs(f) — 1 < N1, there is nothing to prove. Otherwise, by finite speed propagation (3.46) in Lemma 3.4,
the support of 7 belongs to the interval [by — d — ¢, by + d + 1{]. By the defining relation (3.53),

0 (95(M) = 1) = Z()gs(M) = > w2 (14 2iw) (95 (%) — 95())
0<|j—k|<L

S~jpk_s~ 1 S~jpk_s~
<y @) -em 3 M

R Ny, =) TN 1<p<m, Jp — A)? 40
k:0<|jp—k|<L k:0<[jp—k| <t
1 _ 1 1 gs(n7*") 1
=——1(gs(n)—1) E Im ———+ — E Im —Im (3.59)
Nn 1<pam, ij — )\k N’I] 1<pam, ij — )\k ij — /\k
k:0<|jp—k|<e k:0<|jp—k|<e
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where we define z;, = X\;, +1, and ¢*/N <1 < ¢/N, will be chosen later. For the first term in (3.59)

1 m m T’
I D T AP VNPV T EES

1<p<m, Jp =1 k- Ll 1 <
k:0<|jp—k|<e P=1 k:0<|jp—k|<L p=1k:|\x n

where we used (3.47). For the second term in (3.59), we claim that for any fixed j, such that j, €
[b1 —d — L, by + d+1l],

1 s Ripk 1
— Z m ? (") —Im
- 24, — )\k 24, — /\k
k:0<|jp—k|<L v 4 (3.60)

=aq Im[mfc,s(sz)] (fs(M\jp) —1) + On (¢4n (]Vb +—=4+—+—+

We can bound the lefthand side of (3.60) by (3.61) 4 (3.62) 4 (3.63) where

1 (Uy(t(% S)Avfto)(ﬁjpk) — (AVUy(tm S)fto)(ﬁjpk)
Im Z N E— 7 (3.61)
k:0< | k—jp | <L P
1 (AVU(to, )2 (%) — (AvUss (b, 8) ) (77")
Im Z ~ B, : (3.62)
k:0<|jp—k|<e P
1 (AVU@(tm S)fto)(ﬁjpk) 1
I — _ ) .
m N S S (3.63)

k:0<|j,—k| <L
The term (3.61) will be controlled by finite speed of propagation; (3.62) will be controlled by Lemma 3.5,
and (3.63) by the isotropic local semicircle law for A'(n) = 1, and by induction for N (n) > 2
To bound (3.61), we write

(U (to, $)AV fo ) (77") = (AvUs(to, 5) feo ) (777F)

1 —
~d Z (Us(to, s)Flaty fr, — Flat, U (to, s) fr,) (777"). (3.64)
a€l1,d]

For any a € [1,d], there are three cases: 79?* ¢ [by — a — ¥l by + a + L], B7»F C [by — a + b, by + a — Pl
or neither of them.

For i»k ¢ [by — a — €, by + a + L], by our defintion, Flat, U (to, s)fi, (7°?¥) = 1. Notice that the
support of Flat,f;, — 1 is on [by — a,bs + a]. By finite speed of propagation (3.46) in Lemma 3.4, the
total mass of U (to, s)(Flat, fi, — 1) outside C [by — a — ¢, by + a + 1{] is exponentially small. Especially,
|U.»(to, s)Flat, fr, (777%) — 1] < exp(—c1p/2). For %% C [by — a + ¥, by + a — f], we have

‘(Uy(to, S)Flatafto - FlataUﬁ”(tO’ )fto) ( ek ‘ = ’ ( 7S)Flatafto — Ug(to, )fto) (ﬁ )‘

=| (U (to, s) (fo, — Flatafs,)) (777")| < exp(—cip/2),

we used the finite speed of propagation (3.46) in Lemma 3.4 in the last inequality, since f;, —Flat, f;, vanishes
for any & with € € [by — a, by + a]. For the last case, we have 7/»% C [b; — a — ¢, by + a + 1], and some
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particle of 777 is in [by — a — ¥, by —a + Y] U by + a — L, by + a + f]. There are at most 2nyf such a,

where n = N (7}) is the total number of particles. Moreover, since U is a contraction in L>, we have

|(U<7 (th S)Flatafto — FlataUy (to’ S)fto) (ﬁjpk)|

< |(Us(to, s)Flaty fi,| + [FlataUs (to, s)Flatatape fi) (777F)] + [FlataUs (to, 8) (fi, — Flatagopefi,) (7777)|

<HFlatu,fto”oo + ||Flata+wgft0 Hoo + 6_611’/2.

Since by (3.49), uniformly for any i € [by — a — 240, by + a + 21f], the eigenvector u; (o) is delocalized in the
direction g, i.e. N{q,u;(to))? < 1* with overwhelming probability. Thus ||Flat, fi, |l [|Flatat2pe fiolloo S

,lp4n’ and
|(U=7 (tOv S)Flatafto — Flat, Uy (tO’ s)fto) (ﬁjpk)| 5 1/}471'

Combining the above three cases together, it follows that (3.64) and therefore (3.61) <,, ¥*"*1¢/d.

To bound the term (3.62), Since 7 is supported on the interval [by — d — 1€, by + d + f], 797* is sup-
ported on [by —d — 2¢¢, by + d + 2¢/] for any k such that |k — j,| < ¢. Therefore, by Lemma 3.5 we have

|(AvUs(to, 8) fe, ) (77") = (AvUsg(to, ) f1o) (717")| < [(Usr (t0, 5) fr — Usm(to, 5) fo) (777°)]

S W1 N(s — to) /L.
As a consequence, (3.62)<,, Y4 N(s — o) /¢

Finally for (3.63), similarly 772 is supported on [by — d — 2¢¢, by + d + 2¢/], then by (3.49) uniformly for
any j in the support of f/»*, N{q,u;(s))? < ¢* with overwhelming probability. Therefore, f,(77%) < ¢4n,

for any 1 < p < m. The first part of (3.63) is

1 (Avf) (%) 1 agiph [s(MPF) + (1 = azpr)
— Im Z ASEACLVA S —— Z ij 7
ko<lj—kl<e I T Ak N k:0<|j,—k| <0 Zip = M
L Z aq fs(7F) + (1 = ag) + (agix — i) fs(17F) + (a3 — agipr)
ij — >\k

k:0<|jp—k| <L

_ 1 aq fs(MP*) + (1 = ap) (ptn
—y > %, — A O\ )

k:0<|jp—k| <0
where we used that |azi,r — ag| < d(n, k) /d < £/d.

From the proof of Lemma 3.5, and by our choice n < £/N, we have

1 S (7R inN 1 N
N 2 (A‘ni&n)Qlwng = N (A —An)2+n2<7n
kil —k|>e I T kilgp—k|>e I Tk
(3.63) can be reduced to upper bound the following expression,
1 > nfs(mr*) U
N Ay = A2 0% (A, — A)? +0?

k:0<|jp—k|<£

1 nfs(777k) nyt™ ANy
=— g — L —Tmmgs(2;,) + O + .
L 2 2 ’ Jp
hetiem gy P — AR N ¢
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Moreover, by definition (3.5) the first sum in the above expression is

N . 2Vkq—0pq 2
E H ( <qa2u;; (5)>5) )\77<q71)\l'k:<§)> : ‘ (Ho,A) . (366)
1<osmazp 2= 0a)) gy O~ AR
Thanks to (3.45), we have
(g, ur)? - qxug )?
—= " =Tm[(q,G(s, z; Z -
)2 2 ’ ) “ip
kg gy Pop AT = 2+n?
1 P ¢4
:Im[mfc,s(sz)] + On (]Vb + \/7 + Ni'r’
with overwhelming probability. As a result, (3.66) is bounded by
w4n w4n

Combining (3.67) and (3.65), we have the following estimate for (3.63),

(3.69) = ag Tl (5,)] (70 = 1)+ O (07 (5 + 5+ =) )
(3.60) follows from combining the error estimate of (3.61), (3.62) and (3.63).
With the estimate (3.60), we can start proving (3.57) by induction. We choose the parameters
p = GSINRTL g 2RI N gy g SR N2 (3.68)

We can take ¢ (as in the control parameter ¢ (1.6)) and 9 small enough such that 0 4 47¢ < b, 40 + (167 +

2)C—1 <10gNT and 20+(8n+1)c—1 <10g7\7(1/ ), lhen
X ’ X 9 X X ’ 7‘7— )
n 0 0 N N n N 0

and for any 0 < n < n, it holds

1 1 Nn 4 PN (t —to) 1
4n - T - -’ < _ R < —.
v (N"+d ,/NnJr Z)\ND’ [ N?
Thus (3.60) can be simplified as: for any 1 < n < 7, and 9 < s < ¢, we have
NG 1 1
Z Img(n_A) 7Imz» — <n sup |f5(17)71|+m.
k:0<|jp_k|§é Tr k e k nCyf[:l;,\lfiZEZg;jW]]
If we plug in this back to (3.59), we have either g,(17) —1 < N~}
00 (02() = 1) S0 — - (970 1)+ ) = 11+ (3.69)
s \Ys - ~n — — \Ys - —|n su s . .
9o n g:11 n n=N(n)£n71, N?°

nC by +¢,by —we]
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We can prove the following by induction on n: let t;, = tg + kyn/n for k =0,1,2,--- ;7. Then for any
time ¢, < s <t we have

1
su s -1 <, —. 3.70
s IR =1 S (3.70)
nCby+ve,bay—4L]
.70) holds trivially for n = 0. Assume (3.69) holds for n — 1, we prove it for n. By induction , for any
3.70) holds trivially f 0. A 3.69) holds f 1 it f By inducti f
th—1 < s <t we have

- 1 ~ 1
Os (95(77) - 1) Sn *5 (95(17) - 1) + Nan'

Therefore for any t, < s < t, Gronwall’s inequality leads to

1 1
sup gs(n) 15 Sup - g¢,, _ (77) —1)e" Snowog
n:N(n)=n NO (n:]\f(n)_n ! N?

for N large enough. Combing with (3.58), we obtain,

su A -1, —.
sup fsm) =150 53

ne[by +v¢£,by— 1/’5]]
Similarly by a minimum principle argument, one can show that

1

i f s - 1 >n T ATy
gt fs(m) =120~

nelby+€,bg—l]

and (3.70) follows for any 0 < n < 7. O

Proof of Corollary 1.6. By taking q supported on i and j-th coordinates in Theorem 1.5, we know that for
any k such that A (t) € I5,(Eo), ui;(t) and ui;(t) are jointly asymptotically normal. A second moment
calculation yields

2

N & ’
<|a| Z"“ii“)> - " <Zal (1) )>

<max [E [(Nug,(t) — 1) (Nuij( D]+ —— maXIE {(Nuii(t) - 1)2] .

i ||a||

By Theorem 1.5, the first term of the right hand side is bounded by CN~?, and the second term is bounded
by C/||all1, where C is an universal constant. The Markov inequality then allows us to conclude the proof
of (1.12). O

4 Proof of Theorem 1.1

For the proof of Theorem 1.1, we follow the three-step strategy as in [2, 23], where it was proved for sparse
Erdés-Rényi graphs in the regime N® < p < N/2 in [23], and p-regular graphs in the regime N? < p < N2/3-9
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in [2], that in the bulk of the spectrum the local eigenvalue correlation functions and the distribution of the
gaps between consecutive eigenvalues coincide with those of the Gaussian orthogonal ensemble. We prove
Theorem 1.1 for Erdés-Rényi graphs, the proof for p-regular graphs is similar, and we only remark the
differences.

Before the proof of Theorem 1.1, we recall some definitions and notations from [23].

Definition 4.1. Let A be an N x N deterministic real symmetric matriz. We denote the eigenvalues of A
as A1 < A < -+ < Ay and corresponding eigenvectors ui,us, - ,un. For any small parameter ¢ > 0 and
unit vector ¢ € RN, we call the matriz A (c,q)-general, if there exists an universal constant C' such that

1. The eigenvectors of A are delocalized in all base directions and direction q: for all i,j € [N],
(ej,ui)?, (g us)® < CNHFe.

2. The eigenvalues of A do not accumulate: there is an universal constant C, such that for any interval

I with length |I| > N=17¢ we have #{i : \; € I} < C|I|N.

We recall the quantity @; on the space of symmetric N x N real matrices. For any N x N matrix A, if
A; is a single eigenvalue of A, Q;(A) is given by

I

1
i(A) = — . 4.1
G =53 2 e (4.1)
Jij#i
This quantity plays an important role in [36,37], where it was observed that Q;(A) captures quantitatively

the derivatives of the eigenvalues A; of A.

Proposition 4.2. Let A be an N x N deterministic real symmetric matriz. If A is (¢, q)-general in the
sense of Definition 4.1 and

1 1
U= 53 2 e <MY .

then there exists some universal constant C such that

0E A (A)] < CNTIHE-DT+HEE-D g 93 (43)
08 Qi(A)] < ONUHDTHEER 1 9 3 (4.4)
|6§§)<q,uz(z4)>2| < CN71+kT+(2k+1)c, k=1,2,3, (45)

where Oy is the derivative with respective to (a,b)-th entry of A.

Proof. The first two estimates (4.3) and (4.4) are proved in [23, Proposition 4.6]. The proof of (4.5) is
analogous. We denote G = (A — 2)~! the resolvent of A, and V the matrix whose matrix elements are zero
everywhere except at the (a,b) and (b,a) position, where it equals one. For the derivative of eigenvectors
(4.5), we use the following contour integral formula:

o™ (g, u;)? = o® }z{ (0, G(2)q)dz = (—1)F! 74 (a0, (G(=)V)*Gq)dz,
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where the contour encloses only \;. (4.5) follows from analogue estimate as in the proof of [23, Proposition
4.6]. For example

20 _ <qa u1> <qa u]> (’U,,):VUJ) —l47+3
]8Gb<q,ui> ‘ =12 Z N — O\ N2 2c Z Z ‘)\ — )\ ‘ SCON K
i g g

thanks to the delocalization of eigenvectors of A in directions e,, e, and q. O

Recall that H is the normalized adjacency matrix of Erd6s-Rényi graphs as given in section 1. We define
the following matrix stochastic differential equation which is an Ornstein-Uhlenbeck version of the Dyson
Brownian motion. The dynamics of the matrix entries are given by the stochastic differential equations

dw;;(t) 1 p/N
d(hij(t) — f) = —2== — = (hy(t) — f)dt, = ——
() = 1) = SED = 5 ) = pat §= T
where W; = (w;;(t))1<igj<n 1S symmetric with (w;;(¢))1<icj<n @ family of independent Brownian motions
of variance (1+46;;)t. We denote H; = (h;;(t))1<i,j<n, and so Hy = H is our original matrix. More explicitly,
for the entries of H;, we have

(4.6)

his(t) = £+ e (hiy(0) — / 5 duyy (s (4.7)

Clearly, for any ¢ > 0 and i < j, we have E[h;;(t)] = f, and E[(h;;(t) — £)%] = 1/N. More importantly,
the law of h;;(t) is Gaussian divisible, i.e. it contains a copy of Gaussian random variable with variance
O(tN~1). Therefore H; can be written as

H 2 H+V1—e G, Hy=f+e'/*(H-J) (4.8)

where G is a standard Gaussian orthogonal ensemble, i.e., G = (gi5)1<i<j<n 1S symmetric with (gi5)1<i<i<n

X

a family of independent Brownian motions of variance (1 + d;;)/N, and is independent of H;.

Proposition 4.3. For N° < p < N/2, we fizr 0 < b < /3. Then for 0 < s < 1, any unit vector ¢ € RN
such that q¢ L e (where e = (1,1,--- ,1)*/v/N) and N large enough, the followings hold.

1. For any ¢ > 0, with overwhelming probability Hy is (¢, q)-general in the sense of definition /.1.

2. Assumptions 1.5 and 1.4 hold for H, (as in (4.8)), with overwhelming probability. More precisely,
|Hs|| < N, and uniformly for any z € {E +m: |E| <5, N3~ <n <1}

|Tr(ﬁs - Z)_I/N — mse(2)] < N°, (g, (gs - Z)_1Q> — mse(2)] < N_bv (4.9)

with overwhelming probability.

Proof. For any 0 < s < 1, H,, H, belong to the family of sparse random matrices in [12] with sparsity /p.
Under our normalization, with overwhelming probability ||H|| < C\/p < N. We denote G(z) = (Hs — 2)~*
(or (H, — 2)~1) and m(z) = Tr G(z)/N. Thanks to [12, Theorem 2.8], with overwhelming probability,

1 1
C'loglog N
m(z) = mac(2)] € (G () — Gmuc2)] < (o N)CoxY (Ll (o)
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uniformly for any z € {E + 1w : |E| < 5,0 < n < 1}, where my. is the Stieltjes transform of the semi-circle
distribution. More, noticing that Hy, H, are exchangeable random matrices, it follows from the entry-wise
local law (4.10) and [3, Theorem 8.2],

1 1
C'loglog N
(0 Ge)a) — mcl2)] < (o M2 (g i) (a.11)
with overwhelming probability. It follows that Hy is (¢, q)-general, and (4.9) holds for H,, with overwhelming
probability, and thus Assumption 1.4 holds for H,. For Assumption (1.3), fix any k > 0, since on z € {E+17 :
E € [-2+k,2—k],0 <n < 1}, there exists a constant C such that 2C~! < Im[mg.(2)] < C/2. Therefore it
follows from (4.9) that C~1 < Im[m(2)] < Conz € {E+wm: E€[-2+k,2— k], N3*~1 << 1}.

O

Remark 4.4. We believe the technical assumption q L e is not necessary, the isotropic local law (4.11) holds
for any unit vector ¢ € R™. However, the proof in [3, Theorem 8.2] works only for unit vectors perpendicular
to e.

Thanks to Proposition 4.3, with overwhelming probability, H satisfies Assumptions 1.3 and 1.4. In
(4.8), if we condition on those good initial data H, the eigenvectors of H; are asymptotically normal with
overwhelming probability with respect to the randomness of G' (as in (4.8)). If we then take expectation
with respect to H, the following proposition follows.

Proposition 4.5. Fiz x> 0, 0 < b < §/3, positive integer n > 0 and polynomial P of n variables. Then
for any N**~1 < t <« 1, unit vector ¢ € RY perpendicular to e (where e = (1,1,---,1)*/v/N), indezes
i1,42,  ,in € [N, (1 — k)N] and N large enough, there exists a constant 0 depending on b,t,

[E [P (V@ w00, )] B[P (14))]| < N2, (4.12)

where u;(t) are eigenvectors of Hy corresponding to i-th eigenvalue, and A; are independent standard normal
random variables.

Proof of Theorem 1.1. For simplicity of notation, we only state the proof for n = 1 case, i.e. we fix time
t = N4~ and prove that for any i € [kN, (1 — x)N]
[E[P(N{g,ui(0))*)] — E[P(N (g, u;(1))*)]| < ON°. (4.13)
Take a cutoff function pys such that pas(z) = 1 for # < M and pps(z) = 0 for > 2M, where M = N?7
and 7 > 0 is a small constant. By the level repulsion of H and H; from [23, Theorem 4.1], we know that
P(Qi(Hy) > N*") < N7/ s=0,t.

Let m be the degree of P, we have that P(x) < Cxz™. By (4.3), H; is (c, q)-general, especially, with
overwhelming probability N{(q,u;(s))? < CN°¢, for s = 0,t. Therefore E[P?(N{(q,u;(s))?)] < CN?™, and
we have

[E[P(N{q,ui(0))*)] — E[P(N (g, u(t)))]]

< |E[P(N (g, ui(0))*)par (Qi(Ho))] — E[P(N (g, wi(t))*) par (Qi (Hy))]|

+E[P?(N (g, ui(0))*)]/*P(Qi(Ho) > N°7) + E[P*(N (g, w;(t))*)]' *P(Qi(Hy) > N*7)
<|E[O(N{g, ui(0))*)par (Qi(Ho))] — E[P(N (g, us(1))*) par (Qi(Hy))]| + ON~T/2m,
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Notice that P(N (g, u;(A))?)par(Qi(A)) is a well defined smooth function on the space of symmetric functions.
Moreover, if the matrix A is (c, g)-general in the sense of Definition 4.1, the eigenvectors of A are delocalized,
and Q;(A) < M = N?7, then from Proposition 4.2, we have

O P(N (g, ui(A))2)par (Qi(A))| < CN 95457,
where C' is a universal constant. Therefore by [23, Lemma 4.3], we have
[E[P(N (g, u;(0))%)] — E[P(N (g, u;(£))?)]] < CEN'+(m+9)45m-1/2 < aN =2,

provided we take t = N**~! and b, ¢, 7 small enough such that 4b + (m + 8)c + 57 — /2 < 0 and b < §/3.
Combining with Proposition 4.5, it follows

[E[P(N (g, u:(0))*)] = E[P(A?)]| <CNT?,

where ./ is a standard normal random variable.

The proof for the case of p-regular graphs is analogous. Let H be the normalized adjacency matrix
of p-regular graphs as in Section 1. The isotropic local law of H was proved in [3]. Since the adjacency
matrix A of a p-regular graph is subject to the hard constraints that its rows and columns have sum p
(i.e. it has the eigenvector e = (1,1,---,1)*/v/N). Therefore, instead of using the usual Dyson Brownian
motion (4.8) as in the Erdés-Rényi graph case, we use the constrained Dyson Brownian motion (as introduced
in [3, Definition 2.2]), which is the Dyson Brownian motion constrained to the subspace of symmetric matrices
whose row and column sums vanish. Let H; be the constrained Dyson Brownian motion after time ¢ with
initial data Hy = H. We denote its eigenvalues A1 (t) < Aa(t) < -+ < Ay-—1(t) < An(t) = p/v/p — 1, with
corresponding eigenvectors wuq (t), ua(t), - - (t), un—_1(t), un(t) = e. Up to a change of basis, the constrained
Dyson Brownian motion is equivalent to the usual (N — 1)-dimensional Dyson Brownian motion normalized
by N rather than by N — 1. More concretely, let P be an isomorphism from et to RV~!, e.g., we can take

1 1
Pi=6;— — [ — —§; , 1€[1,N—-1],5 € [1,N].
J J \/N—l(\/ﬁ JN> ? [[ ]]] [[ ]]

Once we identify e* with RV ~! using P, the constrained Dyson Brownian motion is the same as the usual
N — 1-dimensional Dyson Brownian motion:

PH,P* L e '2PH,P* + V1 — e G,

where G = (¢i5)1<i<j<n—1 is symmetric with (g;;)1<icj<n—1 a family of independent Brownian motions
of variance (1 + 0;;)/N. Since u;(t) L e, Pu;(t) for ¢ € [N — 1] are eigenvectors of PH;P*. Thus Pu,(t)
for i € [N — 1] have the same distribution as the eigenvectors of e */2PHyP* + /1 — e~*G. Thanks to
Theorem 1.5, for ¢t > 1/N, the bulk eigenvectors of e "*/2PHyP* 4+ /1 — e~tG are asymptotically normal in
the direction Pq, which is a unit vector in RN¥~! since ¢ L e. Noticing that (Pq, Pu;(t)) = (g, u;(t)), we
conclude that the bulk eigenvectors of H; are asymptotically normal in the direction q. The same argument
as in the proof of Erdés-Rényi case, combining with the continuity Proposition [2, Proposition 3.1], implies
that the law of {(g,u;(0))}i=i, iy, i, IS asymptotically the same as that of {(g,w;(t))}i=iy ip, - i, And
thus, the claim of Theorem 1.1 follows. L]
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