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Motivation: Studying catalysis

90% of all manufactured goods involve catalytic processes somewhere in
their production chain

Considerable impact in energy, healthcare (pharmaceuticals), new material
(polymers), transport, and the environment (water, air-quality, renewable
and bio-produced materials)

To understand catalysis we need to see what is going on
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Traditional denoising

Linear regression from pixels to pixels is intractable (104 × 104 matrix!)

No need: Covariance between pixels is translation invariant
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Tractable alternative (Wiener 1950):

Optimize convolutional filter to minimize mean-squared error
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Convolutional filter

Image from A guide to convolution arithmetic for deep learning, Dumoulin
& Visin, 2016.
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Wiener filter (additive Gaussian noise. Low σ)

Example noisy image Wiener filter
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Wiener filter (additive Gaussian noise. Mid σ)

Example noisy image Wiener filter
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Wiener filter (additive Gaussian noise. High σ)

Example noisy image Wiener filter
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Beyond the Wiener filter

Wiener filter: Weighted average of nearby pixels

Problem: Same average for each pixel

Blurs edges and other features

Pre-deep-learning solutions:

Adapt filter locally (e.g. bilateral filter [Tomasi and Manduchi 1998,
Milanfar 2013])

Design/learn sparsifying transforms (wavelets, dictionary learning)
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Results on electron microscopy



Deep-learning solution

Learn overparametrized nonlinear convolutional model



Deep learning for image denoising

Denoising Convolutional Neural Network (DnCNN)1

Layer 1
64 filters

Noisy
image

Denoised
output

ReLU Layer 2
64 filters

ReLU Layer n
64 filters

1Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. K.
Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang. IEEE Transactions in Image Processing (2017)
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I Gather dataset of natural images

I Add synthetic Gaussian noise to generate noisy images

I Train CNN to estimate clean image minimizing mean squared error
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Works very well (state of the art)

Training data Test image CNN
(high noise) (high noise)



Application to electron microscopy

Simulated data
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Denoised data

Inference

Noisy data

Pt

CeO2

Simulating Simulated images
2D projection from the 
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Challenges in practice

I We need robustness to changes in imaging conditions

I We need interpretability to understand how model works and adapt it

I We do not have ground-truth clean data to train the networks
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Robustness

Interpretability

Unsupervised Denoising

Back to robustness



Generalization across noise levels

What if we test on noise level not seen during training?

Training data Test image
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First-order Taylor expansion

Let f be the function learned by a CNN trained for denoising

First-order Taylor expansion for fixed input y

x̂ = f (y) = WLR(. . .W2R(W1y + b1) + b2 . . .) + bL

= Ayy + by

W1, W2, …, WL are weight matrices
b1, b2, …, bL are bias vectors
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Residual and net bias
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The bias overfits

Within training range, learned net bias is small

Out of the range, it explodes, coinciding with dramatic performance loss

Net bias seems to overfit trained noise levels

This motivates removing all additive constants

f (y) = WLR(. . .W2R(W1y+) + . . .)+
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It works
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DnCNN vs bias-free DnCNN
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DnCNN vs bias-free DnCNN
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Take away

Net bias overfits to noise level in training data

Bias-free networks generalize to new noise levels



Bias-free CNNs beyond denoising

I Deblurring, super-resolution and demosaicing using plug-and-play
method. [Zhang et. al. IEEE PAMI 2021]

I Reflection removal. [Zheng et. al. CVPR 2021.]

I Tone mapping. [Le et. al. ICVRV 2021]

I Generative modelling. [Kadkhodaie et. al. NeurIPS 2021]

I Photometric stereo. [Honzatko et. al. 2021]



Robustness

Interpretability

Unsupervised Denoising

Back to robustness



Bias-free CNN is locally linear

f (y) = WL R WL−1...R W1y = Ayy



Rows interpreted as filters

Estimate at pixel i :

fBF(y)i = (Ayy)i =< ith row of Ay , y >



Low noise
Noisy image Denoised

Pixel 1

Pixel 2

Pixel 3

Pixel 1 Pixel 2 Pixel 3



Medium noise
Noisy image Denoised

Pixel 1 Pixel 2 Pixel 3



High noise
Noisy image Denoised

Pixel 1 Pixel 2 Pixel 3



Take away

CNNs implicitly learns filters adapted to image structure and noise!



Application to electron microscopy
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Application to electron microscopy

Simulated clean
image Noisy image Denoised using

DnCNN



Equivalent filters of DnCNN: small receptive field

Cannot exploit periodicity



Increasing field of view

Electron Microscopy

Model Parameters FoV PSNR

SBD + DnCNN 668K 41 × 41 30.47 ± 0.64
SBD + Small UNet 233K 45 × 45 30.87 ± 0.56
SBD + UNet (32 base channels) 352K 221 × 221 36.39 ± 0.77
SBD + UNet (64 base channels) 1.41M 221 × 221 37.24 ± 0.76
SBD + UNet (128 base channels) 5.61M 221 × 221 38.05 ± 0.81
SBD + UNet (128 base channels) 70.15M 893 × 893 42.87 ± 1.45



Increasing field of view

Natural Images

Model Params FoV PSNR

σ = 30 σ = 70

UNet 102K 49 × 49 29.67 ± 2.84 26.16 ± 2.79
UNet 352K 221 × 221 29.65 ± 2.76 26.08 ± 2.68
UNet 4.4M 893 × 893 29.54 ± 2.82 26.07 ± 2.80



Results

Simulated
clean image Noisy image DnCNN Large

receptive field



Equivalent filters

Noisy Denoised Denoised
(zoomed) Equivalent filters
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Robustness

Interpretability

Unsupervised Denoising

Back to robustness



Challenge

What if we can’t simulate ground truth (because we don’t know it!)



Recap: clean data is available

Convolutional
Neural

Network

minimize 
loss

noisy
data

denoised
prediction

clean
data



Only noisy data is available: thought experiment

Convolutional
Neural

Network

minimize 
loss

noisy
data

denoised
prediction

noisy
data



Blind-spot denoising

Convolutional
Neural

Network

minimize 
loss

noisy
data

denoised
prediction

noisy
data



Unsupervised Denoising

I Noise2noise: Learning image restoration without clean data.
Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T.,
Aittala, M., Aila, T. ICML 2018

I Noise2void-learning denoising from single noisy images A. Krull, T.
Buchholz, F. Jug. CVPR 2019

I Noise2self: Blind denoising by self-supervision. J. Batson, L. Royer.
ICML 2019

I High-quality self-supervised deep image denoising S. Laine, T. Karras,
J. Lehtinen, T. Aila. Neurips 2019



Application to electron microscopy

We have videos, not single images



Unsupervised Deep Video Denoising

Architecture based on [Laine et. al. 2019], [Tassano et. al. 2019], and [Tassano et. al. 2020].



Performance comparable to supervised state of the art

Traditional Supervised CNN Unsupervised CNN (UDVD)

test set σ VNLB VBM4D VNLnet DVDnet FastDVDnet 1 frame 3 frames 5 frames

DAVIS
30 33.73 31.65 - 34.08 34.06 32.80 33.48 33.92
40 32.32 30.05 32.32 32.86 32.80 31.48 32.20 32.68
50 31.13 28.80 31.43 31.85 31.83 30.47 31.20 31.70

Set8
30 31.74 30.00 - 31.79 31.60 30.91 31.62 32.01
40 30.39 28.48 30.55 30.55 30.37 29.63 30.42 30.82
50 29.24 27.33 29.47 29.56 29.42 28.65 29.47 29.89



Problem: Requires a lot of data
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Solution: Early stopping + data augmentation

σ = 90

ten-v snow hyper raft motor trac sunf touch park mean

No. of frames 75 59 37 29 32 85 85 85 85 -

No Aug (without ES) 24.13 22.89 22.04 20.99 20.06 24.84 25.98 25.67 23.35 23.33
No Aug (with ES) 30.15 25.49 27.48 26.05 23.79 28.18 31.91 29.87 25.46 27.60
F (without ES) 27.21 24.42 24.05 23.32 21.84 27.42 29.53 28.01 25.03 25.65
F (with ES) 30.35 25.60 27.72 26.16 23.89 28.71 32.17 29.93 25.59 27.79
F+TR (without ES) 27.11 24.77 24.25 23.55 21.98 27.80 30.22 28.56 25.44 25.96
F+TR (with ES) 30.40 25.59 27.75 26.16 23.92 28.63 32.18 29.96 25.62 27.80

UDVD∗ 28.78 25.16 26.78 25.81 23.57 26.42 29.04 28.71 24.23 26.50
FastDVDnet∗ 29.44 25.25 27.30 26.35 23.68 27.42 30.29 29.61 24.72 27.12



Real-world data

CNN
ISO 1600 3200 6400 12800 25600 mean

UDVD 48.04 46.24 44.70 42.19 42.11 44.69
RViDeNet2 47.74 45.91 43.85 41.20 41.17 43.97

Raw video Fluorescence micr. Fluorescence micr. Electron microscopy

2Yue. et. al. CVPR 2020



Interpreting video denoisers

Most video denoisers compute optical flow, but UDVD does not

How does it achieve such good denoising?



Equivalent filters

dt(i)
=

2∑
k=−2

〈
yt−k

,
a(t−k,i)

〉



UDVD learns adaptive spatio-temporal filtering
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UDVD performs implicit motion compensation

(a) Noisy frame (σ = 30) (b) Motion estimate from
clean video

(c) Motion estimate from
UDVD gradients



Take away

Networks trained for denoising learn to perform motion compensation!
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Back to robustness



Standard supervised paradigm

…

CNN

Training data

Test image

Denoised image

!

Test and training data from

I same distribution

I different distributions
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Training on test data (unsupervised paradigm)
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Proposed paradigm: Train, then adapt

…

CNN

Training data

Test image

Denoised image

! ∆



It works!

Noisy image Unsupervised Supervised GainTuning Reference



Cost functions for test-time adaptation

1. Blind-spot technique

2. SURE: Stein’s Unbiased Risk Estimator [Stein, 1981]

3. Noise resampling [Vaksman et. al. 2020]



What parameters should we update

All of them [Soltanayev et. al. 2019, Vaksman et. al. 2020]?



What parameters should we update

All of them [Soltanayev et. al. 2019, Vaksman et. al. 2020]?

Problem: Severely overfits the noise

At Initialization After updating all parameters



What parameters should we update

Proposed solution: Update only a single multiplicative gain per channel in
each layer (≈ 0.1% of total)

At Initialization After updating only gains



Proof of concept

What if we test on noise level not seen during training?

Training data Test image CNN

CNN

(low noise) (high noise) (pre-trained)

(GainTuning)
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What if we test on noise level not seen during training?

Training data Test image CNN CNN
(low noise) (high noise) (pre-trained) (GainTuning)



GainTuning for out-of-distribution noise

Test set σ
Trained on σ ∈ [0, 55] Bias Free

Model
Trained on
σ ∈ [0, 100]Pre-trained Gaintuning

Set12 70 22.45 25.54 25.59 25.50
80 18.48 24.57 24.94 24.88

BSD68 70 22.15 24.89 24.87 24.88
80 18.72 24.14 24.38 24.36

Can also adapt from Gaussian denoising to Poisson noise.



GainTuning for out-of-distribution noise
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Reduces equivalent bias!
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Another proof of concept

Training data Test data

Piecewise constant images Natural images

Pre-trained GainTuning

Average PSNR on test data 27.31 28.60



Another proof of concept

Training data Test data

Natural images Urban images

Pre-trained GainTuning

Average PSNR on test data 28.35 28.79



Another proof of concept

Training data Test data

Natural images Scanned documents

Pre-trained GainTuning

Average PSNR on test data 30.02 30.73



What is going on?

Noisy image



What is going on?

Trained on piecewise constant After GainTuning



Equivalent filters

Noisy data Before GT Filter After GT Filter



Equivalent filters

Noisy data Before GT Filter After GT Filter



For more information

Robust and interpretable blind image denoising via bias-free
convolutional neural networks
Mohan & Kadkhodaie et. al. ICLR 2020

Unsupervised deep video denoising
Sheth & Mohan et. al. ICCV 2021

Adaptive denoising via GainTuning
Mohan et. al. NeurIPS 2021

Deep denoising for scientific discovery: a case study in
electron microscopy
Mohan et. al. 2021 (under review)

Developing and Evaluating Deep Neural Network-based denoising
for Nanoparticle TEM Images with Ultra-low Signal-to-Noise
Vincent et. al. Microscopy & Microanalysis 2021
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