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Image denoising

Goal: Estimate image from noisy data

Popular model: Additive Gaussian noise
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Deep learning for blind image denoising

I Gather dataset of natural images

I Add noise from a range of noise levels

I Train convolutional neural network (CNN) to estimate clean image
minimizing mean squared error

I Works very well for additive Gaussian noise (state of the art)



Generalization across noise levels

What if we test on noise level not seen during training?

Training data Test image
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First-order Taylor expansion

Let f be the function learned by a CNN trained for denoising

The first-order Taylor expansion for a fixed input y is exact

x̂ = f (y) = WLR(. . .W2R(W1y + b1) + b2 . . .) + bL

= Ayy + by

W1, W2, . . . , WL are weight matrices
b1, b2, . . . , bL are bias vectors



Residual and net bias
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Bias-free networks

Within training range, learned net bias is small

Out of the range, it explodes, coinciding with dramatic performance loss

Net bias seems to overfit trained noise levels

This motivates removing all additive constants

f (y) = WLR(. . .W2R(W1y+) + . . .)+
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It works
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DnCNN [Zhang et al 2016] vs bias-free DnCNN
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DenseNet [Huang et al 2017] vs bias-free DenseNet

282219161413111098
28

22

19

16

14
13
11
10
9
8



UNet [Ronneberger et al 2015] vs bias-free UNet

282219161413111098
28

22

19

16

14
13
11
10
9
8



Recurrent CNN [Zhang et al 2018] vs bias-free recurrent
CNN
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Linear estimation

Linear regression from pixels to pixels is intractable (104 × 104 matrix!)

No need: covariance between pixels is translation invariant

Pixel 44 Pixel 148 Pixel 252 Pixel 356

0.030

0.035

0.040

0.045

0.050

Linear estimator can be parameterized by a convolutional filter



Wiener filter [Wiener 1950]

Filter w that achieves optimal mean squared error

Random vectors: x (image), z (noise), y := x + z (data)

Fourier transform is an orthogonal transformation so

E
(
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2)
We can estimate each Fourier coefficient separately
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Wiener filter

If x and z are independent, and z is i.i.d. with variance σ2

ŵopt
k := argmin

ŵ
E
(
(x̂k − ŵk ŷk)

2)
=

E
(
|x̂k |2

)
E
(
|x̂k |2

)
+ nσ2

Depends on spectral statistics of natural images and on noise level σ2

(n is the number of pixels)



Image data: Mean square of Fourier coefficients
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Wiener filter: σ = 0.04

Frequency Space
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Wiener filter: σ = 0.1
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Wiener filter: σ = 0.2

Frequency Space
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Wiener filter

Two perspectives:

1. Image domain: Weighted average of nearby pixels

2. Frequency domain: Weighted projection onto low-pass 2D sinusoids
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Wiener filter

Image domain: Weighted average of nearby pixels

Problem: Same average for each pixel

Blurs edges and other features

Previous solution:
Adapt filter locally (e.g. bilateral filter [Tomasi and Manduchi 1998])



Bias-free CNN is locally linear

f (y) = WL R WL−1...R W1y = Ayy



Rows interpreted as filters

Estimate at pixel i :

fBF(y)(i) = (Ayy)(i) =< ith row of Ay , y >



Low noise

Noisy image Denoised

Pixel 1

Pixel 2

Pixel 3

Pixel 1 Pixel 2 Pixel 3



Medium noise

Noisy image Denoised

Pixel 1 Pixel 2 Pixel 3



High noise

Noisy image Denoised

Pixel 1 Pixel 2 Pixel 3



Conclusion

BF-CNN implicitly learns filters adapted to image structure and noise!
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Wiener filter

Frequency domain: Approximate projection onto low-pass 2D sinusoids

Problem: Same projection for each image

Blurs edges and other features



Projection onto union of subspaces

Previous methodology:

1. Learn/design overcomplete dictionary of basis functions

2. Select sparse subset for each image/patch through
thresholding/optimization

3. Project on span of sparse subset

Projection onto union of low-dimensional subspaces



Bias-free CNN is locally linear

f (y) = WL R WL−1...R W1y = Ayy



SVD analysis

Ay = U S V T

Empirical observations:

I Matrix is approximately symmetric U ≈ V

I Matrix is approximately low-rank



Singular values
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Singular vectors computed from noisy image

Clean image

Large singular
values

Small singular
values



Dimensionality of learned subspace

Approximate dimensionality = sum of squared singular values
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Conclusion

BF-CNN implicitly learns to project onto union of subspaces adapted
to image features and noise!



For more information

Robust and interpretable blind image denoising via bias-free
convolutional neural networks
S. Mohan, Z. Kadkhodaie, E. Simoncelli, C. Fernandez-Granda



Directions for future research

Properties of the learned representation in frequency estimation

Why does bias hinder generalization across noise levels?

Linear-algebraic analysis is completely empirical and very local

How are these adaptive filters / unions of subspaces learned?

How do the learned mechanisms vary as we change the input?
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Quantitative magnetic-resonance imaging

Collaboration with the Department of Radiology of the NYU School of
Medicine

Joint work with Jakob Assländer, Brett Bernstein, Quentin Duchemin,
Cem Gutelkin, Vlad Kobzar, Sylvain Lannuzel, and Sunli Tang



Magnetic-resonance imaging (MRI)

I Hydrogen nuclei absorb/emit radio-frequency energy when placed in
magnetic field

I Measured signal depends on relaxation parameters T1 and T2 of
biological tissues



Traditional contrast-based MRI

Not quantitative!

Difficult to reproduce/compare



Quantitative MRI via fingerprinting

Radio-frequency pulses are designed to produce irregular magnetization
signals (fingerprints) encoding relaxation parameters
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Multicompartment magnetic resonance fingerprinting

I Assumption in MRF: One tissue per voxel

I Problematic at tissue boundaries

I Ignores sub-voxel structure



Additive model
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Correlation structure0 1 2 3
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Multicompartment MRF via `1-norm regularization

I Fast-thresholding methods don’t work

I We use an efficient interior-point solver

I Solving sequence of reweighted problems improves the solution

Drawback: Very slow



Validation with phantom



Validation with phantom
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Current research

Goal: Fast multicompartment MRF for non-additive model

I Measurement design via ODE-constrained optimization

I Parameter estimation using a feedforward deep neural network trained
on simulated data



Current research
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For more information

Multi-Compartment MR Fingerprinting via Reweighted-l1-norm
Regularization. S. Tang, J. Asslaender, L. Tanenbaum, R. Lattanzi, M.
Cloos, F. Knoll, C. Fernandez-Granda. ISMRM 2017

Multicompartment magnetic resonance fingerprinting. S. Tang, C.
Fernandez-Granda, S. Lannuzel, B. Bernstein, R. Lattanzi, M. Cloos, F.
Knoll and J. Asslaender. Inverse Problems 34 (9) 4005. 2018

Hybrid-State Free Precession for Measuring Magnetic Resonance
Relaxation Times in the Presence of B0 Inhomogeneities. V. Kobzar,
C. Fernandez-Granda, J. Asslaender. ISMRM 2019
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Early diagnostics of Alzheimer’s disease

Joint work with Sheng Liu, Narges Razavian, and Chhavi Yadav



Early diagnostics of Alzheimer’s disease

Goal: Distinguish between three classes
1. Normal
2. Mild cognitive impairment
3. Mild Alzheimer’s

Data: Structural MRI (T1) from Alzheimer’s Disease Neuroimaging
Initiative

Preprocessing: Images are registered to a template



Demographics

Split Class Num. subjects Num. Scans Mean Age (std)

Train
CN 140 567 77.0 (5.4)
MCI 248 840 75.9 (7.3)
AD 193 527 76.7 (7.4)

Val
CN 33 126 77.2 (5.6)
MCI 39 138 73.3 (7.2)
AD 41 124 76.1 (8.3)

Test
CN 24 105 79.0 (6.1)
MCI 43 140 76.7 (6.5)
AD 45 135 76.4 (5.1)



Simple biomarker (normalized volumes)

Accuracy: around 50%



Methodology

3D convolutional neural network

Main insights, performance is improved by:

I Using small (1x1) filter sizes in first layer

I Widening the network (as opposed to deepening)

I Using instance normalization instead of batch normalization

I Encoding age using a sinusoidal embedding



Architecture
Block Layer Type Output size

Inputs 96 × 96 × 96

1

Conv3D k1-c4·f -p0-s1-d1 96 × 96 × 96
InstanceNorm3D
ReLU
MaxPool3D k3-s2 47 × 47 × 47

2

Conv3D k3-c32·f -p0-s1-d2 43 × 43 × 43
InstanceNorm3D
ReLU
MaxPool3D k3-s2 21 × 21 × 21

3

Conv3D k5-c64·f -p2-s1-d2 17 × 17 × 17
InstanceNorm3D
ReLU
MaxPool3D k3-s2 8 × 8 × 8

4

Conv3D k3-c64·f -p1-s1-d2 6 × 6 × 6
InstanceNorm3D
ReLU
MaxPool3D k5-s2 5 × 5 × 5

FC1 1024
FC2 3
Softmax 3



Results

Method Accuracy Balanced Acc Micro-AUC Macro-AUC

ResNet-18 50.8% - - -
ResNet-18 pretrained 56.8% - - -
ResNet-18 3D 52.4± 1.8% 53.1% - -
ResNet-18 3D 50.1± 1.1% 51.3± 1.0% 71.2± 0.4% 72.4± 0.7%
AlexNet 3D 57.2± 0.5% 56.2± 0.8% 75.1± 0.4% 74.2± 0.5%
proposed 66.9± 1.2% 67.9± 1.1% 82.0± 0.7% 78.5± 0.7%
proposed + Age 68.2 ± 1.1% 70.0 ± 0.8% 82.0 ± 0.2% 80.0 ± 0.5%



Australian Imaging, Biomarkers and Lifestyle dataset

Method Accuracy Balanced Acc Micro-AUC Macro-AUC

proposed on ADNI 66.9± 1.2% 67.9± 1.1% 82.0± 0.7% 78.5± 0.7%
proposed on AIBL 63.6± 0.7% 65.7± 1.1% 90.0± 0.6% 82.1± 0.7%



Visualization of gradient with respect to input
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Quantitative rehabilitation of stroke patients

Collaboration with the Mobilis lab at the Department of Neurology of the
NYU School of Medicine

Joint work with Aakash Kaku, Avinash Parnandi, and Heidi Schambra



Quantitative rehabilitation of stroke patients

Goal: Automatic identification/counting of basic upper body movements



Data: 100 dimensional time series (accelerations, rotations)



Methodology

I Deep convolutional neural networks achieves great results for fixed
group of patients

I To be clinically practical we need to generalize to new patients

I Promising results by normalizing features (instance normalization)
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Data-driven estimation of sinusoid frequencies

Joint work with Brett Bernstein, Gautier Izacard, and Sreyas Mohan



Frequency estimation (aka super-resolution of line spectra)

Infinite samples N = 40 N = 20
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Traditional methodology

I Linear estimation (periodogram)

I Parametric methods based on eigendecomposition of sample
covariance matrix (MUSIC, ESPRIT, matrix pencil)

I Sparsity-based methods



Learning-based approach
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Frequency-representation module
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Fourier transform of learned transformations
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Comparison to state of the art
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For more information

A Learning-Based Framework for Line-Spectra Super-resolution.
G. Izacard, B. Bernstein, C. Fernandez-Granda. ICASSP 2019

Data-driven Estimation of Sinusoid Frequencies. G. Izacard,
S. Mohan, C. Fernandez-Granda. NeurIPS 2019
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