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Separable nonlinear inverse (SNL) problems

Aim: estimate parameters θ1, . . . , θs ∈ Rd from data y ∈ Rn

Relation between data and each θj governed by nonlinear function φ

Contributions of θ1, . . . , θs combine linearly with unknown coeffs c ∈ Rs

y =
s∑

j=1

c (j)φ(θj)

=
[
φ(θ1) φ(θ2) · · · φ(θs)

]
c

n > s, easy if we know θ1, . . . , θs



SNL problems

I Super-resolution

I Deconvolution

I Source localization in EEG

I Direction of arrival in radar / sonar

I Magnetic-resonance fingerprinting



Magnetic-resonance fingerprinting (Ma et al, 2013)

Goal: Estimate magnetic relaxation-time constants of tissues in a voxel
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Methods to tackle SNL problems

I Nonlinear least-squares solved by descent methods
Drawback: local minima

I Prony-based / Finite-rate of innovation
Drawback: challenging to apply beyond super-resolution

I Reformulate as sparse-recovery problem
(drawbacks discussed at the end)



Linearization

Linearize problem by lifting to a higher-dimensional space

True parameters: θT1 , . . . , θTs

Grid of parameters: θ1, . . . , θN , N >> n

y =
[
φ(θ1) · · · φ(θT1) · · · φ(θTs ) · · · φ(θN)

]


0
· · ·
c (1)
· · ·
c (s)
0


=

s∑
j=1

c (j)φ(θTj
)



Sparse Recovery for SNL Problems

Find a sparse c̃ such that

y = Φgridc̃

Underdetermined linear inverse problem with sparsity prior



Popular approach: `1-norm minimization

minimize ||c̃ ||1
subject to Φgridc̃ = y



Popular approach: `1-norm minimization

I Deconvolution:
Deconvolution with the `1 norm, Taylor et al (1979)

I EEG:
Selective minimum-norm solution of the biomagnetic inverse problem,
Matsuura and Okabe (1995)

I Direction-of-arrival in radar / sonar:
A sparse signal reconstruction perspective for source localization with
sensor arrays, Malioutov et al (2005)

I and many, many others...



Magnetic-resonance fingerprinting

Multicompartment magnetic resonance fingerprinting
(Tang, F., Lannuzel, Bernstein, Lattanzi, Cloos, Knoll, Asslaender 2018)
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Main question

Under what conditions can SNL problems be solved by
`1-norm minimization?



Continuous dictionary

Analysis should apply to arbitrarily fine grids

We model the coefficients / parameter values as an atomic measure

x :=
s∑

j=1

c (j) δθTj

y =
s∑

j=1

c (j)φ(θTj
)

=

∫
φ(θ) x( dθ) = Φx

Intuitively, Φ is a continuous dictionary with n rows



Sparse Recovery for SNL Problems

Find a sparse x̃ such that

y =

∫
φ(θ) x̃( dθ)

(Extremely) underdetermined linear inverse problem with sparsity prior



Total-variation norm

Continuous counterpart of the `1 norm

Not the total variation of a piecewise-constant function

||c ||1 = sup
||~v ||∞≤1

〈v , c〉

||x ||TV = sup
f ∈C[0,1], ||f ||∞≤1

∫
[0,1]

f (t) x ( dt)

If x =
∑

j cjδθj then ||x ||TV = ||c ||1



Main question

For an SNL problem, when does

minimize ||x̃ ||TV

subject to
∫
φ(θ) x̃( dθ) = y

achieve exact recovery?

Wait, isn’t this just compressed sensing?



Compressed sensing

Recover s-sparse vector x of dimension m from n < m measurements

y = Ax

Key assumption: A is random, and hence satisfies restricted-isometry
properties with high probability



Restricted isometry property (Candès, Tao 2006)

An m× n matrix A satisfies the restricted isometry property (RIP) if there
exists 0 < κ < 1 such that for any s-sparse vector x

(1− κ) ||x ||2 ≤ ||Ax ||2 ≤ (1 + κ) ||x ||2

2s-RIP implies that for any s-sparse signals x1, x2

||Ax2 − Ax1||2

= ||A (x2 − x1)||2
≥ (1− κ) ||x2 − x1||2
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An m× n matrix A satisfies the restricted isometry property (RIP) if there
exists 0 < κ < 1 such that for any s-sparse vector x

(1− κ) ||x ||2 ≤ ||Ax ||2 ≤ (1 + κ) ||x ||2

2s-RIP implies that for any s-sparse signals x1, x2
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Separable nonlinear problems

If φ is smooth, nearby columns in

Φgrid :=
[
φ(θ1) φ(θ2) · · · φ(θN)

]
are highly correlated so RIP does not hold!

There are x1, x2 such that Ax1 ≈ Ax2

Sparsity is not enough, we need additional restrictions!
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Super-resolution

Joint work with Emmanuel Candès (Stanford)



Limits of resolution in imaging

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

Diffraction imposes a fundamental limit on the resolution of optical systems



Fluorescence microscopy

Data

Point sources Low-pass blur

(Figures courtesy of V. Morgenshtern)



Sensing model for super-resolution

Point sources
Point-spread
function

Data

∗ =

Spectrum × =



Super-resolution

s sources with locations θ1, . . . , θs , modeled as superposition of spikes

x =
∑
j

c (j)δθj cj ∈ C, θj ∈ T ⊂ [0, 1]

We observe Fourier coefficients up to cut-off frequency fc

y(k) =

∫ 1

0
exp (−i2πkt) x (dt)

=
s∑

j=1

c (j) exp (−i2πkθj)

SNL problem where

φ(θj) =

exp (−i2πθj(−fc))
· · ·

exp (−i2πθj fc)





Fundamental questions

1. Is the problem well posed?

2. Does TV -norm minimization work?



Is the problem well posed?

=

Measurement operator = low-pass samples with cut-off frequency fc



Is the problem well posed?

=

Effect of measurement operator on sparse vectors?



Is the problem well posed?

=

Submatrix can be very ill conditioned!



Is the problem well posed?

=

If support is spread out there is hope



Minimum separation

The minimum separation ∆ of the support of x is

∆ = inf
(θ,θ′) ∈ support(x) : θ 6=θ′

|θ − θ′|



Conditioning of submatrix with respect to ∆

I If ∆ < 1/fc the problem is ill posed
I If ∆ > 1/fc the problem becomes well posed
I Proved asymptotically by Slepian and non-asymptotically by Moitra

1/fc is the diameter of the main lobe of the point-spread function
(twice the Rayleigh distance)



Example: 25 spikes, fc = 103, ∆ = 0.8/fc
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Example: 25 spikes, fc = 103, ∆ = 0.8/fc
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Example: 25 spikes, fc = 103, ∆ = 0.8/fc

The difference is almost in the null space of the measurement operator
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Theoretical questions

1. Is the problem well posed?

2. Does TV -norm minimization work?



Super-resolution via TV-norm minimization

minimize ||x̃ ||TV

subject to
∫
φ(θ) x̃( dθ) = y



Dual certificate for TV-norm minimization

v ∈ Rn is a dual certificate associated to

x =
∑
j

cjδθj cj ∈ R, θj ∈ T

if

Q (θ) := vTφ (θ)

Q (θj) = sign (cj) if θj ∈ T

|Q (θ)| < 1 if θ /∈ T

Dual variable guaranteeing that ||x ||TV is optimal



Dual certificate

For any x + h such that
∫
φ(θ) h( dθ) = 0

||x + h||TV = sup
||f ||∞≤1

∫
[0,1]

f (θ) x ( dθ) +

∫
[0,1]

f (θ) h ( dθ)

≥
∫
[0,1]

Q (θ) x ( dθ) +

∫
[0,1]

Q (θ) h ( dθ)

≥
∑
θj∈T

∫
[0,1]

Q (θj) cjδθj ( dθ) + vT
∫
[0,1]

φ (θ) h ( dθ)

= ||x ||TV

Existence of Q for any sign pattern implies that x is the unique solution
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Dual certificate for super-resolution

v ∈ Cn is a dual certificate associated to

x =
∑
j

cjδθj cj ∈ C, θj ∈ T

if

Q (θ) := v∗φ (θ) =
fc∑

k=−fc
vk exp (i2πkθ)

Q (θj) = sign (cj) if θj ∈ T

|Q (θ)| < 1 if θ /∈ T

Linear combination of low pass sinusoids



Certificate for super-resolution
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Aim: Interpolate sign pattern



Certificate for super-resolution

1

0

−1

Interpolation with a low-frequency fast-decaying kernel F

q(t) =
∑
θj∈T

αj F (t − θj)
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Certificate for super-resolution
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Technical detail: Magnitude of certificate locally exceeds 1

Solution: Add correction term and force derivative to vanish on support

Q(θ) =
∑
θj∈T

αj F (θ − θj) + βj F
′ (θ − θj)
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Certificate for super-resolution
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Guarantees for super-resolution

Theorem [Candès, F. 2012]

If the minimum separation of the signal support obeys

∆ ≥ 2 /fc

then recovery via convex programming is exact

Theorem [Candès, F. 2012]

In 2D convex programming super-resolves point sources with a
minimum separation of

∆ ≥ 2.38 /fc

where fc is the cut-off frequency of the low-pass kernel



Guarantees for super-resolution

Theorem [F. 2016]

If the minimum separation of the signal support obeys

∆ ≥ 1.26 /fc ,

then recovery via convex programming is exact

Theorem [Candès, F. 2012]

In 2D convex programming super-resolves point sources with a
minimum separation of

∆ ≥ 2.38 /fc

where fc is the cut-off frequency of the low-pass kernel



Numerical evaluation of minimum separation

fc = 30 fc = 40 fc = 50
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Deconvolution

Joint work with Brett Bernstein (Courant)



Seismology



Reflection seismology

Geological section Acoustic impedance Reflection coefficients



Reflection seismology

Sensing Ref. coeff. Pulse Data

Data ≈ convolution of pulse and reflection coefficients



Model for the pulse: Ricker wavelet

σ−σ



Toy model for reflection seismology
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Toy model for reflection seismology
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Toy model for reflection seismology



Toy model for reflection seismology



Toy model for reflection seismology



Deconvolution

s sources with locations θ1, . . . , θs , modeled as superposition of spikes

x =
∑
j

c (j)δθj cj ∈ R, θj ∈ T ⊂ [0, 1]

We observe samples of convolution with kernel K

y(k) = (K ∗ x) (sk)

=
s∑

j=1

c (j)K (sk − θj)

SNL problem where

φ(θj) =

K (s1 − θj)
· · ·

K (sn − θj)





Theoretical questions

1. Is the problem well posed?

2. Does TV -norm minimization work?



Minimum separation

Kernels are approximately low-pass

The support cannot be too clustered



Sampling proximity

We need two samples per spike

Convolution kernel decays: at least two samples close to each spike

Samples S and support T have sample proximity γ if for every θi ∈ T
there exist si , s ′i ∈ S such that

|θi − si | ≤ γ and
∣∣θi − s ′i

∣∣ ≤ γ
We consider arbitrary non-uniform sampling patterns with fixed γ



Sampling proximity

γ γ

γ γ



Theoretical questions

1. Is the problem well posed?

2. Does TV -norm minimization work?



Deconvolution via TV-norm minimization

minimize ||x̃ ||TV

subject to
∫
φ(θ) x̃( dθ) = y



Dual certificate for SNL problems

v ∈ Rn is a dual certificate associated to

x =
∑
j

cjδθj cj ∈ R, θj ∈ T

if

Q (θ) := vTφ (θ) =
n∑

k=1

vkK (sk − θ)

Q (θj) = sign (cj) if θj ∈ T

|Q (θ)| < 1 if θ /∈ T

Linear combination of shifted copies of K fixed at the samples



Certificate for deconvolution
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Certificate construction

Only use subset S̃ containing 2 samples close to each spike

Q(θ) =
∑
sj∈S̃

vjK (sj − θ)

Fit v so that for all θi ∈ T

Q (θi ) = sign (ci )

Q ′ (θi ) = 0



It works!

+1

−1

s̃1,1 θ1 s̃1,2 s̃3,1 θ3 s̃3,2

s̃2,1 θ2 s̃2,2

Gaussian Kernel



It works!
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Ricker Kernel



Certificate construction

Problem: The construction is difficult to analyze (coefficients vary)

Solution: Reparametrization into bumps and waves

Q(θ) =
∑
sj∈S̃

vjK (sj − θ)

=
∑
θi∈T

αiBθi (θ, s̃i ,1, s̃i ,2) + βiWθi (θ, s̃i ,1, s̃i ,2),



Bump function (Gaussian kernel)

s1 s2θi

+1
Bump
Gaussian

Bθi (θ, s̃i ,1, s̃i ,2) := bi ,1K (s̃i ,1 − θ) + bi ,2K (s̃i ,2 − θ)

Bθi (θi , s̃i ,1, s̃i ,2) = 1
∂

∂θ
Bθi (θi , s̃i ,1, s̃i ,2) = 0



Wave function (Gaussian kernel)

s1
s2θi

Wave
Gaussian

Wθi (θ, s̃i ,1, s̃i ,2) = wi ,1K (s̃i ,1 − θ) + wi ,2K (s̃i ,2 − θ)

Wθi (θi , s̃i ,1, s̃i ,2) = 0
∂

∂θ
Wθi (θi , s̃i ,1, s̃i ,2) = 1



Bump function (Ricker wavelet)

s1 s2θi

+1

Bump
Ricker

Bθi (θ, s̃i ,1, s̃i ,2) := bi ,1K (s̃i ,1 − θ) + bi ,2K (s̃i ,2 − θ)

Bθi (θi , s̃i ,1, s̃i ,2) = 1
∂

∂θ
Bθi (θi , s̃i ,1, s̃i ,2) = 0



Wave function (Ricker wavelet)

s1
s2θi

Wave
Ricker

Wθi (θ, s̃i ,1, s̃i ,2) = wi ,1K (s̃i ,1 − θ) + wi ,2K (s̃i ,2 − θ)

Wθi (θi , s̃i ,1, s̃i ,2) = 0
∂

∂θ
Wθi (θi , s̃i ,1, s̃i ,2) = 1



Certificate construction

Reparametrization decouples the coefficients

Q(θ) =
∑
sj∈S̃

vjK (sj − θ)

=
∑
θi∈T

αiBθi (θ, s̃i ,1, s̃i ,2) + βiWθi (θ, s̃i ,1, s̃i ,2)

≈
∑
θi∈T

sign (ci )Bθi (θ, s̃i ,1, s̃i ,2)



Certificate for deconvolution (Gaussian kernel)
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Certificate for deconvolution (Gaussian kernel)
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Certificate for deconvolution (Ricker wavelet)
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Certificate for deconvolution (Ricker wavelet)

+1
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Exact recovery guarantees [Bernstein, F. 2017]
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Exact recovery guarantees [Bernstein, F. 2017]
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SNL problems

Joint work with Brett Bernstein (Courant) and Sheng Liu (CDS, NYU)



General SNL problems

The function φ may not be available explicitly but can often be
computed numerically by solving a differential equation

I Source localization in EEG

I Direction of arrival in radar / sonar

I Magnetic-resonance fingerprinting



Mathematical model

I Signal: superposition of Dirac measures with support T

x =
∑
j

cjδθj cj ∈ R, θj ∈ T ⊂ [0, 1]

I Data: n measurements following SNL model

y =

∫
φ (θ) x (dθ)



Diffusion on a rod with varying conductivity

θ1



Diffusion on a rod with varying conductivity
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Diffusion on a rod with varying conductivity
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Diffusion on a rod with varying conductivity



Diffusion on a rod with varying conductivity

φ(θ) can be computed by solving differential equation

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10s11s12s13s14s15s16s17s18s19s20s21s22s23s24s25s26s27s28
θ0 θ1 θ2



Time-frequency pulses

θ1



Time-frequency pulses

θ1

θ2



Time-frequency pulses

θ1

θ2

θ3



Time-frequency pulses



Time-frequency pulses

Gabor wavelets in 1D

φ(θ)k = exp
(
−(sk − θ)2

2σ

)
sin(150 sk(sk − θ)) θ ∈ [0, 1]

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22

θ0 θ1 θ2



Sparse estimation for general SNL problems

Problem: Sparse recovery requires RIP-like properties that do not hold
for SNL problems with smooth φ (even if we discretize)

We cannot hope to recover all sparse signals

How about signals such that φ(θi )
Tφ(θj) is small for all θi 6= θj in T?

Challenge: Prove guarantees for general SNL problems that only depend
on correlation structure



SNL problems with correlation decay

Aim: Guarantees for signals under separation conditions with respect to
support-centered correlations ρ1, . . . , ρs

ρi (θ) := φ(θi )
Tφ(θ)



Diffusion on a rod with varying conductivity

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10s11s12s13s14s15s16s17s18s19s20s21s22s23s24s25s26s27s28
θ0 θ1 θ2



Support-centered correlations

θ0 θ1 θ2



Time-frequency pulses

φ(θ)k = exp
(
−(sk − θ)2

2σ

)
sin(150 sk(sk − θ)) θ ∈ [0, 1]

s0 s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15 s16 s17 s18 s19 s20 s21 s22

θ0 θ1 θ2



Support-centered correlations

θ0 θ1 θ2



Correlation decay

Parametrized by F−i < N−i < N+
i < F+

i and σi

Parameters can be different at each θi

θi N+
iN−

i F+
iF−

i F+
i + 1σiF−

i − 1σi F+
i + 2σiF−

i − 2σi



Correlation decay

I ρi is concave in [N−i ,N
+
i ]: ρ′′i (θ) < −γ0

I ρi is bounded outside [N−i ,N
+
i ]: |ρi (θ)| < γ1

I ρi decays for θ < F−i and θ > F+
i :

|ρi (θ)| < γ2e
−(|θ−F−i |)/σi for θ < F−i

|ρi (θ)| < γ2e
−(|θ−F+

i |)/σi for θ > F+
i

Choice of exponential decay is arbitrary



Correlation decay

Additional condition on correlation derivatives

ρ
(q,r)
i (θ) := φ(q)(θi )

Tφ(r)(θ)

ρ
(q,r)
i decays for θ < F−i and θ > F+

i , for q = 0, 1, r = 0, 1, 2:∣∣∣ρ(q,r)i (θ)
∣∣∣ < γ2e

−(|θ−F−i |)/σi for θ < F−i∣∣∣ρ(q,r)i (θ)
∣∣∣ < γ2e

−(|θ−F+
i |)/σi for θ > F+

i

Open question: Is this necessary?



Normalized distance

Normalized distance from θ to θj > θ

dj (θ) :=
F−j − θ
σj

If dj (θ) is large, φ(θ) and φ(θj) are not very correlated

θ1 θ F−
2

θ2 F−
3

θ3σ2d2(θ)

σ3d3(θ)



Minimum separation conditions

Normalized distance between spikes is equal to ∆

θ1 F+
1 F−

2
θ2 F−

3
θ3≥ ∆σ2

≥ 2∆σ3

θ1 θ1−2 F−
2

θ2 F−
3

θ3

≥ ∆σ2

2

≥ 3∆σ3

2



Guarantees for SNL problems with decaying correlation

Theorem [Bernstein, F. 2018]

For any SNL problem with decaying correlation TV-norm minimization
achieves exact recovery under the separation conditions if

∆ > C

for a fixed constant C depending on the decay bounds γ0, γ1, γ2



Dual certificate for SNL problems

v ∈ Rn is a dual certificate associated to

x =
∑
j

cjδθj cj ∈ R, θj ∈ T

if

Q (θ) := vTφ (θ)

Q (θj) = sign (cj) if θj ∈ T

|Q (θ)| < 1 if θ /∈ T



Dual certificate construction

Use support-centered correlations to interpolate sign pattern

Q (θ) :=
s∑

i=1

αi ρi (θ)

+1

−1
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Dual certificate construction
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=
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i=1

αi φ(θi )
Tφ(θ)

= vTφ(θ) v :=
s∑

i=1

αi φ(θi )

Technical detail: Correction term to ensure derivative vanishes
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Dual certificate construction
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Robustness to noise / outliers

Variations of dual certificates establish robustness at small noise levels
(Candès, F. 2013), (F. 2013), (Bernstein, F. 2017)

Exact recovery with constant number of outliers (up to log factors)
(F., Tang, Wang, Zheng 2017), (Bernstein, F. 2017)

Open questions: Analysis of higher-noise levels and discretization error,
robustness for positive amplitudes



Drawbacks

Solving convex program is computationally expensive

Approach doesn’t scale well at high dimensions

In practice, reweighting is need to obtain sparse solutions for noisy data

Open question: Analysis of other techniques (reweighting methods,
descent methods on nonconvex cost functions)



Conclusion

Previous works focus mostly on random operators

For deterministic problems sparsity is not enough!

Under separation conditions:

1. Sharp guarantees for super-resolution and deconvolution

2. General guarantees for SNL problems with correlation decay
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