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Two inverse problems

When is the problem well posed?

When do optimization-based methods succeed?



Two inverse problems



Compressed sensing

Object Data
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Mathematical model: Random Fourier coefficients of sparse signal



Super-resolution

Data

Point sources Low-pass blur

Mathematical model: Low-pass Fourier coefficients of sparse signal

(Figures courtesy of V. Morgenshtern)



Motivation: Limits of resolution in imaging

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

\

5(t —7) optical system h(t —7)

Diffraction imposes a fundamental limit on the resolution of optical systems
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Super-resolution

» Optics: Data-acquisition techniques to overcome the diffraction limit

» Image processing: Methods to upsample images onto a finer grid
while preserving edges and hallucinating textures

» This talk: Estimation/deconvolution from low-pass measurements



Compressed sensing Super-resolution
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When is the problem well posed?



Compressed sensing

Spectrum
of x

Fourier series of a measure/function x with domain [0, 1]



Compressed sensing

Xl _ Spectrum
of x

Discrete Fourier transform (DFT) of a vector x € RN



Compressed sensing

Xl _ Spectrum
of x

Data: Random DFT coefficients



Compressed sensing

Data: Random DFT coefficients



Compressed sensing

What is the effect of the measurement operator on sparse vectors?



Compressed sensing

n

Crucial insight: restricted operator is well conditioned when acting upon
any sparse signal (restricted isometry property) [Candés, Tao 2006]
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Super-resolution

» Signal: superposition of spikes (Dirac measures) in the unit interval

x=> ad; a2 €C, te(0,1]
J
» Data: low-pass Fourier coefficients with cut-off frequency f,
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Super-resolution

Spectrum
of x

Fourier series of a measure x with domain [0, 1]



Super-resolution

Data: Low-pass Fourier coefficients



Super-resolution

Data: Low-pass Fourier coefficients



Super-resolution

Problem: If the support is clustered, the problem may be ill posed

In super-resolution sparsity is not enough!



Super-resolution
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If the support is spread out, there is still hope

We need conditions beyond sparsity



Minimum separation

The minimum separation A of the support of x is

A= |t —t']

inf
(t,t') € support(x): t#£t’




Conditioning of submatrix with respect to A

If A < \c:=1/f. the problem is ill posed

Rayleigh resolution distance

Ac is the diameter of the main lobe of the point-spread function

(twice the Rayleigh distance)



Example: 25 spikes, f, = 103, A = 0.8/f,
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Example: 25 spikes, f, = 103, A = 0.8/f,
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Example: 25 spikes, f, = 103, A = 0.8/f,

The difference is almost in the null space of the measurement operator
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When do optimization-based methods succeed?



Estimation via convex programming

Measurement model: Underdetermined linear system
(we need further assumptions)

Ax~y

Idea: Impose nonparametric assumptions on structure by
minimizing a cost function

min  C(X) subject to AXx =y,

X

In our case: 1 norm to enforce sparsity



Subgradients

Definition: gy is a subgradient of a convex function C at x if for
any vector v
C(x+v) 2 C(x) + (g v)

Lemma

If there is a subgradient of C at x in the range of A*, g, = A*u, and
Ax = y then x is a solution of

min  C(X) subject to Ax =y

X

Proof: For all x’ such that Ax’ =y, so that A(x’ — x) =0,
C(x') =C(x)+ (g, X — x)
=C(x)+ (Au,x' — x)
=C(x)+ (u,A(x'—x)) =C(x)



Dual certificate for the 1 norm

Lemma

x is a solution to
min  ||X]|; subject to AXx =y
X
if Ax =y and there exists g, = A*u such that

8x () =sign{x(j)} ifj € support(x)
lex ()| <1 if j ¢ support (x)



Dual certificate for the 1 norm

Lemma

x is the unique solution to
min  ||X]|; subject to AXx =y
X
if Ax =y and there exists g, = A*u such that

gx (J) =sign{x ()} ifj € support(x)
l&x U)| <1 if j ¢ support (x)



Dual certificate for the 1 norm

Lemma

x is solution to
min  ||X]|; subject to Ax =y
X
if Ax =y and there exists g, = A*u such that

8x (j) =sign{x (j)} ifj € support(x)
lgx ()| < 1 if j ¢ support (x)

The range of A* corresponds to

Compressed sensing: Random sinusoids

Super-resolution: Low-pass sinusoids



Dual certificate for compressed sensing

Least-squares interpolator



Dual certificate for compressed sensing

Works out for linear levels of sparsity (up to logarithmic factors)

[Candés, Romberg, Tao 2006]



Dual certificate for super-resolution

Least-squares interpolator does not work



Dual certificate for super-resolution

1st idea: Interpolation with a low-frequency fast-decaying kernel K

g(t)= > aiK(t—t),

tjesupport(x)
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Dual certificate for super-resolution

Problem: Magnitude of polynomial locally exceeds 1



Dual certificate for super-resolution

Problem: Magnitude of polynomial locally exceeds 1

Solution: Add correction term and force g} (tx) = 0 for all t, € support (x)

a(t)= Y, oK(t—t)+ 5K (t—1)

tjesupport(x)



Dual certificate for super-resolution

Problem: Magnitude of polynomial locally exceeds 1

Solution: Add correction term and force g} (tx) = 0 for all t, € support (x)

a(t)= Y, oK(t—t)+ 5K (t—1)

tjesupport(x)



Guarantees for super-resolution

Theorem [Candés, F. 2012]
If the minimum separation of the signal support obeys
A>2/f.

then recovery via £1 norm minimization is exact
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Theorem [Candés, F. 2014]
If the minimum separation of the signal support obeys
A > 1.28/f.,

then recovery via £1 norm minimization is exact



Guarantees for super-resolution

Theorem [Candés, F. 2014]
If the minimum separation of the signal support obeys
A > 1.28/f.,

then recovery via £1 norm minimization is exact

Theorem [Candés, F. 2012]

In 2D ¢1-norm minimization super-resolves point sources with a
minimum separation of

A > 238 /f,

where f; is the cut-off frequency of the low-pass kernel



Guarantees for super-resolution

> Results hold for continuous version of the ¢; norm (no discretization)
» Numerical simulations show that the method works for A > 1/f.

» Generalizations of dual certificate allow to prove robustness to
noise [Candés, F. 2013], [F. 2013]

» If the signal is sparse, we can randomly undersample low-pass
measurements [Tang, Bhaskar, Shah, Recht 2013]



Conclusion

Characterizing the interaction between the measurement operator and

the structure of the object of interest is crucial to understand

» When the problem is well posed (conditioning of restricted operator)

» When optimization-based methods succeed (dual certificates)
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