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Compressed sensing

Object Data

Compressible Randomized

Mathematical model: Random Fourier coe�cients of sparse signal



Super-resolution

Object Data

Point sources Low-pass blur

Mathematical model: Low-pass Fourier coe�cients of sparse signal

(Figures courtesy of V. Morgenshtern)



Motivation: Limits of resolution in imaging

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

Di�raction imposes a fundamental limit on the resolution of optical systems
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Super-resolution

I Optics: Data-acquisition techniques to overcome the di�raction limit

I Image processing: Methods to upsample images onto a �ner grid
while preserving edges and hallucinating textures

I This talk: Estimation/deconvolution from low-pass measurements



Compressed sensing Super-resolution

Spectrum interpolation Spectrum extrapolation



Two inverse problems

When is the problem well posed?

When do optimization-based methods succeed?



Compressed sensing
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Fourier series of a measure/function x with domain [0, 1]
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Discrete Fourier transform (DFT) of a vector x ∈ RN
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What is the e�ect of the measurement operator on sparse vectors?
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Crucial insight: restricted operator is well conditioned when acting upon
any sparse signal (restricted isometry property) [Candès, Tao 2006]
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Super-resolution

I Signal: superposition of spikes (Dirac measures) in the unit interval

x =
∑
j

ajδtj aj ∈ C, tj ∈ [0, 1]

I Data: low-pass Fourier coe�cients with cut-o� frequency fc

y(k) =

∫ 1

0

e−i2πktx (dt) =
∑
j

aje
−i2πktj , k ∈ Z, |k | ≤ fc



Super-resolution
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Fourier series of a measure x with domain [0, 1]
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Super-resolution
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Problem: If the support is clustered, the problem may be ill posed

In super-resolution sparsity is not enough!



Super-resolution
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If the support is spread out, there is still hope

We need conditions beyond sparsity



Minimum separation

The minimum separation ∆ of the support of x is

∆ = inf
(t,t′) ∈ support(x) : t 6=t′

|t − t ′|



Conditioning of submatrix with respect to ∆

If ∆ < λc := 1/fc the problem is ill posed

λc is the diameter of the main lobe of the point-spread function

(twice the Rayleigh distance)



Example: 25 spikes, fc = 103, ∆ = 0.8/fc
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Example: 25 spikes, fc = 103, ∆ = 0.8/fc
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Example: 25 spikes, fc = 103, ∆ = 0.8/fc

The di�erence is almost in the null space of the measurement operator
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Two inverse problems

When is the problem well posed?

When do optimization-based methods succeed?



Estimation via convex programming

Measurement model: Underdetermined linear system
(we need further assumptions)

Ax ≈ y

Idea: Impose nonparametric assumptions on structure by
minimizing a cost function

min
x̃

C (x̃) subject to Ax̃ = y ,

In our case: `1 norm to enforce sparsity



Subgradients

De�nition: gx is a subgradient of a convex function C at x if for
any vector v

C (x + v) ≥ C (x) + 〈gx , v〉

Lemma

If there is a subgradient of C at x in the range of A∗, gx = A∗u, and
Ax = y then x is a solution of

min
x̃

C (x̃) subject to Ax̃ = y

Proof: For all x ′ such that Ax ′ = y , so that A (x ′ − x) = 0,

C
(
x ′
)
≥ C (x) +

〈
gx , x

′ − x
〉

= C (x) +
〈
A∗u, x ′ − x

〉
= C (x) +

〈
u,A

(
x ′ − x

)〉
= C (x)



Dual certi�cate for the `1 norm

Lemma

x is a solution to

min
x̃

||x̃ ||1 subject to Ax̃ = y

if Ax = y and there exists gx = A∗u such that

gx (j) = sign {x (j)} if j ∈ support (x)

|gx (j)| ≤ 1 if j /∈ support (x)



Dual certi�cate for the `1 norm

Lemma

x is the unique solution to

min
x̃

||x̃ ||1 subject to Ax̃ = y

if Ax = y and there exists gx = A∗u such that

gx (j) = sign {x (j)} if j ∈ support (x)

|gx (j)|< 1 if j /∈ support (x)



Dual certi�cate for the `1 norm

Lemma

x is solution to

min
x̃

||x̃ ||1 subject to Ax̃ = y

if Ax = y and there exists gx = A∗u such that

gx (j) = sign {x (j)} if j ∈ support (x)

|gx (j)|< 1 if j /∈ support (x)

The range of A∗ corresponds to

Compressed sensing: Random sinusoids

Super-resolution: Low-pass sinusoids



Dual certi�cate for compressed sensing

Least-squares interpolator



Dual certi�cate for compressed sensing

Works out for linear levels of sparsity (up to logarithmic factors)

[Candès, Romberg, Tao 2006]



Dual certi�cate for super-resolution
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Least-squares interpolator does not work



Dual certi�cate for super-resolution
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1st idea: Interpolation with a low-frequency fast-decaying kernel K

gx(t) =
∑

tj∈support(x)
αj K (t − tj),
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Dual certi�cate for super-resolution
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Problem: Magnitude of polynomial locally exceeds 1

Solution: Add correction term and force g ′x(tk) = 0 for all tk ∈ support (x)

gx(t) =
∑

tj∈support(x)
αj K (t − tj) + βj K

′(t − tj)
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Guarantees for super-resolution

Theorem [Candès, F. 2012]

If the minimum separation of the signal support obeys

∆ ≥ 2 /fc

then recovery via `1 norm minimization is exact

Theorem [Candès, F. 2012]

In 2D `1-norm minimization super-resolves point sources with a
minimum separation of

∆ ≥ 2.38 /fc

where fc is the cut-o� frequency of the low-pass kernel



Guarantees for super-resolution

Theorem [Candès, F. 2014]

If the minimum separation of the signal support obeys

∆ ≥ 1.28 /fc ,

then recovery via `1 norm minimization is exact
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Guarantees for super-resolution

I Results hold for continuous version of the `1 norm (no discretization)

I Numerical simulations show that the method works for ∆ ≥ 1/fc

I Generalizations of dual certi�cate allow to prove robustness to
noise [Candès, F. 2013], [F. 2013]

I If the signal is sparse, we can randomly undersample low-pass
measurements [Tang, Bhaskar, Shah, Recht 2013]



Conclusion

Characterizing the interaction between the measurement operator and

the structure of the object of interest is crucial to understand

I When the problem is well posed (conditioning of restricted operator)

I When optimization-based methods succeed (dual certi�cates)



For more details

I Towards a mathematical theory of super-resolution. E. J. Candès and
C. Fernandez-Granda. Communications on Pure and Applied Math 67(6),
906-956.

I Super-resolution from noisy data. E. J. Candès and C. Fernandez-Granda.
Journal of Fourier Analysis and Applications 19(6), 1229-1254.

I Support detection in super-resolution. C. Fernandez-Granda.
Proceedings of SampTA 2013, 145-148.
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