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Seismology



Reflection seismology

Geological section Acoustic impedance Reflection coefficients



Reflection seismology

Sensing Ref. coeff. Pulse Data

Data ≈ convolution of pulse and reflection coefficients



Model for the pulse: Ricker wavelet

σ−σ
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Sensing model for reflection seismology

Ref. coeff. Pulse Data

∗ =

Spectrum × =

Convolution in time = Pointwise multiplication in frequency

Ill-posed problem! How do we choose between signals consistent with data?



Limits of resolution in imaging

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

Diffraction imposes a fundamental limit on the resolution of optical systems



Fluorescence microscopy

Data

Point sources Low-pass blur

(Figures courtesy of V. Morgenshtern)



Model for the point-spread function: Gaussian kernel

σ−σ



Sensing model for diffraction-limited imaging
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Sensing model for diffraction-limited imaging

Ref. coeff. Pulse Data

∗ =

Spectrum × =

Convolution in time = Pointwise multiplication in frequency

Ill-posed problem! How do we choose between signals consistent with data?



Geophysicists: Minimize `1 norm



`1-norm minimization

minimize ||estimate||1
subject to samples of convolution with kernel = data



It works

True Signal

Recovered Signal



It works

True Signal

Recovered Signal
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Magnetic resonance imaging



Images are sparse/compressible

Wavelet coefficients



Magnetic resonance imaging

Data: Samples from spectrum

Problem: Sampling is time consuming (annoying, patient might move)

Images are compressible (≈ sparse)

Can we recover compressible signals from less data?



Compressed sensing

1. Undersample data randomly

2. Solve the optimization problem

minimize ||wavelet transform of estimate||1
subject to frequency samples of estimate = data



Compressed sensing in MRI

x2 Undersampling



Compressed sensing (basic model)

1. Undersample the spectrum randomly

Signal Spectrum

Data



Compressed sensing (basic model)

2. Solve the optimization problem

minimize ||estimate||1
subject to frequency samples of estimate = data

Signal Estimate



Compressed sensing (basic model)

2. Solve the optimization problem

minimize ||estimate||1
subject to frequency samples of estimate = data

Signal Estimate



Theoretical questions

1. Is the problem well posed?

2. Does `1-norm minimization work?
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Is the problem well posed?

=

=

Spectrum
of x

Measurement operator = random frequency samples
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Is the problem well posed?

=

=

Spectrum
of x

What is the effect of the measurement operator on sparse vectors?
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Spectrum
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Are sparse submatrices always well conditioned?



Is the problem well posed?

=

=

Spectrum
of x

Are sparse submatrices always well conditioned?



Restricted isometry property (RIP)

An m × n matrix A satisfies the restricted isometry property if there is
0 < δ < 1 such that for any s-sparse vector x

(1− δ) ||x ||2 ≤ ||Ax ||2 ≤ (1 + δ) ||x ||2

Random Fourier matrices satisfy the RIP with high probability
if s is O (measurements) up to log factors (Candès, Tao 2006)

2s-RIP implies that for any s-sparse signals x1, x2

||Ax2 − Ax1||2

= ||A (x2 − x1)||2
≥ (1− δ) ||x2 − x1||2



Restricted isometry property (RIP)

An m × n matrix A satisfies the restricted isometry property if there is
0 < δ < 1 such that for any s-sparse vector x

(1− δ) ||x ||2 ≤ ||Ax ||2 ≤ (1 + δ) ||x ||2

Random Fourier matrices satisfy the RIP with high probability
if s is O (measurements) up to log factors (Candès, Tao 2006)

2s-RIP implies that for any s-sparse signals x1, x2

||Ax2 − Ax1||2 = ||A (x2 − x1)||2

≥ (1− δ) ||x2 − x1||2



Restricted isometry property (RIP)

An m × n matrix A satisfies the restricted isometry property if there is
0 < δ < 1 such that for any s-sparse vector x

(1− δ) ||x ||2 ≤ ||Ax ||2 ≤ (1 + δ) ||x ||2

Random Fourier matrices satisfy the RIP with high probability
if s is O (measurements) up to log factors (Candès, Tao 2006)

2s-RIP implies that for any s-sparse signals x1, x2

||Ax2 − Ax1||2 = ||A (x2 − x1)||2
≥ (1− δ) ||x2 − x1||2



Theoretical questions

1. Is the problem well posed?

2. Does `1-norm minimization work?



Geometric intuition

minimize
∣∣∣∣x ′∣∣∣∣2

subject to Ax ′ = y

minimize
∣∣∣∣x ′∣∣∣∣1

subject to Ax ′ = y



Characterizing the minimum `1-norm estimate

I Aim: Show that the original signal x is the solution of

minimize
∣∣∣∣x ′∣∣∣∣1

subject to Ax ′ = y

I This is guaranteed by the existence of a dual certificate



Dual certificate

v ∈ Rm is a dual certificate associated to x if

q := AT v

satisfies

qi = sign (xi ) if xi 6= 0
|qi | < 1 if xi = 0

q is a subgradient of the `1 norm at x

For any vector u

||x + u||1 ≥ ||x ||1 + qTu



Dual certificate

For any x + h such that Ah = 0

||x + h||1 ≥ ||x ||1 + qTh (q is a subgradient)

= ||x ||1 + vTAh (q = AT v)
= ||x ||1

If AT (where T is the support of x) is injective, x is the unique solution



Dual certificate for compressed sensing

Aim: Show that a dual certificate exists for any sparse support
and sign pattern



Certificate for compressed sensing

Idea: Minimum-energy interpolator has closed-form solution



Certificate for compressed sensing

Valid certificate if measurements ≥ O (sparsity) up to log factors

(Candès, Romberg, Tao 2006)



Motivation

Compressed Sensing

Deconvolution in the Frequency Domain

A Sampling Theorem for Deconvolution

Robustness to Noise



Deconvolution in the frequency domain

Ref. coeff. Pulse Data

∗ =

Spectrum × =

If kernel is exactly low pass and we have uniform samples at Nyquist rate,
equivalent to super-resolution from low-pass data



Mathematical model

I Signal: superposition of Dirac measures with support T

x =
∑
j

ajδtj aj ∈ C, tj ∈ T ⊂ [0, 1]

I Data: low-pass Fourier coefficients with cut-off frequency fc

y = Fc x

y(k) =

∫ 1

0
e−i2πktx (dt) =

∑
j

aje
−i2πktj , k ∈ Z, |k | ≤ fc



Compressed sensing vs super-resolution

Compressed sensing Super-resolution

spectrum interpolation spectrum extrapolation



Total-variation norm

I Continuous counterpart of the `1 norm

I If x =
∑

j ajδtj then ||x ||TV =
∑

j |aj |
I Not the total variation of a piecewise-constant function

I Formal definition: For a complex measure ν

||ν||TV = sup
∞∑
j=1

|ν (Bj)| ,

(supremum over all finite partitions Bj of [0, 1])



Theoretical questions

1. Is the problem well posed?

2. Does TV -norm minimization work?
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Is the problem well posed?

=

=

Spectrum
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Measurement operator = low-pass samples with cut-off frequency fc



Is the problem well posed?

=

=

Spectrum
of x

Effect of measurement operator on sparse vectors?



Is the problem well posed?

=

=

Spectrum
of x

Submatrix can be very ill conditioned!



Is the problem well posed?

=

=

Spectrum
of x

If support is spread out there is hope



Minimum separation

The minimum separation ∆ of the support of x is

∆ = inf
(t,t′) ∈ support(x) : t 6=t′

|t − t ′|



Conditioning of submatrix with respect to ∆

I If ∆ < 1/fc the problem is ill posed
I If ∆ > 1/fc the problem becomes well posed
I Proved asymptotically by Slepian and non-asymptotically by Moitra

1/fc is the diameter of the main lobe of the point-spread function
(twice the Rayleigh distance)



Example: 25 spikes, fc = 103, ∆ = 0.8/fc

Signals Data (in signal space)
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Example: 25 spikes, fc = 103, ∆ = 0.8/fc
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Signals Data (in signal space)



Example: 25 spikes, fc = 103, ∆ = 0.8/fc

The difference is almost in the null space of the measurement operator
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Theoretical questions

1. Is the problem well posed?

2. Does TV -norm minimization work?



Estimation via convex programming

For data of the form y = Fc x , we solve

min
x̃
||x̃ ||TV subject to Fc x̃ = y ,

over all finite complex measures x̃ supported on [0, 1]



Dual certificate

A dual certificate of the TV norm at

x =
∑
j

ajδtj aj ∈ C, tj ∈ T

guarantees that x is the unique solution if

q := F∗c v =
∑
k≤|fc |

vke
i2πkt

q (tj) = sign (aj) if tj ∈ T

|q (t)| < 1 if t /∈ T

Range of F∗c is spanned by low pass sinusoids instead of random sinusoids



Certificate for super-resolution

1

0

−1

Aim: Interpolate sign pattern



Certificate for super-resolution

1

0

−1

1st idea: Interpolation with a low-frequency fast-decaying kernel F

q(t) =
∑
tj∈T

αj F (t − tj)
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Certificate for super-resolution

1

0

−1

1

0

−1

Problem: Magnitude of certificate locally exceeds 1

Solution: Add correction term and force the derivative of the certificate to
equal zero on the support

q(t) =
∑
tj∈T

αj F (t − tj) + βj F
′ (t − tj)
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Certificate for super-resolution

1

0

−1

1

0

−1

Problem: Magnitude of certificate locally exceeds 1

Solution: Add correction term and force the derivative of the certificate to
equal zero on the support

q(t) =
∑
tj∈T

αj F (t − tj) + βj F
′ (t − tj)



Guarantees for super-resolution

Theorem [Candès, F. 2012]

If the minimum separation of the signal support obeys

∆ ≥ 2 /fc

then recovery via convex programming is exact

Theorem [Candès, F. 2012]

In 2D convex programming super-resolves point sources with a
minimum separation of

∆ ≥ 2.38 /fc

where fc is the cut-off frequency of the low-pass kernel



Guarantees for super-resolution

Theorem [F. 2016]

If the minimum separation of the signal support obeys

∆ ≥ 1.26 /fc ,

then recovery via convex programming is exact

Theorem [Candès, F. 2012]

In 2D convex programming super-resolves point sources with a
minimum separation of

∆ ≥ 2.38 /fc

where fc is the cut-off frequency of the low-pass kernel



Numerical evaluation of minimum separation

fc = 30 fc = 40 fc = 50
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Deconvolution from sampled data



Mathematical model

I Signal: superposition of Dirac measures with support T

x =
∑
j

ajδtj aj ∈ R, tj ∈ T ⊂ [0, 1]

I Data: n samples of convolution with Gaussian/Ricker kernel K

y := K x

yi := (K ∗ x) (si ) , i = 1, 2, . . . , n



Theoretical questions

1. Is the problem well posed?

2. Does TV -norm minimization work?



Minimum separation

Kernels are approximately low-pass

The support cannot be too clustered



Sampling proximity

We need two samples per spike

Convolution kernel decays: at least two samples close to each spike

Samples S and support T have sample proximity γ if for every ti ∈ T
there exist s, s ′ ∈ S such that

|ti − s| ≤ γ and
∣∣tj − s ′

∣∣ ≤ γ
We consider arbitrary non-uniform sampling patterns with fixed γ



Sampling proximity

γ γ

γ γ



Theoretical questions

1. Is the problem well posed?

2. Does TV -norm minimization work?



Estimation via convex programming

Optimization over finite real measures x̃

min
x̃
||x̃ ||TV subject to K x̃ = y

(K x̃)j := (K ∗ x̃) (sj) , j = 1, 2, . . . , n



Dual certificate

A dual certificate of the TV norm at

x =
∑
i

aiδti ai ∈ R, ti ∈ T

guarantees that x is the unique solution if

q (t) := (KT v) (t) =
n∑

j=1

vjK (sj − t)

q (ti ) = sign (ai ) if ti ∈ T

|q (t)| < 1 if t /∈ T

Range of KT is spanned by shifted copies of K fixed at the samples



Certificate for deconvolution

+1

−1

t1

t2
t3



Certificate construction

Only use subset S̃ containing 2 samples close to each spike

q(t) =
∑
sj∈S̃

vjK (sj − t)

Fit v so that for all ti ∈ T

q (ti ) = sign (ai )

q′ (ti ) = 0



It works!

+1

−1

s̃1,1 t1 s̃1,2 s̃3,1 t3 s̃3,2

s̃2,1 t2 s̃2,2

Gaussian Kernel



It works!

+1

−1

s̃1,1 t1 s̃1,2 s̃3,1 t3 s̃3,2

s̃2,1 t2 s̃2,2

Ricker Kernel



Certificate construction

Problem: The construction is difficult to analyze (coefficients vary)

Solution: Reparametrization into bumps and waves

q(t) =
∑
sj∈S̃

vjK (sj − t)

=
∑
ti∈T

αiBti (t, s̃i ,1, s̃i ,2) + βiWti (t, s̃i ,1, s̃i ,2),



Bump function (Gaussian kernel)

s1 s2ti

+1
Bump
Gaussian

Bti (t, s̃i ,1, s̃i ,2) := bi ,1K (s̃i ,1 − t) + bi ,2K (s̃i ,2 − t)

Bti (ti , s̃i ,1, s̃i ,2) = 1
∂

∂t
Bti (ti , s̃i ,1, s̃i ,2) = 0



Wave function (Gaussian kernel)

s1
s2ti

Wave
Gaussian

Wti (t, s̃i ,1, s̃i ,2) = wi ,1K (s̃i ,1 − t) + wi ,2K (s̃i ,2 − t)

Wti (ti , s̃i ,1, s̃i ,2) = 0
∂

∂t
Wti (ti , s̃i ,1, s̃i ,2) = 1



Bump function (Ricker wavelet)

s1 s2ti

+1

Bump
Ricker

Bti (t, s̃i ,1, s̃i ,2) := bi ,1K (s̃i ,1 − t) + bi ,2K (s̃i ,2 − t)

Bti (ti , s̃i ,1, s̃i ,2) = 1
∂

∂t
Bti (ti , s̃i ,1, s̃i ,2) = 0



Wave function (Ricker wavelet)

s1
s2ti

Wave
Ricker

Wti (t, s̃i ,1, s̃i ,2) = wi ,1K (s̃i ,1 − t) + wi ,2K (s̃i ,2 − t)

Wti (ti , s̃i ,1, s̃i ,2) = 0
∂

∂t
Wti (ti , s̃i ,1, s̃i ,2) = 1



Certificate construction

Reparametrization decouples the coefficients

q(t) =
∑
sj∈S̃

vjK (sj − t)

=
∑
ti∈T

αiBti (t, s̃i ,1, s̃i ,2) + βiWti (t, s̃i ,1, s̃i ,2)

≈
∑
ti∈T

sign (ai )Bti (t, s̃i ,1, s̃i ,2)



Certificate for deconvolution (Gaussian kernel)
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Gaussian Kernel



Certificate for deconvolution (Gaussian kernel)

+1
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Certificate for deconvolution (Ricker wavelet)

+1

−1

s̃1,1 t1 s̃1,2 s̃3,1 t3 s̃3,2

s̃2,1 t2 s̃2,2

Ricker Kernel



Certificate for deconvolution (Ricker wavelet)

+1

−1

s̃1,1 t1 s̃1,2 s̃3,1 t3 s̃3,2

s̃2,1 t2 s̃2,2 Bump

Wave



Exact recovery guarantees [Bernstein, F. 2017]
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Numerical experiments (Gaussian kernel)
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Guarantees vs numerical experiments (Gaussian kernel)
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Numerical experiments (Gaussian kernel)
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Numerical experiments (Ricker wavelet)

1 2 3 4 5 6 7 8
Spike Separation

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

S
a
m
p
le

P
ro
x
im

it
y

0

0.2

0.4

0.6

0.8

1
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Numerical experiments (Ricker wavelet)
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Dense additive noise

Noise with bounded `2 norm, i.e. ||z ||2 < ξ

yi := (K ∗ x) (si ) +zi i = 1, 2, . . . , n.



Robustness to dense noise



Robustness to dense noise



Robust deconvolution via convex programming

Noise level ξ is assumed known

minimize
x̃

||x̃ ||TV

subject to
m∑
i=1

(yi − (K ∗ x̃)(si ))2 ≤ ξ2



Robustness to dense noise

Recovered Spike

True Spike



Robustness to dense noise



Support-detection accuracy

Original signal, support T

x =
∑
j

ajδtj aj ∈ R, tj ∈ T

Estimated signal, support T̂

x̂ =
∑
j

âjδt̂j âj ∈ R, t̂j ∈ T̂



Spike detection [Bernstein, F. 2017]

Under the same assumptions as for exact recovery

∣∣∣∣∣∣∣aj −
∑

{t̂l∈T̂ :|t̂l−tj |≤ησ}
âl

∣∣∣∣∣∣∣ ≤ C1ξ
√
|T | for all tj ∈ T , η ≤ 0.15σ



Support-detection accuracy [Bernstein, F. 2017]

Under the same assumptions as for exact recovery

∑
{t̂l∈T̂ ,tj∈T :|t̂l−tj |≤ησ}

|âl |
(
t̂l − tj

)2 ≤ C2ξ
√
|T |, η ≤ 0.15σ



False positives [Bernstein, F. 2017]

Under the same assumptions as for exact recovery

∑
{t̂l∈T̂ :|t̂l−tj |>ησ}

|âl | ≤ C3ξ
√
|T |, η ≤ 0.15σ



Support-detection accuracy

Corollary

For any ti ∈ T , if ai > C1ξ there exists t̂i ∈ T̂ such that

|ti − t̂i | ≤
√

C2ξ

|ai | − C1ξ



Sparse additive noise

Impulsive noise w ∈ Rn with arbitrary amplitude

yi := (K ∗ x) (si ) +wi i = 1, 2, . . . , n.



Robustness to sparse noise

Convolution (Gaussian)

Noisy Sample

Clean Sample



Robustness to sparse noise

Convolution (Ricker)

Noisy Sample

Clean Sample



Robust deconvolution via convex programming

We incorporate an additional variable to model sparse noise

minimize
x̃ , w̃

||x̃ ||TV + λ ||w̃ ||1
subject to (K ∗ x̃)(si ) + w̃i = yi , i = 1, . . . , n,



Robustness to sparse noise

Recovered Spike

True Spike



Robustness to sparse noise

Recovered Spike

True Spike



Theoretical guarantees [Bernstein, F. 2017]

Exact recovery occurs for λ = 2, as long as

I The samples lie on a grid with step size 0.065 σ ≤ τ ≤ 0.2375 σ
(Gaussian) or 0.0775 σ ≤ τ ≤ 0.165 σ (Ricker)

I The signal has a minimum separation of ∆(T ) ≥ 3.751σ (Gaussian)
or ∆(T ) ≥ 5.056σ (Ricker)

I The noisy samples are also separated by the same distance

I There are 2 clean samples surrounding each noisy sample

I There are 2 clean samples surrounding each spike



Conclusion

Geophysicists proposed `1-norm based deconvolution in the 1970s

Compressed-sensing intuition / tools for randomized measurements
do not apply directly

Conditions beyond sparsity are necessary to make the problem well posed

Under such conditions the method achieves exact recovery and is robust
to dense and sparse noise
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