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Limits of resolution in imaging

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

Diffraction imposes a fundamental limit on the resolution of optical systems



Fluorescence microscopy

Data

Point sources Low-pass blur

(Figures courtesy of V. Morgenshtern)



Sensing model for diffraction-limited imaging
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Model for the point-spread function: Gaussian kernel

σ−σ
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Sensing model for diffraction-limited imaging
Point sources PSF Data

∗ =

Spectrum × =

Convolution in time = Pointwise multiplication in frequency

Ill-posed problem! How do we choose between signals consistent with data?



Mathematical model

I Signal: superposition of k Dirac measures

x =
k∑

j=1

ajδtj aj ∈ R, tj ∈ Rd

I Data: n samples of convolution with PSF kernel K

y := K x

yi := (K ∗ x) (si )

=

∫
K (si − t) dx , i = 1, 2, . . . , n



In 1D

=

(Extremely) underdetermined linear inverse problem!



Sparse recovery for deconvolution

Find a sparse x̃ such that

y := K x̃

We need a tractable method to promote sparsity



Minimize `1 norm

Faster STORM using compressed sensing. Nature methods
Zhu, L., Zhang, W., Elnatan, D., Huang, B. (2012), 9(7), 721

Approach originally pioneered by geophysicists
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`1-norm minimization

minimize ||estimate||1
subject to samples of convolution with kernel = data



Total-variation norm

Aim: Analysis for arbitrarily fine grids

Continuous counterpart of the `1 norm

Not the total variation of a piecewise-constant function

||c ||1 = sup
||v ||∞≤1

〈v , c〉

||x ||TV = sup
f ∈C[0,1]d , ||f ||∞≤1

∫
[0,1]

f (t) x ( dt)

If x =
∑

j cjδθj then ||x ||TV = ||c ||1
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But wait, isn’t this just compressed sensing?
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Compressed sensing

Recover k-sparse vector x of dimension m from n < m measurements

y = Ax

Key assumption: A is random, and hence satisfies restricted-isometry
properties with high probability



Restricted isometry property (Candès, Tao 2006)

An m× n matrix A satisfies the restricted isometry property (RIP) if there
exists 0 < κ < 1 such that for any s-sparse vector x

(1− κ) ||x ||2 ≤ ||Ax ||2 ≤ (1 + κ) ||x ||2

2k-RIP implies that for any k-sparse signals x1, x2

||Ax2 − Ax1||2 = ||A (x2 − x1)||2
≥ (1− κ) ||x2 − x1||2
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Does the RIP hold for deconvolution?

=

In deconvolution, sparsity is not enough...



Minimum separation

The minimum separation ∆ of the support of x is

∆ = inf
(t,t′) ∈ support(x) : t 6=t′

|t − t ′|



Example: 15 spikes, ∆ = σ
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Example: 15 spikes, ∆ = σ

The difference is almost in the null space of the measurement operator
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Sampling proximity

We need two samples per spike

Convolution kernel decays: at least two samples close to each spike

Samples S and support T have sample proximity γ if for every ti ∈ T
there exist s, s ′ ∈ S such that

|ti − s| ≤ γ and
∣∣tj − s ′

∣∣ ≤ γ
We consider arbitrary non-uniform sampling patterns with fixed γ



Sampling proximity

γ γ

γ γ



Aim

Prove exact recovery under two assumptions:

1. Signal support has minimum separation

2. Measurements satisfy sampling-proximity condition with respect to
signal support



In 2D, regular grid

∆
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Aim (2D)

Prove exact recovery under two assumptions:

1. Signal support has minimum separation

2. Measurements are on a grid with a certain width



Deconvolution as sparse recovery

Certifying optimality

A sampling theorem for deconvolution



Analysis of `1-norm minimization

I Aim: Prove that any sparse x such that Ax = y is the unique solution
of

minimize
∣∣∣∣x ′∣∣∣∣1

subject to Ax ′ = y

I Strategy: Build dual certificate associated to each sparse x
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Subgradient

The subgradient of f : Rn → R at x ∈ Rn is a vector g ∈ Rn such that

f (y) ≥ f (x) + gT (y − x) , for all y ∈ Rn

The set of all subgradients at x is called the subdifferential



Subgradients



Subdifferential of `1 norm

g is a subgradient of the `1 norm at x ∈ Rn if and only if

g [i ] = sign (x [i ]) if x [i ] 6= 0

|g [i ]| ≤ 1 if x [i ] = 0
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Dual certificate

v ∈ Rm is a dual certificate associated to x if

q := AT v

satisfies

qi = sign (xi ) if xi 6= 0
|qi | < 1 if xi = 0

q is a subgradient of the `1 norm at x

For any vector u

||x + u||1 ≥ ||x ||1 + qTu
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For any x + h such that Ah = 0

||x + h||1 ≥ ||x ||1 + qTh (q is a subgradient)

= ||x ||1 + vTAh (q = AT v)
= ||x ||1

If AT (where T is the support of x) is injective, x is the unique solution
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Dual certificate

A dual certificate of the TV norm at

x =
∑
i

aiδti ai ∈ R, ti ∈ T

guarantees that x is the unique solution if

q (t) := (KT v) (t) =
n∑

j=1

vjK (sj − t)

q (ti ) = sign (ai ) if ti ∈ T

|q (t)| < 1 if t /∈ T



In 1D

=

Range of KT is spanned by shifted copies of K fixed at the samples



Certificate for deconvolution
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t2
t3

Aim: Interpolate using PSFs centered at samples



Deconvolution as sparse recovery

Certifying optimality

A sampling theorem for deconvolution



Aim (1D)

Build certificate for arbitrary signals/measurements assuming:

1. Signal support has minimum separation

2. Measurements satisfy sampling-proximity condition with respect to
signal support



Certificate construction

Idea: Only use subset of data S̃ containing 2 samples close to each spike

q(t) =
∑
sj∈S̃

vjK (sj − t)

Fit v so that for all ti ∈ T

q (ti ) = sign (ai )

q′ (ti ) = 0



It works!
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Gaussian Kernel



Certificate construction

Problem: The construction is difficult to analyze (coefficients vary)

Solution: Reparametrization into bumps and waves

q(t) =
∑
sj∈S̃

vjK (sj − t)

=
∑
ti∈T

αiBti (t, s̃i ,1, s̃i ,2) + βiWti (t, s̃i ,1, s̃i ,2),



Bump function

s1 s2ti

+1
Bump
Gaussian

Bti (t, s̃i ,1, s̃i ,2) := bi ,1K (s̃i ,1 − t) + bi ,2K (s̃i ,2 − t)

Bti (ti , s̃i ,1, s̃i ,2) = 1
∂

∂t
Bti (ti , s̃i ,1, s̃i ,2) = 0



Wave function

s1
s2ti

Wave
Gaussian

Wti (t, s̃i ,1, s̃i ,2) = wi ,1K (s̃i ,1 − t) + wi ,2K (s̃i ,2 − t)

Wti (ti , s̃i ,1, s̃i ,2) = 0
∂

∂t
Wti (ti , s̃i ,1, s̃i ,2) = 1



Certificate construction

Reparametrization decouples the coefficients

q(t) =
∑
sj∈S̃

vjK (sj − t)

=
∑
ti∈T

αiBti (t, s̃i ,1, s̃i ,2) + βiWti (t, s̃i ,1, s̃i ,2)

≈
∑
ti∈T

sign (ai )Bti (t, s̃i ,1, s̃i ,2)



Certificate for deconvolution
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Certificate for deconvolution
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Exact recovery guarantees in 1D [Bernstein, F. 2017]
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Guarantees vs numerical experiments (1D)
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Aim (2D)

Build certificate for arbitrary signals/measurements assuming:

1. Signal support has minimum separation

2. Measurements are on a grid with a certain width



In 2D, regular grid
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2D certificate construction

Same idea: Use subset of data S̃ containing 3 samples close to each spike

q(t) =
∑
sj∈S̃

vjK (sj − t)

Fit v so that for all ti ∈ T

q (ti ) = sign (ai )

∇q (ti ) = 0

Reparametrize into bumps and waves to make analysis tractable



2D certificate
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2D bump function
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2D wave function
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Challenge

Controlling the magnitude of the certificate requires geometric arguments
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Exact recovery guarantees in 2D [McDonald, Bernstein, F. 2019]



Guarantees vs numerical experiments (2D)



Conclusion

Compressed-sensing intuition / tools for randomized measurements
do not apply to deconvolution

Conditions beyond sparsity are necessary to make the problem well posed

Under such conditions the method achieves exact recovery

Proofs rely on novel dual-certificate construction (bumps and waves)
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