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Data-driven estimation of sinusoid frequencies

Joint work with Brett Bernstein, Gautier Izacard, and Sreyas Mohan



Frequency estimation (aka super-resolution of line spectra)
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Traditional methodology

I Linear estimation (periodogram)

I Parametric methods based on eigendecomposition of sample
covariance matrix (MUSIC, ESPRIT, matrix pencil)

I Sparsity-based methods



Learning-based approach
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Frequency-representation module
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Fourier transform of learned transformations
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Comparison to state of the art
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For more information

A Learning-Based Framework for Line-Spectra Super-resolution.
G. Izacard, B. Bernstein, C. Fernandez-Granda. ICASSP 2019

Data-driven Estimation of Sinusoid Frequencies. G. Izacard,
S. Mohan, C. Fernandez-Granda. NeurIPS 2019
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Image denoising

Goal: Estimate image from noisy data

Popular (yet somewhat unrealistic) model: Additive Gaussian noise

+ =

Blind denoising: Noise level is unknown
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Deep learning for blind image denoising

I Gather dataset of natural images

I Add noise from a range of noise levels

I Train CNN to estimate clean image minimizing mean squared error

I Works very well for additive Gaussian noise (state of the art)



Generalization across noise levels

What if we test on noise level not seen during training?

Training data Test image

CNN

(low noise) (high noise)
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First-order Taylor expansion

Let f be the function learned by a CNN trained for denoising

The first-order Taylor expansion for a fixed input y is exact

x̂ = f (y) = WLR(. . .W2R(W1y + b1) + b2 . . .) + bL

= Ayy + by

W1, W2, . . . , WL are weight matrices
b1, b2, . . . , bL are bias vectors



Residual and net bias
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Bias-free networks

Within training range, learned net bias is small

Out of the range, it explodes, coinciding with dramatic performance loss

Net bias seems to overfit trained noise levels

This motivates removing all additive constants

f (y) = WLR(. . .W2R(W1y+) + . . .)+
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It works
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DnCNN [Zhang et al 2016] vs bias-free DnCNN
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DnCNN [Zhang et al 2016] vs bias-free DnCNN
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DnCNN [Zhang et al 2016] vs bias-free DnCNN
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DenseNet [Huang et al 2017] vs bias-free DenseNet
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UNet [Ronneberger et al 2015] vs bias-free UNet
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Recurrent CNN [Zhang et al 2018] vs bias-free recurrent
CNN
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Linear estimation

Linear regression from pixels to pixels is intractable (104 × 104 matrix!)

No need: covariance between pixels is translation invariant

Pixel 44 Pixel 148 Pixel 252 Pixel 356
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Linear estimator can be parameterized by a convolutional filter



Wiener filter [Wiener 1950]

Filter w that achieves optimal mean squared error

Random vectors: x (image), z (noise), y := x + z (data)

Fourier transform is an orthogonal transformation so

E
(
||x − w ∗ y ||22

)
= E

(
||x̂ − ŵ ◦ ŷ ||22

)

=
∑
k

E
(
(x̂k − ŵk ŷk)

2)
We can estimate each Fourier coefficient separately
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Wiener filter

If x and z are independent, and z is i.i.d. with variance σ2

ŵopt
k := argmin

ŵ
E
(
(x̂k − ŵk ŷk)

2)
=

E
(
|x̂k |2

)
E
(
|x̂k |2

)
+ nσ2

Depends on spectral statistics of natural images and on noise level σ2

(n is the number of pixels)



Image data: Mean square of Fourier coefficients
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Wiener filter: σ = 0.04

Frequency Space

50 0 50
k2

75

50

25

0

25

50

75

k 1

10 3

10 2

10 1

0.00

0.05

0.10

0.15

0.20

0.25

0.30



Wiener filter: σ = 0.1
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Wiener filter: σ = 0.2

Frequency Space
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Wiener filter

Two perspectives:

1. Image domain: Weighted average of nearby pixels

2. Frequency domain: Weighted projection onto low-pass 2D sinusoids
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Wiener filter

Image domain: Weighted average of nearby pixels

Problem: Same average for each pixel

Blurs edges and other features

Previous solution:
Adapt filter locally (e.g. bilateral filter [Tomasi and Manduchi 1998])



Bias-free CNN is locally linear

f (y) = WL R WL−1...R W1y = Ayy



Rows interpreted as filters

Estimate at pixel i :

fBF(y)(i) = (Ayy)(i) =< ith row of Ay , y >



Low noise

Noisy image Denoised
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Medium noise

Noisy image Denoised
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High noise

Noisy image Denoised

Pixel 1 Pixel 2 Pixel 3



Conclusion

BF-CNN implicitly learns filters adapted to image structure and noise!
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Wiener filter

Frequency domain: Approximate projection onto low-pass 2D sinusoids

Problem: Same projection for each image

Blurs edges and other features



Projection onto union of subspaces

Previous methodology [too many works to cite...]:

1. Learn/design overcomplete dictionary of basis functions

2. Select sparse subset for each image/patch through
thresholding/optimization

3. Project on span of sparse subset

Projection onto union of low-dimensional subspaces



Bias-free CNN is locally linear

f (y) = WL R WL−1...R W1y = Ayy



SVD analysis

Ay = U S V T

Empirical observations:

I Matrix is approximately symmetric U ≈ V

I Matrix is approximately low-rank



Singular values
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Singular vectors computed from noisy image

Clean image

Large singular
values

Small singular
values



Dimensionality of learned subspace

Approximate dimensionality = sum of squared singular values
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Conclusion

BF-CNN implicitly learns to project onto union of subspaces adapted
to image features and noise!



For more information

Robust and interpretable blind image denoising via bias-free
convolutional neural networks
S. Mohan, Z. Kadkhodaie, E. Simoncelli, C. Fernandez-Granda



Directions for future research

Properties of the learned representation in frequency estimation

Why does bias hinder generalization across noise levels?

Linear-algebraic analysis is completely empirical and very local

How are these adaptive filters / unions of subspaces learned?

How do the learned mechanisms vary as we change the input?
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