

# Demixing Sines and Spikes: Spectral Super-resolution in the Presence of Outliers

Carlos Fernandez-Granda www.cims.nyu.edu/~cfgranda

Analysis Seminar, Courant

12/1/2016

### Acknowledgements

Joint work with Gongguo Tang, Xiaodong Wang and Le Zheng

Project funded by NSF award DMS-1616340

Compressed sensing

Spectral super-resolution

Spectral super-resolution in the presence of outliers

Demixing via semidefinite programming

Greedy demixing + local optimization

#### Compressed sensing

Spectral super-resolution

Spectral super-resolution in the presence of outliers

Demixing via semidefinite programming

Greedy demixing + local optimization

# Magnetic resonance imaging



# Images are sparse/compressible

### Wavelet coefficients





Data: Samples from spectrum

Problem: Sampling is time consuming (annoying, patient might move)

Images are compressible ( $\approx$  sparse)

Can we recover compressible signals from less data?

- 1. Undersample data randomly
- 2. Solve the optimization problem

minimize||wavelet transform of estimate||1subject tofrequency samples of estimate = data

# Compressed sensing in MRI

### x2 Undersampling





Compressed sensing (basic model)

### 1. Undersample the spectrum randomly



### Compressed sensing (basic model)

2. Solve the optimization problem

minimize ||estimate||<sub>1</sub>
subject to frequency samples of estimate = data

## Compressed sensing (basic model)

- 2. Solve the optimization problem
  - $\begin{array}{ll} \textit{minimize} & ||\texttt{estimate}||_1 \\ \textit{subject to} & \textit{frequency samples of estimate} = \mathsf{data} \end{array}$

Signal







### Theoretical questions

- 1. Is the problem well posed?
- 2. When can we guarantee that  $\ell_1$ -norm minimization works?





Measurements = random DFT coefficients



#### Measurements = random DFT coefficients



What is the effect of the measurement operator on sparse vectors?



#### Are sparse submatrices always well conditioned?



#### Are sparse submatrices always well conditioned?

### Restricted isometry property (RIP)

An  $m \times n$  matrix A satisfies the restricted isometry property if there is  $0 < \delta < 1$  such that for any s-sparse vector x

$$(1-\delta) ||\mathbf{x}||_2 \le ||A\mathbf{x}||_2 \le (1+\delta) ||\mathbf{x}||_2$$

Random Fourier matrices satisfy the RIP with high probability if s is O(measurements) up to log factors (Candès, Tao 2006)

2s-RIP implies that for any s-sparse signals  $x_1, x_2$ 

$$||Ax_2 - Ax_1||_2$$

### Restricted isometry property (RIP)

An  $m \times n$  matrix A satisfies the restricted isometry property if there is  $0 < \delta < 1$  such that for any s-sparse vector x

$$(1-\delta) ||\mathbf{x}||_2 \le ||A\mathbf{x}||_2 \le (1+\delta) ||\mathbf{x}||_2$$

Random Fourier matrices satisfy the RIP with high probability if s is O(measurements) up to log factors (Candès, Tao 2006)

2s-RIP implies that for any s-sparse signals  $x_1, x_2$ 

$$||Ax_2 - Ax_1||_2 = ||A(x_2 - x_1)||_2$$

### Restricted isometry property (RIP)

An  $m \times n$  matrix A satisfies the restricted isometry property if there is  $0 < \delta < 1$  such that for any s-sparse vector x

$$(1-\delta) ||\mathbf{x}||_2 \le ||A\mathbf{x}||_2 \le (1+\delta) ||\mathbf{x}||_2$$

Random Fourier matrices satisfy the RIP with high probability if s is O(measurements) up to log factors (Candès, Tao 2006)

2s-RIP implies that for any s-sparse signals  $x_1, x_2$ 

$$||A\mathbf{x_2} - A\mathbf{x_1}||_2 = ||A(\mathbf{x_2} - \mathbf{x_1})||_2 \\ \ge (1 - \delta) ||\mathbf{x_2} - \mathbf{x_1}||_2$$

### Theoretical questions

- $1. \ \mbox{ls the problem well posed}?$
- 2. When can we guarantee that  $\ell_1$ -norm minimization works?

Characterizing the minimum  $\ell_1$ -norm estimate

Aim: Show that the original signal x is the solution of

 $\begin{array}{ll} \text{minimize} & ||\mathbf{x}'||_1 \\ \text{subject to} & A\mathbf{x}' = \mathbf{y} \end{array}$ 

This is guaranteed by the existence of a dual certificate

### $oldsymbol{q} \in \mathbb{C}^m$ is a dual certificate associated to $oldsymbol{x}$ if

$$\boldsymbol{v} := A^* \boldsymbol{q}$$

satisfies

$$oldsymbol{v}_i = rac{oldsymbol{x}_i}{|oldsymbol{x}_i|} \qquad ext{if } oldsymbol{x}_i 
eq 0 \ |oldsymbol{v}_i| < 1 \qquad ext{if } oldsymbol{x}_i = 0$$

## Example of $\boldsymbol{v}$



Linear combination of row vectors that interpolates the sign of the signal

 $m{v}$  is a subgradient of the  $\ell_1$  norm at  $m{x}$ 

For any other feasible point  $\mathbf{x} + \mathbf{h}$  such that  $A\mathbf{h} = 0$ 

 $||\boldsymbol{x} + \boldsymbol{h}||_1$ 

 $m{v}$  is a subgradient of the  $\ell_1$  norm at  $m{x}$ 

For any other feasible point  $\mathbf{x} + \mathbf{h}$  such that  $A\mathbf{h} = 0$ 

 $||\mathbf{x} + \mathbf{h}||_1 \ge ||\mathbf{x}||_1 + \langle \mathbf{v}, \mathbf{h} \rangle$ 

 $\boldsymbol{v}$  is a subgradient of the  $\ell_1$  norm at  $\boldsymbol{x}$ 

For any other feasible point  $\mathbf{x} + \mathbf{h}$  such that  $A\mathbf{h} = 0$ 

$$\begin{aligned} ||\boldsymbol{x} + \boldsymbol{h}||_1 &\geq ||\boldsymbol{x}||_1 + \langle \boldsymbol{v}, \boldsymbol{h} \rangle \\ &= ||\boldsymbol{x}||_1 + \langle A^* \boldsymbol{q}, \boldsymbol{h} \rangle \end{aligned}$$

 $m{v}$  is a subgradient of the  $\ell_1$  norm at  $m{x}$ 

For any other feasible point  $\mathbf{x} + \mathbf{h}$  such that  $A\mathbf{h} = 0$ 

$$egin{aligned} ||m{x}+m{h}||_1 &\geq ||m{x}||_1 + \langlem{v},m{h}
angle \ &= ||m{x}||_1 + \langlem{A}^*m{q},m{h}
angle \ &= ||m{x}||_1 + \langlem{q},m{A}m{h}
angle \end{aligned}$$

 $\boldsymbol{v}$  is a subgradient of the  $\ell_1$  norm at  $\boldsymbol{x}$ 

For any other feasible point  $\mathbf{x} + \mathbf{h}$  such that  $A\mathbf{h} = 0$ 

$$||\mathbf{x} + \mathbf{h}||_1 \ge ||\mathbf{x}||_1 + \langle \mathbf{v}, \mathbf{h} \rangle$$
  
=  $||\mathbf{x}||_1 + \langle A^* \mathbf{q}, \mathbf{h} \rangle$   
=  $||\mathbf{x}||_1 + \langle \mathbf{q}, A\mathbf{h} \rangle$   
=  $||\mathbf{x}||_1$ 

 $\boldsymbol{v}$  is a subgradient of the  $\ell_1$  norm at  $\boldsymbol{x}$ 

For any other feasible point  $\mathbf{x} + \mathbf{h}$  such that  $A\mathbf{h} = 0$ 

$$||\mathbf{x} + \mathbf{h}||_1 \ge ||\mathbf{x}||_1 + \langle \mathbf{v}, \mathbf{h} \rangle$$
  
=  $||\mathbf{x}||_1 + \langle A^* \mathbf{q}, \mathbf{h} \rangle$   
=  $||\mathbf{x}||_1 + \langle \mathbf{q}, A\mathbf{h} \rangle$   
=  $||\mathbf{x}||_1$ 

By a (slightly) more complicated argument  $\boldsymbol{x}$  is the unique solution

### Dual certificate for compressed sensing



Aim: Show that a dual certificate exists for *any* sparse support and sign pattern

## Certificate for compressed sensing



Idea: Minimum-energy interpolator has closed-form solution

## Certificate for compressed sensing



Valid certificate if the sparsity is O (measurements) up to log factors (Candès, Romberg, Tao 2006)

Compressed sensing

#### Spectral super-resolution

Spectral super-resolution in the presence of outliers

Demixing via semidefinite programming

Greedy demixing + local optimization
Goal: Estimate the spectrum of a multisinusoidal signal from a finite number of samples

Fundamental problem in signal processing

Classic techniques:

- Linear nonparametric methods: windowed periodogram
- Prony-based methods: MUSIC, matrix pencil, ESPRIT...

This talk: optimization-based spectral super-resolution

## Spectral super-resolution



# Spectral super-resolution



### Spectral super-resolution



Data:  $g(I) = \int_0^1 \exp(i2\pi f I) \, \mathrm{d}\mu(f), \quad 1 \le I \le n$ 

Underdetermined linear system:  $\mathbf{y} = \mathcal{F}_n \mu$ 



## Theoretical questions

- 1. Is the problem well posed?
- 2. When can we guarantee that optimization-based approaches work?





Effect of measurement operator on sparse vectors?



#### Submatrix can be very ill conditioned!



#### If the support is spread out there is hope

#### Minimum separation

The minimum separation  $\Delta$  of the support T of  $\mu$  is

$$\Delta = \inf_{(f,f') \in \text{support}(\mu): f \neq f'} |f - f'|$$



## Conditioning of submatrix with respect to $\Delta$

- If  $\Delta < 2/(n-1)$  the problem is ill posed
- If  $\Delta > 2/(n-1)$  the problem becomes well posed
- Proved asymptotically by Slepian and non-asymptotically by Moitra



2/(n-1) is the diameter of the main lobe of the impulse response of the measurement operator (twice the Rayleigh distance in optics)

Example: 25 spectral lines, n = 2001,  $\Delta = 1.6/(n-1)$ 

Spectrum of the signals

Spectrum of the data





Example: 25 spectral lines,  $n=2001, \ \Delta=1.6/\left(n-1
ight)$ 



Spectrum of the signals

Spectrum of the data

Example: 25 spectral lines, n = 2001,  $\Delta = 1.6/(n-1)$ 

The difference is almost in the null space of the measurement operator



Difference of signal spectra

Difference of signals

## Theoretical questions

- $1. \ \mbox{ls the problem well posed}?$
- 2. When can we guarantee that optimization-based approaches work?

#### Total-variation norm

• Continuous counterpart of the  $\ell_1$  norm

• If 
$$\mu = \sum_j \mathbf{x}_j \delta_{f_j}$$
 then  $||\mu||_{\mathsf{TV}} = ||\mathbf{x}||_1$ 

- Not the total variation of a piecewise-constant function
- Formal definition: For a complex measure  $\nu$

$$||\nu||_{\mathsf{TV}} = \sup \sum_{j=1}^{\infty} |\nu(B_j)|,$$

(supremum over all finite partitions  $B_j$  of [0, 1])

## Estimation via convex programming

For data of the form  ${m y}={\cal F}_n\,\mu$ , we solve

$$\min_{\tilde{\mu}} ||\tilde{\mu}||_{\mathsf{TV}} \quad \text{subject to} \quad \mathcal{F}_n \, \tilde{\mu} = \boldsymbol{y},$$

over all finite complex measures  $\tilde{\mu}$  supported on [0, 1]

A dual certificate  $\boldsymbol{q} \in \mathbb{C}^n$  of the TV norm at

$$\mu := \sum_{j=1}^{k} \mathbf{x}_{j} \delta_{f_{j}} \qquad \mathbf{x} \in \mathbb{C}^{k}, \, f_{j} \in T$$

satisfies

$$Q(f) := \mathcal{F}_n^* \boldsymbol{q}(f) = \sum_{l=1}^n \boldsymbol{q}_l e^{-i2\pi l f}$$
$$Q(f_j) = \frac{\boldsymbol{x}_j}{|\boldsymbol{x}_j|} \quad \text{if } f_j \in T$$
$$|Q(f)| < 1 \quad \text{if } f \notin T$$

We call Q a dual polynomial

# Dual polynomial



Linear combination of low-pass sinusoids interpolating the sign

Q is a subgradient of the TV norm at  $\mu$ , in the sense that

$$||\mu + \nu||_{\mathsf{TV}} \ge ||\mu||_{\mathsf{TV}} + \langle Q, \nu \rangle, \quad \langle Q, \nu \rangle := \mathsf{Re}\left[\int_{[0,1]} \overline{Q(f)} \, \mathrm{d}\nu(f)\right]$$

$$||\mu + \nu||_{\mathsf{TV}}$$

Q is a subgradient of the TV norm at  $\mu$ , in the sense that

$$||\mu + \nu||_{\mathsf{TV}} \ge ||\mu||_{\mathsf{TV}} + \langle Q, \nu \rangle, \quad \langle Q, \nu \rangle := \mathsf{Re}\left[\int_{[0,1]} \overline{Q(f)} \, \mathrm{d}\nu(f)\right]$$

$$||\mu + \nu||_{\mathsf{TV}} \ge ||\mu||_{\mathsf{TV}} + \langle Q, \nu \rangle$$

Q is a subgradient of the TV norm at  $\mu$ , in the sense that

$$||\mu + \nu||_{\mathsf{TV}} \ge ||\mu||_{\mathsf{TV}} + \langle Q, \nu \rangle, \quad \langle Q, \nu \rangle := \mathsf{Re}\left[\int_{[0,1]} \overline{Q(f)} \, \mathrm{d}\nu(f)\right]$$

$$\begin{aligned} ||\mu + \nu||_{\mathsf{TV}} &\geq ||\mu||_{\mathsf{TV}} + \langle Q, \nu \rangle \\ &= ||\mu||_{\mathsf{TV}} + \langle \mathcal{F}_n^* \, \boldsymbol{q}, \nu \rangle \end{aligned}$$

Q is a subgradient of the TV norm at  $\mu$ , in the sense that

$$||\mu + \nu||_{\mathsf{TV}} \ge ||\mu||_{\mathsf{TV}} + \langle Q, \nu \rangle, \quad \langle Q, \nu \rangle := \mathsf{Re}\left[\int_{[0,1]} \overline{Q(f)} \, \mathrm{d}\nu(f)\right]$$

$$\begin{aligned} ||\mu + \nu||_{\mathsf{TV}} &\geq ||\mu||_{\mathsf{TV}} + \langle Q, \nu \rangle \\ &= ||\mu||_{\mathsf{TV}} + \langle \mathcal{F}_n^* \, \boldsymbol{q}, \nu \rangle \\ &= ||\mu||_{\mathsf{TV}} + \langle \boldsymbol{q}, \mathcal{F}_n \nu \rangle \end{aligned}$$

Q is a subgradient of the TV norm at  $\mu$ , in the sense that

$$||\mu + \nu||_{\mathsf{TV}} \ge ||\mu||_{\mathsf{TV}} + \langle Q, \nu \rangle, \quad \langle Q, \nu \rangle := \mathsf{Re}\left[\int_{[0,1]} \overline{Q(f)} \, \mathrm{d}\nu(f)\right]$$

$$\begin{aligned} ||\mu + \nu||_{\mathsf{TV}} &\geq ||\mu||_{\mathsf{TV}} + \langle Q, \nu \rangle \\ &= ||\mu||_{\mathsf{TV}} + \langle \mathcal{F}_n^* \, \boldsymbol{q}, \nu \rangle \\ &= ||\mu||_{\mathsf{TV}} + \langle \boldsymbol{q}, \mathcal{F}_n \nu \rangle \\ &= ||\mu||_{\mathsf{TV}} \end{aligned}$$

Q is a subgradient of the TV norm at  $\mu$ , in the sense that

$$||\mu + \nu||_{\mathsf{TV}} \ge ||\mu||_{\mathsf{TV}} + \langle Q, \nu \rangle, \quad \langle Q, \nu \rangle := \mathsf{Re}\left[\int_{[0,1]} \overline{Q(f)} \, \mathrm{d}\nu(f)\right]$$

For any  $\mu + \nu$  such that  $\mathcal{F}_n \nu = 0$ 

$$\begin{aligned} ||\mu + \nu||_{\mathsf{TV}} &\geq ||\mu||_{\mathsf{TV}} + \langle Q, \nu \rangle \\ &= ||\mu||_{\mathsf{TV}} + \langle \mathcal{F}_n^* \, \boldsymbol{q}, \nu \rangle \\ &= ||\mu||_{\mathsf{TV}} + \langle \boldsymbol{q}, \mathcal{F}_n \nu \rangle \\ &= ||\mu||_{\mathsf{TV}} \end{aligned}$$

Existence of Q actually implies that  $\mu$  is the unique solution



Aim: Show that Q exists for any  $\mu$  under a min. separation condition



$$Q(f) = \sum_{j=1}^{k} \alpha_j \, \bar{K} \, (f - f_j)$$



$$Q(f) = \sum_{j=1}^{k} \alpha_j \, \bar{K} \, (f - f_j)$$



$$Q(f) = \sum_{j=1}^{k} \alpha_j \, \bar{K} \, (f - f_j)$$



$$Q(f) = \sum_{j=1}^{k} \alpha_j \, \bar{K} \, (f - f_j)$$



$$Q(f) = \sum_{j=1}^{k} \alpha_j \, \bar{K} \, (f - f_j)$$



Problem: Magnitude of certificate locally exceeds 1



Problem: Magnitude of certificate locally exceeds 1

Solution: Add correction term and force the derivative of the certificate to equal zero on the support

$$Q(f) = \sum_{j=1}^{k} \alpha_j \, \bar{K} \left( f - f_j \right) \, + \, \beta_j \, \bar{K}' \left( f - f_j \right)$$



Problem: Magnitude of certificate locally exceeds 1

Solution: Add correction term and force the derivative of the certificate to equal zero on the support

$$Q(f) = \sum_{j=1}^{k} \alpha_j \, \bar{K} \left( f - f_j \right) \, + \, \beta_j \, \bar{K}' \left( f - f_j \right)$$

Guarantees for spectral super-resolution

#### Theorem [Candès, F. 2012]

If the minimum separation of the spectrum support obeys

$$\Delta \geq \frac{4}{n-1}$$

then recovery via convex programming is exact

#### Theorem [Candès, F. 2012]

In 2D convex programming super-resolves spectral lines with a minimum separation of

$$\Delta \geq \frac{5.76}{n-1}$$

from samples of the form g(1,1), g(1,2), ..., g(n,n)
Guarantees for spectral super-resolution

Theorem [F. 2016]

If the minimum separation of the spectrum support obeys

$$\Delta \geq \frac{2.52}{n-1},$$

then recovery via convex programming is exact

### Theorem [Candès, F. 2012]

In 2D convex programming super-resolves spectral lines with a minimum separation of

$$\Delta \geq \frac{5.76}{n-1}$$

from samples of the form g(1,1), g(1,2), ..., g(n,n)

### Spectral super-resolution with missing data

Assume we observe a random subset of entries  $\ensuremath{\mathcal{S}}$ 

New measurement operator  $\mathcal{F}_{\mathcal{S}},$  for any measure  $\nu$ 

$$\mathcal{F}_{\mathcal{S}}\nu := (\mathcal{F}_n\nu)_{\mathcal{S}}$$

Signal: 
$$\mu := \sum_{j=1}^{k} \mathbf{x}_j \,\delta\left(f - f_j\right)$$

Data:  $\mathbf{y}_{\mathcal{S}} := \mathcal{F}_{\mathcal{S}} \mu$ 

Can we still recover the signal?

Compressed sensing off the grid (Tang et al 2013)

Solving

$$\min_{\tilde{\mu}} ||\tilde{\mu}||_{\mathsf{TV}} \quad \mathsf{subject to} \quad \mathcal{F}_{\mathcal{S}} \, \tilde{\mu} := \boldsymbol{y}_{\mathcal{S}}$$

achieves exact recovery with high prob. for  $k = \mathcal{O}(|\mathcal{S}|)$  up to log factors if

$$\frac{\mathbf{x}_1}{|\mathbf{x}_1|}, \frac{\mathbf{x}_2}{|\mathbf{x}_2|}, \cdots, \frac{\mathbf{x}_k}{|\mathbf{x}_k|}$$

are independent and uniformly distributed on the unit circle and

$$\Delta \geq \frac{4}{n-1}$$

Dual polynomial for compressed sensing off the grid

The only modification is the adjoint of the measurement operator

$$Q(f) := \mathcal{F}_{\mathcal{S}}^* \boldsymbol{q}(f) = \sum_{l \in \mathcal{S}} \boldsymbol{q}_l e^{-i2\pi l f}$$

$$Q(f_j) = \operatorname{sign}(\mathbf{x}_j)$$
 if  $f_j \in T$ 

$$|Q(f)| < 1 \qquad \qquad \text{if } f \notin T$$

#### Idea: Interpolate with undersampled kernel

# Random interpolation kernel





# Random interpolation kernel





Random interpolation kernel (derivative)





Random interpolation kernel (derivative)





### Dual polynomial for compressed sensing off the grid

Construct dual polynomial via interpolation

$$Q(f) = \sum_{j=1}^{k} lpha_j \, K \left( f - f_j 
ight) \, + \, eta_j \, K' \left( f - f_j 
ight)$$

Valid dual polynomial with high probability as long as

$$\frac{\mathbf{x}_1}{|\mathbf{x}_1|}, \frac{\mathbf{x}_2}{|\mathbf{x}_2|}, \cdots, \frac{\mathbf{x}_k}{|\mathbf{x}_k|}$$

are independent and uniformly distributed on the unit circle

Compressed sensing

Spectral super-resolution

#### Spectral super-resolution in the presence of outliers

Demixing via semidefinite programming

Greedy demixing + local optimization



 $g(t) := \sum_{j=1}^{k} \mathbf{x}_j \exp\left(i2\pi f_j t\right)$   $\mu := \sum_{j=1}^{k} \mathbf{x}_j \delta\left(f - f_j\right)$ 



$$\mathcal{F}_{n} \mu = \begin{bmatrix} g(1) & g(2) & \cdots & g(n) \end{bmatrix}^{T}$$



$$\mathcal{F}_{n} \mu = \begin{bmatrix} g(1) & g(2) & \cdots & g(n) \end{bmatrix}^{T}$$



Some samples are completely corrupted by an s-sparse vector  $oldsymbol{z} \in \mathbb{C}^n$ 



Data:  $\boldsymbol{y} := \mathcal{F}_n \, \mu + \boldsymbol{z}$ 

Linear nonparametric method: Gaussian periodogram

No noise (just *sines*)



Prony-based method: MUSIC

No noise (just *sines*)



Optimization-based method (dense-noise model)

No noise (just *sines*)



We incorporate a variable to model the sparse component

We promote sparsity of this component by penalizing its  $\ell_1$  norm

$$\min_{\tilde{\mu},\tilde{\boldsymbol{z}}} ||\tilde{\mu}||_{\mathsf{TV}} + \lambda ||\tilde{\boldsymbol{z}}||_{1} \text{ subject to } \mathcal{F}_{n} \tilde{\mu} + \tilde{\boldsymbol{z}} = \boldsymbol{y}$$

 $\lambda > 0$  is a regularization parameter

Optimization-based method (dense + sparse noise model)

No noise (just *sines*)



### Guarantees for demixing

#### Theorem [F., Tang, Wang, Zheng 2016]

Solving the optimization for  $\lambda = 1/\sqrt{n}$  recovers  $\mu$  and z exactly with probability  $1 - \epsilon$  as long as

$$k \leq C_k \left(\log \frac{n}{\epsilon}\right)^{-2} n,$$
  
 $s \leq C_s \left(\log \frac{n}{\epsilon}\right)^{-2} n,$ 

for fixed numerical constants  $C_k$ ,  $C_s$ 

Number of sines and spikes are both  $\mathcal{O}(n)$  up to logarithmic factors

### Assumptions

► The minimum separation of the spectrum support obeys

$$\Delta \geq \frac{2.52}{n-1}$$

Each entry of z is nonzero with probability s/n (independently)
The phases of x

$$rac{oldsymbol{x}_1}{oldsymbol{x}_1|},rac{oldsymbol{x}_2}{|oldsymbol{x}_2|},\cdots,rac{oldsymbol{x}_k}{|oldsymbol{x}_k|}$$

and of the nonzero entries  $\{i_1,\ldots,i_s\}$  of  $\pmb{z}$ 

$$\frac{\boldsymbol{z}_{i_1}}{|\boldsymbol{z}_{i_1}|}, \frac{\boldsymbol{z}_{i_2}}{|\boldsymbol{z}_{i_2}|}, \cdots, \frac{\boldsymbol{z}_{i_s}}{|\boldsymbol{z}_{i_s}|}$$

are independent and uniformly distributed on the unit circle

Experiments: s := 10



Experiments: k := 15



Experiments:  $\Delta := 2/(n-1)$ 

 $\lambda = 0.1$   $\lambda = 0.15$ 

 $\lambda = 0.2$ 



Dual certificate  $\boldsymbol{q} \in \mathbb{C}^n$  and corresponding dual polynomial Q

$$Q(f) = \mathcal{F}_n^* \boldsymbol{q} = \sum_{j=1}^n \boldsymbol{q}_j e^{-i2\pi j f}$$

for a measure  $\mu$  with support  ${\mathcal T}$  and sparse noise  ${\boldsymbol z}$  with support  $\Omega$ 

$$Q\left(f_{j}
ight)=rac{oldsymbol{x}_{j}}{|oldsymbol{x}_{j}|}, \qquad orall f_{j}\in T$$

$$|Q(f)| < 1, \quad \forall f \in T^{c}$$

$$oldsymbol{q}_j = \lambda rac{oldsymbol{z}_l}{|oldsymbol{z}_l|}, \qquad orall j \in \Omega,$$

 $|\boldsymbol{q}_j| < \lambda, \qquad \forall l \in \Omega^c$ 

Q(f)





```
Q is a "subgradient" of the TV norm at \mu
```

```
\frac{1}{\lambda} \boldsymbol{q} is a subgradient of the \ell_1 norm at \boldsymbol{z}
```

For any other feasible pair  $(\mu', \mathbf{z}')$  such that  $\mathbf{y} = \mathcal{F}_n \, \mu' + \mathbf{z}' = \mathcal{F}_n \, \mu + \mathbf{z}$ 

 $\left|\left|\boldsymbol{\mu}'\right|\right|_{\mathsf{TV}} + \lambda \left|\left|\boldsymbol{z}'\right|\right|_1$ 

Q is a "subgradient" of the TV norm at  $\mu$ 

 $\frac{1}{\lambda} \boldsymbol{q}$  is a subgradient of the  $\ell_1$  norm at  $\boldsymbol{z}$ 

For any other feasible pair  $(\mu', {m z}')$  such that  ${m y} = {\cal F}_n\,\mu' + {m z}' = {\cal F}_n\,\mu + {m z}$ 

$$\left|\left|\mu'\right|\right|_{\mathsf{TV}} + \lambda \left|\left|\boldsymbol{z}'\right|\right|_1 \ge \left|\left|\mu\right|\right|_{\mathsf{TV}} + \left\langle \boldsymbol{Q}, \mu' - \mu\right\rangle + \lambda \left|\left|\boldsymbol{z}\right|\right|_1 + \lambda \left\langle \frac{1}{\lambda} \boldsymbol{q}, \boldsymbol{z}' - \boldsymbol{z} \right\rangle$$

Q is a "subgradient" of the TV norm at  $\mu$ 

 $\frac{1}{\lambda} \boldsymbol{q}$  is a subgradient of the  $\ell_1$  norm at  $\boldsymbol{z}$ 

For any other feasible pair  $(\mu', {\pmb z}')$  such that  ${\pmb y} = {\cal F}_n\,\mu' + {\pmb z}' = {\cal F}_n\,\mu + {\pmb z}$ 

$$\begin{split} \left| \left| \boldsymbol{\mu}' \right| \right|_{\mathsf{TV}} + \lambda \left| \left| \boldsymbol{z}' \right| \right|_{1} &\geq \left| \left| \boldsymbol{\mu} \right| \right|_{\mathsf{TV}} + \left\langle \boldsymbol{Q}, \boldsymbol{\mu}' - \boldsymbol{\mu} \right\rangle + \lambda \left| \left| \boldsymbol{z} \right| \right|_{1} + \lambda \left\langle \frac{1}{\lambda} \boldsymbol{q}, \boldsymbol{z}' - \boldsymbol{z} \right\rangle \\ &\geq \left| \left| \boldsymbol{\mu} \right| \right|_{\mathsf{TV}} + \left\langle \mathcal{F}_{\boldsymbol{n}}^{*} \boldsymbol{q}, \boldsymbol{\mu}' - \boldsymbol{\mu} \right\rangle + \lambda \left| \left| \boldsymbol{z} \right| \right|_{1} + \left\langle \boldsymbol{q}, \boldsymbol{z}' - \boldsymbol{z} \right\rangle \end{split}$$

$$Q$$
 is a "subgradient" of the TV norm at  $\mu$ 

$$rac{1}{\lambda}oldsymbol{q}$$
 is a subgradient of the  $\ell_1$  norm at  $oldsymbol{z}$ 

For any other feasible pair  $(\mu', {m z}')$  such that  ${m y} = {\cal F}_n\,\mu' + {m z}' = {\cal F}_n\,\mu + {m z}$ 

$$\begin{aligned} \left| \left| \mu' \right| \right|_{\mathsf{TV}} + \lambda \left| \left| \mathbf{z}' \right| \right|_{1} &\geq \left| \left| \mu \right| \right|_{\mathsf{TV}} + \left\langle \mathbf{Q}, \mu' - \mu \right\rangle + \lambda \left| \left| \mathbf{z} \right| \right|_{1} + \lambda \left\langle \frac{1}{\lambda} \mathbf{q}, \mathbf{z}' - \mathbf{z} \right\rangle \\ &\geq \left| \left| \mu \right| \right|_{\mathsf{TV}} + \left\langle \mathcal{F}_{n}^{*} \mathbf{q}, \mu' - \mu \right\rangle + \lambda \left| \left| \mathbf{z} \right| \right|_{1} + \left\langle \mathbf{q}, \mathbf{z}' - \mathbf{z} \right\rangle \\ &= \left| \left| \mu \right| \right|_{\mathsf{TV}} + \lambda \left| \left| \mathbf{z} \right| \right|_{1} + \left\langle \mathbf{q}, \mathcal{F}_{n} \, \mu' + \mathbf{z}' - \mathcal{F}_{n} \, \mu - \mathbf{z} \right\rangle \end{aligned}$$

$$Q$$
 is a "subgradient" of the TV norm at  $\mu$ 

$$rac{1}{\lambda}oldsymbol{q}$$
 is a subgradient of the  $\ell_1$  norm at  $oldsymbol{z}$ 

For any other feasible pair  $(\mu', {\pmb z}')$  such that  ${\pmb y} = {\cal F}_n\,\mu' + {\pmb z}' = {\cal F}_n\,\mu + {\pmb z}$ 

$$\begin{aligned} \left| \left| \mu' \right| \right|_{\mathsf{TV}} + \lambda \left| \left| \mathbf{z}' \right| \right|_{1} &\geq \left| \left| \mu \right| \right|_{\mathsf{TV}} + \left\langle Q, \mu' - \mu \right\rangle + \lambda \left| \left| \mathbf{z} \right| \right|_{1} + \lambda \left\langle \frac{1}{\lambda} \mathbf{q}, \mathbf{z}' - \mathbf{z} \right\rangle \\ &\geq \left| \left| \mu \right| \right|_{\mathsf{TV}} + \left\langle \mathcal{F}_{n}^{*} \mathbf{q}, \mu' - \mu \right\rangle + \lambda \left| \left| \mathbf{z} \right| \right|_{1} + \left\langle \mathbf{q}, \mathbf{z}' - \mathbf{z} \right\rangle \\ &= \left| \left| \mu \right| \right|_{\mathsf{TV}} + \lambda \left| \left| \mathbf{z} \right| \right|_{1} + \left\langle \mathbf{q}, \mathcal{F}_{n} \, \mu' + \mathbf{z}' - \mathcal{F}_{n} \, \mu - \mathbf{z} \right\rangle \\ &= \left| \left| \mu \right| \right|_{\mathsf{TV}} + \lambda \left| \left| \mathbf{z} \right| \right|_{1} \end{aligned}$$

$$Q$$
 is a "subgradient" of the TV norm at  $\mu$ 

$$rac{1}{\lambda}oldsymbol{q}$$
 is a subgradient of the  $\ell_1$  norm at  $oldsymbol{z}$ 

For any other feasible pair  $(\mu', {\pmb z}')$  such that  ${\pmb y} = {\cal F}_n\,\mu' + {\pmb z}' = {\cal F}_n\,\mu + {\pmb z}$ 

$$\begin{aligned} \left| \left| \mu' \right| \right|_{\mathsf{TV}} + \lambda \left| \left| \mathbf{z}' \right| \right|_{1} &\geq \left| \left| \mu \right| \right|_{\mathsf{TV}} + \left\langle Q, \mu' - \mu \right\rangle + \lambda \left| \left| \mathbf{z} \right| \right|_{1} + \lambda \left\langle \frac{1}{\lambda} \mathbf{q}, \mathbf{z}' - \mathbf{z} \right\rangle \\ &\geq \left| \left| \mu \right| \right|_{\mathsf{TV}} + \left\langle \mathcal{F}_{n}^{*} \mathbf{q}, \mu' - \mu \right\rangle + \lambda \left| \left| \mathbf{z} \right| \right|_{1} + \left\langle \mathbf{q}, \mathbf{z}' - \mathbf{z} \right\rangle \\ &= \left| \left| \mu \right| \right|_{\mathsf{TV}} + \lambda \left| \left| \mathbf{z} \right| \right|_{1} + \left\langle \mathbf{q}, \mathcal{F}_{n} \, \mu' + \mathbf{z}' - \mathcal{F}_{n} \, \mu - \mathbf{z} \right\rangle \\ &= \left| \left| \mu \right| \right|_{\mathsf{TV}} + \lambda \left| \left| \mathbf{z} \right| \right|_{1} \end{aligned}$$

Existence of Q actually implies that  $(\mu, \mathbf{z})$  is the unique solution

$$Q(f) := Q_{\mathsf{aux}}(f) + R(f)$$

$$Q_{\mathsf{aux}}(f) := \sum_{I \in \Omega^c} oldsymbol{q}_I e^{-i2\pi I f}$$

$$R(f) := \lambda \sum_{I \in \Omega} \frac{\mathbf{z}_I}{|\mathbf{z}_I|} e^{-i2\pi I f}$$

Satisfies condition

$$oldsymbol{q}_j = \lambda rac{oldsymbol{z}_l}{|oldsymbol{z}_l|} \qquad orall j \in \Omega$$

R(f)



We construct  $Q_{aux}$  via interpolation with a random kernel K (coeffs in  $\Omega^c$ )

$$Q_{\mathsf{aux}}(f) = \sum_{j=1}^{k} \alpha_j \, K \left(f - f_j\right) \, + \, eta_j \, K' \left(f - f_j\right)$$

To ensure

$$egin{aligned} Q\left(f_{j}
ight) &= rac{oldsymbol{x}_{j}}{|oldsymbol{x}_{j}|}, & f_{j} \in T, \ Q'\left(f_{j}
ight) &= 0, & f_{j} \in T \end{aligned}$$

we enforce

$$egin{aligned} Q_{\mathsf{aux}}\left(f_{j}
ight) &= rac{oldsymbol{x}_{j}}{|oldsymbol{x}_{j}|} - R\left(f_{j}
ight), \quad f_{j} \in \mathcal{T} \ Q_{\mathsf{aux}}'\left(f_{j}
ight) &= -R'\left(f_{j}
ight), \qquad f_{j} \in \mathcal{T} \end{aligned}$$
# Random interpolation kernel





Random interpolation kernel (derivative)





 $Q_{\mathrm{aux}}(f)$ 



Q(f)



Compressed sensing

Spectral super-resolution

Spectral super-resolution in the presence of outliers

#### Demixing via semidefinite programming

Greedy demixing + local optimization

## Practical implementation

Primal problem:

$$\begin{split} \min_{\tilde{\mu}, \tilde{\mathbf{z}}} ||\tilde{\mu}||_{\mathsf{TV}} + \lambda ||\tilde{\mathbf{z}}||_1 \quad \text{subject to} \quad \mathcal{F}_n \, \tilde{\mu} + \tilde{\mathbf{z}} = \mathbf{y} \\ \text{Infinite-dimensional variable } \tilde{x} \text{ (measure in } [0, 1]) \\ \text{First option: Discretizing } + \ell_1 \text{-norm minimization} \end{split}$$

## Practical implementation

### Primal problem:

$$\begin{split} \min_{\tilde{\mu}, \tilde{z}} ||\tilde{\mu}||_{\mathsf{TV}} + \lambda ||\tilde{z}||_1 \quad \text{subject to} \quad \mathcal{F}_n \, \tilde{\mu} + \tilde{z} = \mathbf{y} \\ \text{Infinite-dimensional variable } \tilde{x} \text{ (measure in } [0, 1]) \\ \text{First option: Discretizing } + \ell_1 \text{-norm minimization} \end{split}$$

Dual problem:

$$\begin{array}{ll} \max_{\boldsymbol{\eta}\in\mathbb{C}^n}\; \left<\boldsymbol{y},\boldsymbol{\eta}\right> \;\; \text{ subject to } \;\; \left|\left|\mathcal{F}_n^*\,\boldsymbol{\eta}\right|\right|_\infty \leq 1 \\ \\ \left|\left|\boldsymbol{\eta}\right|\right|_\infty \leq \lambda \end{array}$$

Finite-dimensional variable  $\eta$ , but infinite-dimensional constraint

$$\mathcal{F}_{n}^{*}\eta(f)=\sum_{l=-n}^{n}\eta_{l}e^{-i2\pi lf}$$

Second option: Solving the dual problem

## Lemma: Semidefinite representation

The Fejér-Riesz Theorem and the semidefinite representation of polynomial sums of squares imply that

$$\left|\left|\mathcal{F}_{c}^{*}\,\eta
ight|
ight|_{\infty}\leq1$$

is equivalent to

There exists a Hermitian matrix  $Q \in \mathbb{C}^{n imes n}$  such that

$$\begin{bmatrix} Q & \eta \\ \eta^* & 1 \end{bmatrix} \succeq 0, \qquad \sum_{i=1}^{n-j} Q_{i,i+j} = \begin{cases} 1, & j=0, \\ 0, & j=1,2,\ldots, n-1. \end{cases}$$

Consequence: The dual problem is a tractable semidefinite program

How do we obtain an estimator from the dual solution?

Dual solution vector: From strong duality

- $lacksim \hat{\eta}$  interpolates the sign of the primal solution  $\hat{z}$
- $\mathcal{F}_n^* \hat{\eta}$  interpolates the sign of the primal solution  $\hat{\mu}$

## Demixing via semidefinite programming



Compressed sensing

Spectral super-resolution

Spectral super-resolution in the presence of outliers

Demixing via semidefinite programming

Greedy demixing + local optimization

# Spectral super-resolution in the presence of outliers



$$\begin{bmatrix} g(1) \\ g(2) \\ \vdots \\ g(n) \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^{k} \mathbf{x}_{j} \exp(i2\pi f_{j}1) \\ \sum_{j=1}^{k} \mathbf{x}_{j} \exp(i2\pi f_{j}2) \\ \vdots \\ \sum_{j=1}^{k} \mathbf{x}_{j} \exp(i2\pi f_{j}n) \end{bmatrix} = \sum_{j=1}^{k} \mathbf{x}_{j} \begin{bmatrix} \exp(i2\pi f_{j}) \\ \exp(i2\pi 2f_{j}) \\ \vdots \\ \exp(i2\pi nf_{j}) \end{bmatrix}$$

# Spectral super-resolution in the presence of outliers



$$\boldsymbol{z} = \sum_{l \in \Omega} \boldsymbol{z}_l \begin{bmatrix} \boldsymbol{0} \\ \dots \\ \boldsymbol{1} \\ \dots \\ \boldsymbol{0} \end{bmatrix}$$

# Spectral super-resolution in the presence of outliers





$$\mathbf{y} = \sum_{j=1}^{k} \mathbf{x}_{j} \begin{bmatrix} \exp(i2\pi f_{j}) \\ \exp(i2\pi 2f_{j}) \\ \cdots \\ \exp(i2\pi nf_{j}) \end{bmatrix} + \sum_{l \in \Omega} \mathbf{z}_{l} \begin{bmatrix} 0 \\ \cdots \\ 1 \\ \cdots \\ 0 \end{bmatrix}$$

### Sinusoidal and spiky atoms

Consider the dictionary

$$\mathcal{D}:=\left\{ oldsymbol{a}\left(f,0
ight),\,f\in\left[0,1
ight]
ight\} \cup\left\{ oldsymbol{e}\left(l
ight),\,1\leq l\leq n
ight\}$$

where

$$\boldsymbol{a}(f) := \begin{bmatrix} e^{i2\pi f} \\ e^{i2\pi 2f} \\ \cdots \\ e^{i2\pi(n-1)f} \\ e^{i2\pi nf} \end{bmatrix} \qquad \boldsymbol{e}(I) := \begin{bmatrix} 0 \\ \cdots \\ 1 \\ \cdots \\ 0 \end{bmatrix}$$

According to our assumptions

$$oldsymbol{y} = \sum_{j=1}^{k} oldsymbol{x}_{j} oldsymbol{a}\left(f_{j}
ight) + \sum_{l \in \Omega} oldsymbol{z}_{l} oldsymbol{e}\left(l
ight)$$

Goal: Find sparse decomposition in the dictionary

- 1. Initialization: Set residual equal to the data vector  $\boldsymbol{y}$
- 2. Selection: Choose atom with higher correlation with residual
- 3. Pruning: Fit the current atoms to the data and discard any with small contributions, then update the residual

# Greedy demixing





Greedy demixing with local optimization

- 1. Initialization
- 2. Selection
- 3. Pruning
- 4. Local optimization: Fix the number of sinusoidal atoms  $\hat{k}$  and reestimate  $f_1, \ldots, f_{\hat{k}}$  by minimizing the function

$$L\left(f_{1},\ldots,f_{\hat{k}}\right):=\min_{\hat{\boldsymbol{x}}\in\mathbb{C}^{\hat{k}},\hat{\boldsymbol{z}}\in\mathbb{C}^{|\widehat{\Omega}|}}\left\|\boldsymbol{y}-\sqrt{n}\sum_{j=1}^{\hat{k}}\hat{\boldsymbol{x}}_{j}\,\boldsymbol{a}\left(f_{j},0\right)-\sum_{l\in\widehat{\Omega}}\hat{\boldsymbol{z}}_{l}\,\boldsymbol{e}\left(l\right)\right\|_{2}$$

then update the residual

# Greedy demixing with local optimization





# Conclusion

- Convex programming succeeds beyond compressed sensing if we restrict the class of signals of interest
- A tractable method based on semidefinite programming allows to perform spectral super-resolution in the presence of outliers
- Fast greedy method combined with nonconvex optimization yields promising results

## References: Compressed sensing

- Stable signal recovery from incomplete and inaccurate measurements. E. J. Candès, J. Romberg and T. Tao. Comm. Pure Appl. Math., 2005
- Decoding by linear programming. E. J. Candès and T. Tao. IEEE Trans. Inform. Theory, 2004
- Sparse MRI: The application of compressed sensing for rapid MR imaging.
   M. Lustig, D. Donoho and J. M. Pauly. Magn Reson Med., 2007

### References: Spectral super-resolution

- Towards a mathematical theory of super-resolution. E. J. Candès and C. Fernandez-Granda. Comm. on Pure and Applied Math., 2013
- Super-resolution of point sources via convex programming.
   C. Fernandez-Granda. Information and Inference, 2016
- Compressed Sensing off the grid. G. Tang, B. Bhaskar, P. Shah, and B. Recht. IEEE Trans. on Inf. Theory, 2016
- Demixing sines and spikes: robust spectral super-resolution in the presence of outliers. C. Fernandez-Granda, G. Tang, X. Wang, L. Zheng. 2016