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Motivation : Limits of resolution in imaging

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

R

5(t—1) optical system h(t —7)

Diffraction imposes a fundamental limit on the resolution of optical systems
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Signals of interest are often point sources : celestial bodies (astronomy),
line spectra (signal processing), molecules (fluorescence microscopy), . ..



Super-resolution
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Equivalently, extrapolating the high end of the spectrum




Mathematical model

» Signal : superposition of Dirac measures with support T
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Mathematical model

» Signal : superposition of Dirac measures with support T

X:Zajétj aje(i, tJ'ETC[O,l]
J

» Measurements : low-pass filtering with cut-off frequency f.

y = Fex  (vector of low-pass Fourier coefficients)

1
y(k) = / e 2T (d) =) _aje ™, ke Z [k <K
0 .
J



Equivalent problem : line-spectra estimation

Swapping time and frequency

» Signal : superposition of sinusoids
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Equivalent problem : line-spectra estimation

Swapping time and frequency

» Signal : superposition of sinusoids

X(t) = Zajei27rwjt aj € C, wj € T C [0, 1]
J

» Measurements : equispaced samples
%(1), x(2),X(3), .. x(n)

> Classical problem in signal processing
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Compressed sensing vs super-resolution

Compressed sensing Super-resolution
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spectrum interpolation spectrum extrapolation
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Sparsity is not enough

Sparse signals can be almost completely destroyed by low-pass filtering
(shown rigorously by Slepian in the 1970s)
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Signal Spectrum

Stable reconstruction is only possible for signals with non-clustered supports



Minimum separation
To exclude highly-clustered signals from our model, we control the
minimum separation A of the support T

A= inf It — ]|
(t,t')eT : t#t/
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Total-variation norm

v

Continuous counterpart of the ¢; norm

If x =3_; ajdy; then [[x[|ry =) ajl
Not the total variation of a piecewise-constant function

v

v

v

Formal definition : For a complex measure v
o
1V]lry = sup ) v (B,
j=1

(supremum over all finite partitions B; of [0, 1])



Recovery via convex programming

In the absence of noise, i.e. if y = F x, we solve

min ||X||;y subject to FcX =y,
X
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Recovery via convex programming

In the absence of noise, i.e. if y = F x, we solve

min ||X||;y subject to FcX =y,
X

over all finite complex measures X supported on [0, 1]

Theorem [Candés, F. 2012]

If the minimum separation of the signal support T obeys
A>2/f =2,

then recovery is exact



Minimum-distance condition

> A\c/2 is the Rayleigh resolution limit (half-width of measurement filter)
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Minimum-distance condition

> A\c/2 is the Rayleigh resolution limit (half-width of measurement filter)

Rayleigh resolution distance

» Numerical simulations show that TV-norm minimization fails if
A< A

» If A < \/2 some signals are almost in the nullspace of the
measurement operator (no method can achieve stable estimation)



Higher dimensions
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Higher dimensions

» Signal : superposition of point sources (delta measures) in 2D

» Measurements : low-pass 2D Fourier coefficients

Theorem [Candés, F. 2012]

TV-norm minimization yields exact recovery if

A > 238\

In dimension d, A > Cy \¢, where Cy only depends on d



Extensions

» Signal : piecewise-constant function

» Measurements : low-pass Fourier coefficients




Extensions

» Signal : piecewise-constant function

» Measurements : low-pass Fourier coefficients

Corollary

Solving min |[|X(V||1y subject to F.x =y

yields exact recovery if A > 2\,

Similar result for cont. differentiable piecewise-smooth functions



Proof (sketch)



Certificate of optimality

Proposition

For any support T C [0, 1] satisfying A > 2 A\, and every vector v € CI7!
such that
lvil =1 forall1 << |T]|

there exists a low-frequency trigonometric polynomial

fe
q(t): Z Ckei27rkt

k=—f.

obeying
at)=v, teT,
lg(t)l <1, t€[0,1\T.



Certificate of optimality
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Certificate of optimality

Lemma

The proposition implies that x = theT ajdy; is the unique solution to

min||X||q, subject to FcX = Fcx
X



Certificate of optimality : Proof

Take any feasible signal x’ = x + h and decompose h = ht + htc, where

hr = Z bj5tj = Z ei¢f|bj‘5tj (proof is easily generalized)

;eT teT

(1) v; = e yields g such that (qr,h7) = _ |bj| = ||h7]l1y
teT

(2) x" is feasible so {q, h) = (g7, hT) + (qTc, hTc) =0

l|hTe|ltv > [{qTe, hTe)| by Holder's inequality and ||g7<||, <1
=[{qr, hr)| by (2)
= [[hllrv by (1)



Certificate of optimality : Proof

Take any feasible signal x’ = x + h and decompose h = ht + htc, where

hr = Z bj5tj = Z ei¢f|bj‘5tj (proof is easily generalized)

;eT teT
1) v; = e "% yields g such that (qr, hT) = bj| = ||hT
j TV

teT
(2) x" is feasible so {q, h) = (g7, hT) + (qTc, hTc) =0

l|hTe|ltv > [{qTe, hTe)| by Holder's inequality and ||g7<||, <1
={gr,hr)| by (2)
= [lh7llrv by (1)
By this null-space condition and the fact that the TV norm is separable,
||y = lx + hrllry + [lhrellry = lIxllry + [1h7ellry = [TA7 Iy

> [Ix[lrv
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Construction of the certificate

JiWiN

Problem : magnitude of polynomial locally exceeds 1
Solution : add correction term and force ¢'(tx) =0 forall t, € T

Z ajiK(t = 1) + BiK'(t — 1))

teT



Robustness to noise
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Approximation at a higher resolution

Without noise, we achieve perfect precision, i.e. infinite resolution
y = Fex
This is impossible if the measurements are noisy
y=FXx+z
Resolution at scale X is quantified by convolution with kernel ¢, of width A
If the noise z has norm ¢, a trivial estimate xest achieves

qu/\c * (Xest - X)||L1 < 1)

How does the estimate degrade at a higher resolution ?



Super-resolution factor : spatial viewpoint

* A

Super-resolution factor

Ac
RF = €
=3

f



Super-resolution factor : spectral viewpoint

VA IEATE
Super-resolution factor

SRF = —

ah| ™



Approximation at a higher resolution

At the resolution of the measurements

[|Pae * (Xest — X)HLl <9
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Theorem [Candés, F. 2012]
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Approximation at a higher resolution

At the resolution of the measurements

[pr. * (Xest = x)|[, <0
At a higher resolution

Theorem [Candés, F. 2012]

If A > 2/f. then the solution X to

min ||X||;y subject to || FcX —yl|, <0,
X

satisfies  |[¢, * (X —x)|[,, S SRF?§

Another metric for stability is the accuracy of support detection :
Support detection in super-resolution. C. Fernandez-Granda. SampTA 2013



Algorithms
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Practical implementation

» Primal problem :

min ||X||;y subject to Fcx =y,
X

Infinite-dimensional variable x (measure in [0, 1])
» Dual problem :
max Re[y*u] subjectto ||Ffull, <1,
ucCn

n:=2f.+1

Finite-dimensional variable u, but infinite-dimensional constraint

f: U= Z ukel27rkt
k<|fe|

» Similar for relaxed versions that account for noise



Lemma : Semidefinite representation

[1F¢ ulloe <1

is equivalent to

There exists a Hermitian matrix Q@ € C"*" such that

Q u ! 1, j=o
[u* JEO’ 290, j=1,...

We can solve the dual problem, but how do we retrieve a primal solution ?



Implementation

Dual solution vector : Fourier coefficients of low-pass polynomial that
interpolates the sign of the primal solution



Implementation

Dual solution vector : Fourier coefficients of low-pass polynomial that
interpolates the sign of the primal solution




Implementation

Dual solution vector : Fourier coefficients of low-pass polynomial that
interpolates the sign of the primal solution

To estimate the support we




Implementation

Dual solution vector : Fourier coefficients of low-pass polynomial that
interpolates the sign of the primal solution

To estimate the support we

1. solve the sdp




Implementation

Dual solution vector : Fourier coefficients of low-pass polynomial that
interpolates the sign of the primal solution

To estimate the support we
1. solve the sdp

2. determine where the
magnitude of the
polynomial equals 1
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Example

SNR : 25 dB

\ N
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— Noisy measurements
- - -Low-res signal

J — High-res signal

- % Estimate
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Conclusion and future work

» To obtain theoretical guarantees for super-resolution in realistic
settings, we need conditions that avoid clustered supports

» Under a minimum-separation condition, convex programming achieves
exact recovery

» The method is provably robust to noise

» The optimization problem can be recast as a tractable semidefinite
program

» Research directions :

» Super-resolution of images with sharp edges
» Developing fast solvers to solve sdp formulation



For more details

» Towards a mathematical theory of super-resolution. E. J. Candes
and C. Fernandez-Granda. Comm. on Pure and Applied Math.

» Super-resolution from noisy data. E. J. Candés and
C. Fernandez-Granda. Journal of Fourier Analysis and Applications

» Support detection in super-resolution. C. Fernandez-Granda.
Proceedings of SampTA 2013
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