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Motivation : Limits of resolution in imaging

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

Diffraction imposes a fundamental limit on the resolution of optical systems
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spectroscopy, medical imaging, astronomy, geophysics, etc.

Signals of interest are often point sources : celestial bodies (astronomy),
line spectra (signal processing), molecules (fluorescence microscopy), . . .
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Mathematical model

I Signal : superposition of Dirac measures with support T

x =
∑

j

ajδtj aj ∈ C, tj ∈ T ⊂ [0, 1]

I Measurements : low-pass filtering with cut-off frequency fc

y = Fc x (vector of low-pass Fourier coefficients)

y(k) =

∫ 1

0
e−i2πktx (dt) =

∑
j

aje−i2πktj , k ∈ Z, |k | ≤ fc
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Equivalent problem : line-spectra estimation

Swapping time and frequency

I Signal : superposition of sinusoids

x(t) =
∑

j

aje i2πωj t aj ∈ C, ωj ∈ T ⊂ [0, 1]

I Measurements : equispaced samples

x(1), x(2), x(3), . . . x(n)

I Classical problem in signal processing
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Compressed sensing vs super-resolution

Compressed sensing Super-resolution

spectrum interpolation spectrum extrapolation
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Sparsity is not enough

Sparse signals can be almost completely destroyed by low-pass filtering
(shown rigorously by Slepian in the 1970s)
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Stable reconstruction is only possible for signals with non-clustered supports



Minimum separation

To exclude highly-clustered signals from our model, we control the
minimum separation ∆ of the support T

∆ = inf
(t,t′)∈T : t 6=t′

|t − t ′|



Total-variation norm

I Continuous counterpart of the `1 norm

I If x =
∑

j ajδtj then ||x ||TV =
∑

j |aj |
I Not the total variation of a piecewise-constant function
I Formal definition : For a complex measure ν

||ν||TV = sup
∞∑
j=1

|ν (Bj)| ,

(supremum over all finite partitions Bj of [0, 1])
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Recovery via convex programming

In the absence of noise, i.e. if y = Fc x , we solve

min
x̃
||x̃ ||TV subject to Fc x̃ = y ,

over all finite complex measures x̃ supported on [0, 1]

Theorem [Candès, F. 2012]

If the minimum separation of the signal support T obeys

∆ ≥ 2 /fc := 2λc ,

then recovery is exact



Recovery via convex programming

In the absence of noise, i.e. if y = Fc x , we solve

min
x̃
||x̃ ||TV subject to Fc x̃ = y ,

over all finite complex measures x̃ supported on [0, 1]

Theorem [Candès, F. 2012]

If the minimum separation of the signal support T obeys

∆ ≥ 2 /fc := 2λc ,

then recovery is exact



Minimum-distance condition

I λc/2 is the Rayleigh resolution limit (half-width of measurement filter)

I Numerical simulations show that TV-norm minimization fails if
∆ < λc

I If ∆ < λc/2 some signals are almost in the nullspace of the
measurement operator (no method can achieve stable estimation)
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Higher dimensions

I Signal : superposition of point sources (delta measures) in 2D

I Measurements : low-pass 2D Fourier coefficients

Theorem [Candès, F. 2012]

TV-norm minimization yields exact recovery if

∆ ≥ 2.38λc

In dimension d , ∆ ≥ Cd λc , where Cd only depends on d
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Extensions

I Signal : piecewise-constant function
I Measurements : low-pass Fourier coefficients

Corollary

Solving min ‖x̃ (1)‖TV subject to Fc x̃ = y

yields exact recovery if ∆ ≥ 2λc

Similar result for cont. differentiable piecewise-smooth functions
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Certificate of optimality

Proposition

For any support T ⊂ [0, 1] satisfying ∆ ≥ 2λc and every vector v ∈ C|T |
such that

|vj | = 1 for all 1 ≤ j ≤ |T |

there exists a low-frequency trigonometric polynomial

q(t) =
fc∑

k=−fc

cke i2πkt

obeying {
q(tj) = vj , tj ∈ T ,
|q(t)| < 1, t ∈ [0, 1] \ T .



Certificate of optimality

Lemma
The proposition implies that x =

∑
tj∈T ajδtj is the unique solution to

min
x̃
||x̃ ||TV subject to Fc x̃ = Fc x
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Certificate of optimality : Proof

Take any feasible signal x ′ = x + h and decompose h = hT + hT c , where

hT =
∑
tj∈T

bjδtj =
∑
tj∈T

e iφj |bj |δtj (proof is easily generalized)

(1) vj = e−iφj yields q such that 〈qT , hT 〉 =
∑
tj∈T

|bj | = ||hT ||TV

(2) x ′ is feasible so 〈q, h〉 = 〈qT , hT 〉+ 〈qT c , hT c 〉 = 0

||hT c ||TV > |〈qT c , hT c 〉| by Hölder’s inequality and ||qT c ||∞ < 1
= |〈qT , hT 〉| by (2)
= ||hT ||TV by (1)

By this null-space condition and the fact that the TV norm is separable,∣∣∣∣x ′∣∣∣∣TV = ||x + hT ||TV + ||hT c ||TV ≥ ||x ||TV + ||hT c ||TV − ||hT ||TV

> ||x ||TV
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Construction of the certificate

1st idea : interpolation with a low-frequency fast-decaying kernel K

q(t) =
∑
tj∈T

αjK (t − tj),
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Construction of the certificate

Problem : magnitude of polynomial locally exceeds 1

Solution : add correction term and force q′(tk) = 0 for all tk ∈ T

q(t) =
∑
tj∈T

αjK (t − tj) + βjK ′(t − tj)
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Approximation at a higher resolution

Without noise, we achieve perfect precision, i.e. infinite resolution

y = Fcx

This is impossible if the measurements are noisy

y = Fcx + z

Resolution at scale λ is quantified by convolution with kernel φλ of width λ

If the noise z has norm δ, a trivial estimate xest achieves

||φλc ∗ (xest − x)||L1
≤ δ

How does the estimate degrade at a higher resolution ?



Approximation at a higher resolution

Without noise, we achieve perfect precision, i.e. infinite resolution

y = Fcx

This is impossible if the measurements are noisy

y = Fcx + z

Resolution at scale λ is quantified by convolution with kernel φλ of width λ

If the noise z has norm δ, a trivial estimate xest achieves

||φλc ∗ (xest − x)||L1
≤ δ

How does the estimate degrade at a higher resolution ?



Approximation at a higher resolution

Without noise, we achieve perfect precision, i.e. infinite resolution

y = Fcx

This is impossible if the measurements are noisy

y = Fcx + z

Resolution at scale λ is quantified by convolution with kernel φλ of width λ

If the noise z has norm δ, a trivial estimate xest achieves

||φλc ∗ (xest − x)||L1
≤ δ

How does the estimate degrade at a higher resolution ?



Approximation at a higher resolution

Without noise, we achieve perfect precision, i.e. infinite resolution

y = Fcx

This is impossible if the measurements are noisy

y = Fcx + z

Resolution at scale λ is quantified by convolution with kernel φλ of width λ

If the noise z has norm δ, a trivial estimate xest achieves

||φλc ∗ (xest − x)||L1
≤ δ

How does the estimate degrade at a higher resolution ?



Approximation at a higher resolution

Without noise, we achieve perfect precision, i.e. infinite resolution

y = Fcx

This is impossible if the measurements are noisy

y = Fcx + z

Resolution at scale λ is quantified by convolution with kernel φλ of width λ

If the noise z has norm δ, a trivial estimate xest achieves

||φλc ∗ (xest − x)||L1
≤ δ

How does the estimate degrade at a higher resolution ?



Super-resolution factor : spatial viewpoint

Super-resolution factor

SRF =
λc

λf



Super-resolution factor : spectral viewpoint

Super-resolution factor

SRF =
f
fc



Approximation at a higher resolution

At the resolution of the measurements

||φλc ∗ (xest − x)||L1
≤ δ

At a higher resolution

Theorem [Candès, F. 2012]

If ∆ ≥ 2 /fc then the solution x̂ to

min
x̃
||x̃ ||TV subject to ||Fc x̃ − y ||2 ≤ δ,

satisfies
∣∣∣∣φλf ∗ (x̂ − x)

∣∣∣∣
L1

. SRF2 δ

Another metric for stability is the accuracy of support detection :
Support detection in super-resolution. C. Fernandez-Granda. SampTA 2013
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Practical implementation

I Primal problem :

min
x̃
||x̃ ||TV subject to Fc x̃ = y ,

Infinite-dimensional variable x (measure in [0, 1])

I Dual problem :

max
u∈Cn

Re [y∗u] subject to ||F∗c u||∞ ≤ 1,

n := 2fc + 1

Finite-dimensional variable u, but infinite-dimensional constraint

F∗c u =
∑

k≤|fc |

uke i2πkt

I Similar for relaxed versions that account for noise
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Lemma : Semidefinite representation

||F∗c u||∞ ≤ 1

is equivalent to

There exists a Hermitian matrix Q ∈ Cn×n such that[
Q u
u∗ 1

]
� 0,

n−j∑
i=1

Qi ,i+j =

{
1, j = 0,
0, j = 1, 2, . . . , n − 1.

We can solve the dual problem, but how do we retrieve a primal solution ?



Implementation

Dual solution vector : Fourier coefficients of low-pass polynomial that
interpolates the sign of the primal solution

To estimate the support we
1. solve the sdp
2. determine where the

magnitude of the
polynomial equals 1
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Conclusion and future work

I To obtain theoretical guarantees for super-resolution in realistic
settings, we need conditions that avoid clustered supports

I Under a minimum-separation condition, convex programming achieves
exact recovery

I The method is provably robust to noise
I The optimization problem can be recast as a tractable semidefinite

program
I Research directions :

I Super-resolution of images with sharp edges
I Developing fast solvers to solve sdp formulation
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For more details

I Towards a mathematical theory of super-resolution. E. J. Candès
and C. Fernandez-Granda. Comm. on Pure and Applied Math.

I Super-resolution from noisy data. E. J. Candès and
C. Fernandez-Granda. Journal of Fourier Analysis and Applications

I Support detection in super-resolution. C. Fernandez-Granda.
Proceedings of SampTA 2013
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