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Motivation : Limits of resolution in imaging

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

Diffraction imposes a fundamental limit on the resolution of optical systems



Aim

Estimation from data that have limited resolution

I Microscopy
I Astronomy
I Electronic imaging
I Medical imaging
I Signal processing
I Radar
I Spectroscopy
I Geophysics
I ...



Super-resolution

I Optics : Data-acquisition techniques to overcome the diffraction limit

I Image processing : Methods to upsample images onto a finer grid
while preserving edges and hallucinating textures

I This talk : Signal estimation from low-pass measurements
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Point sources

I In many applications signals of interest are point sources :
I Celestial bodies (astronomy)
I Fluorescent molecules (microscopy)
I Line spectra (spectroscopy, signal processing)

I Traditional approaches

1. Fitting point-spread function to each source (matched filtering)

I Sensitive to noise and high dynamic ranges

2. Algorithms based on Prony’s method : MUSIC, ESPRIT, . . .

I Parametric (number of sources must be known)
I Extension to 2D is very computationally intensive
I Strong assumptions on noise (Gaussian, white), signal and

measurement model

I This talk : Super-resolution via convex programming
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Outline of the talk

Basic model

Estimation from noisy data
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Mathematical model

I Signal : superposition of Dirac measures with support T

x =
∑

j

ajδtj aj ∈ C, tj ∈ T ⊂ [0, 1]

I Data : low-pass Fourier coefficients with cut-off frequency fc

y = Fc x

y(k) =

∫ 1

0
e−i2πktx (dt) =

∑
j

aje−i2πktj , k ∈ Z, |k | ≤ fc



Compressed sensing vs super-resolution

Estimation of sparse signals from undersampled measurements suggests
connections to compressed sensing

Compressed sensing Super-resolution

spectrum interpolation spectrum extrapolation



Sparsity is not enough

Compressed sensing : measurement operator is well conditioned when
acting upon any sparse signal (restricted isometry property)

Signal Spectrum
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Not the case in super-resolution !



Minimum separation

Definition : The minimum separation ∆ of a discrete set T is

∆ = inf
(t,t′)∈T : t 6=t′

|t − t ′|



Total-variation norm

I Continuous counterpart of the `1 norm

I If x =
∑

j ajδtj then ||x ||TV =
∑

j |aj |
I Not the total variation of a piecewise-constant function

I Formal definition : For a complex measure ν

||ν||TV = sup
∞∑
j=1

|ν (Bj)| ,

(supremum over all finite partitions Bj of [0, 1])
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Estimation via convex programming

In a zero-noise limit, i.e. y = Fc x , we solve

min
x̃
||x̃ ||TV subject to Fc x̃ = y ,

over all finite complex measures x̃ supported on [0, 1]

Theorem [Candès, F. ’12]

If the minimum separation of the signal support T obeys then recovery is
exact

Nonparametric approach (no previous knowledge of the number of spikes)
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Estimation via convex programming

In a zero-noise limit, i.e. y = Fc x , we solve

min
x̃
||x̃ ||TV subject to Fc x̃ = y ,

over all finite complex measures x̃ supported on [0, 1]

Theorem [Candès, F. ’12]

If the minimum separation of the signal support T obeys

∆ ≥ 2.38 /fc := 2.38λc ,

then recovery is exact in 2D

Nonparametric approach (no previous knowledge of the number of spikes)



Minimum separation

Point-spread function ∆ = 1.4λc

λc/2 is the Rayleigh resolution limit



Minimum separation

Point-spread function ∆ = 1.4λc

λc/2 is the Rayleigh resolution limit



Minimum separation

Point-spread function ∆ = 1.4λc

λc/2 is the Rayleigh resolution limit



Sketch of proof : Dual certificate

A sufficient condition for

x =
∑
j∈T

ajδtj =
∑
j∈T

|aj | e iφj δtj

to be the unique solution is that there exists q such that

1. q(t) =
∑fc

k=−fc bke i2πkt (low pass polynomial)

2. q(tj) = e iφj , tj ∈ T (interpolates the sign of the signal on T )

3. |q(t)| < 1, t ∈ T c

q is a subgradient of the TV norm at the signal x that is orthogonal to the
null space of the measurement operator



Sketch of proof : Dual certificate

1

0

−1



Sketch of proof : Construction by interpolation
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1st idea : Interpolation with a low-frequency fast-decaying kernel K

q(t) =
∑
tj∈T

αj K (t − tj),
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Sketch of proof : Construction by interpolation
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Problem : Magnitude of polynomial locally exceeds 1

Solution : Add correction term and force q′(tk) = 0 for all tk ∈ T

q(t) =
∑
tj∈T

αj K (t − tj) + βj K ′(t − tj)
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Estimation from noisy data

We assume additive noise with norm bounded by δ

y = Fcx + z

Our estimator is the solution to

min
x̃
||x̃ ||TV subject to ||Fc x̃ − y ||2 ≤ δ,

Metrics to quantify estimation accuracy :

1. Approximation error at a higher resolution
2. Support-detection error
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Super-resolution factor : spectral viewpoint

Super-resolution factor

SRF =
f
fc



Super-resolution factor : spatial viewpoint

Signal at a resolution λ : convolution with a kernel φλ of width λ

Super-resolution factor

SRF =
λc

λf



Approximation at a higher resolution

At the resolution of the measurements

||φλc ∗ (xest − x)||L1
≤ δ

How does the estimate degrade at a higher resolution ?

Theorem [Candès, F. 2012]

If ∆ ≥ 2 /fc then the solution x̂ to

min
x̃
||x̃ ||TV subject to ||Fc x̃ − y ||2 ≤ δ,

satisfies
∣∣∣∣φλf ∗ (x̂ − x)

∣∣∣∣
L1

. SRF2 δ
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Some comments

I Non-asymptotic results, whereas most theory for Prony-based methods
is asymptotic (convergence of sample autocorrelation matrices)

I Usual proof techniques from high-dimensional statistics do not apply

1. Conditions (restricted-isometry property, restricted-eigenvalue
condition, etc.) do not hold

2. Estimation takes place over a continuous domain

I Proofs are based on generalizations of the dual certificate for the
noiseless problem



Sketch of proof

We partition the unit interval into

NEAR :=

{
t : min

tj∈T
|t − tj | ≤ 0.1λf

}
FAR := NEARc



Sketch of proof

e := x̂ − x

We establish an approximate null-space property to bound

||e FAR||TV . SRF2 δ

Controlling
∣∣∣∣(e ∗ φλf

)
NEAR

∣∣∣∣
L1

. SRF2 δ is more challenging



Sketch of proof : ∣∣∣∣(e ∗ φλf

)
NEAR

∣∣∣∣
L1

. SRF2 δ

We apply a Taylor expansion at each tj ∈ T

e ∗ φλf (t) ≈ e ∗ φλf (tj) +
(
e ∗ φλf

)′
(tj) (t − tj)

This yields the bound

∣∣∣∣(e ∗ φλf

)
NEAR

∣∣∣∣
L1
≤
∑
tj∈T

∣∣∣∣∣
∫
|t−tj |≤0.1λf

e (dt)

∣∣∣∣∣
+

1
λf

∣∣∣∣∣
∫
|t−tj |≤0.1λf

(t − tj) e (dt)

∣∣∣∣∣
To complete the proof we show that both quantities . SRF2 δ



Sketch of proof : ∣∣∣∣(e ∗ φλf

)
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Build low-pass polynomial q almost constant in NEAR so

∑
tj∈T

∣∣∣∣∣
∫
|t−tj |≤0.1λf

e (dt)

∣∣∣∣∣ ≈ 〈q NEAR, e NEAR〉

≤ |〈q, e〉|+ |〈q FAR, e FAR〉|



Sketch of proof : ∣∣∣∣(e ∗ φλf

)
NEAR

∣∣∣∣
L1

. SRF2 δ

Because q is low-pass and both x and x̂ are feasible

|〈q, e〉| ≤ ||q||2 ||Fce||2
≤ ||Fcx − y ||2 + ||y −Fc x̂ ||2
≤ 2δ

We can show ||q||∞ ≤ 1 so

|〈q FAR, e FAR〉| ≤ ||q||∞ ||e FAR||TV . SRF2 δ

As a result

∑
tj∈T

∣∣∣∣∣
∫
|t−tj |≤0.1λf

e (dt)

∣∣∣∣∣ ≤ |〈q, e〉|+ |〈q FAR, e FAR〉|

. SRF2 δ



Sketch of proof : ∣∣∣∣(e ∗ φλf

)
NEAR

∣∣∣∣
L1

. SRF2 δ

Build low-pass polynomial q almost linear in NEAR and ||q||∞ . λc

∑
tj∈T

1
λf

∣∣∣∣∣
∫
|t−tj |≤0.1λf

(t − tj) e (dt)

∣∣∣∣∣ ≈ 1
λf
〈q NEAR, e NEAR〉

. SRF2 δ



Example

Minimum separation : 1.5λc
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Example

SNR 5 dB

Noisy Noiseless



Example
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Signal Estimate



Support-detection accuracy

I Original support : T

I Estimated support : T̂

Theorem [F. 2013]

For any ti ∈ T , if |ai | > C1δ there exists t̂i ∈ T̂ such that

∣∣ti − t̂i
∣∣ ≤ 1

fc

√
C2δ

|ai | − C1δ

No dependence on the amplitude of the signal at other locations



Consequence

Robustness of the algorithm to high dynamic ranges

SNR 20 dB (15 dB without the large spike)
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Signal Estimate

SNR 20 dB (15 dB without the large spike)



Conclusion

Convex programming is a powerful tool for estimation from low-res data :
I Precise theoretical analysis
I Non-asymptotic stability guarantees

Things I haven’t talked about :
I In 1D, infinite-dimensional problem can be solved without discretizing
I Other noise and signal models

Lots of work to do :
I Poisson noise
I Super-resolution of 2D curves
I Blind deconvolution : joint estimation of signal + point-spread function
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For more details

I Towards a mathematical theory of super-resolution. E. J. Candès and
C. Fernandez-Granda. Communications on Pure and Applied Math 67(6),
906-956.

I Super-resolution from noisy data. E. J. Candès and C. Fernandez-Granda.
Journal of Fourier Analysis and Applications 19 (6), 1229-1254.

I Support detection in super-resolution. C. Fernandez-Granda.
Proceedings of SampTA 2013, 145-148.



Thank you

Figures courtesy of V. Morgenshtern, Stanford



Practical implementation

I Primal problem :

min
x̃
||x̃ ||TV subject to Fc x̃ = y

Infinite-dimensional variable x̃ (measure in [0, 1])

First option : Discretizing + `1-norm minimization

I Dual problem :

max
ũ∈Cn

Re [y∗ũ] subject to ||F∗c ũ||∞ ≤ 1, n := 2fc + 1

Finite-dimensional variable ũ, but infinite-dimensional constraint

F∗c ũ =
∑

k≤|fc |

ũke i2πkt

Second option : Solving the dual problem
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Lemma : Semidefinite representation

The Fejér-Riesz Theorem and the semidefinite representation of polynomial
sums of squares imply that

||F∗c ũ||∞ ≤ 1

is equivalent to

There exists a Hermitian matrix Q ∈ Cn×n such that[
Q ũ
ũ∗ 1

]
� 0,

n−j∑
i=1

Qi ,i+j =

{
1, j = 0,
0, j = 1, 2, . . . , n − 1.

Consequence : The dual problem is a tractable semidefinite program



Support-locating polynomial

How do we obtain an estimator from the dual solution ?

Dual solution vector : Fourier coefficients of low-pass polynomial that
interpolates the sign of the primal solution (follows from strong duality)

Idea : Use the polynomial to locate the support of the signal



Super-resolution via semidefinite programming
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Super-resolution via semidefinite programming

1. Solve semidefinite program to obtain dual solution



Super-resolution via semidefinite programming

2. Locate points at which corresponding polynomial has unit magnitude



Super-resolution via semidefinite programming

Signal Estimate

3. Estimate amplitudes via least squares
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