Super-Resolution from Noisy Data

Carlos Fernandez-Granda

www.stanford.edu/~cfgranda/

SIAM Conference on Imaging Science

5/14/2014

Acknowledgements

- This work was supported by a Fundación La Caixa Fellowship and a Fundación Caja Madrid Fellowship
- Collaborator : Emmanuel Candès (Department of Mathematics and of Statistics, Stanford)

Motivation : Limits of resolution in imaging

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

Diffraction imposes a fundamental limit on the resolution of optical systems

Aim

Estimation from data that have limited resolution

- Microscopy
- Astronomy
- Electronic imaging
- Medical imaging
- Signal processing
- Radar
- Spectroscopy
- Geophysics
- ...

- > Optics : Data-acquisition techniques to overcome the diffraction limit
- Image processing : Methods to upsample images onto a finer grid while preserving edges and hallucinating textures
- **This talk** : Signal estimation from low-pass measurements

Spatial Super-resolution

Spectrum

Spectral Super-resolution

Spectrum

Point sources

In many applications signals of interest are point sources :

- Celestial bodies (astronomy)
- Fluorescent molecules (microscopy)
- Line spectra (spectroscopy, signal processing)

Point sources

In many applications signals of interest are point sources :

- Celestial bodies (astronomy)
- Fluorescent molecules (microscopy)
- Line spectra (spectroscopy, signal processing)
- Traditional approaches
 - 1. Fitting point-spread function to each source (matched filtering)
 - Sensitive to noise and high dynamic ranges
 - 2. Algorithms based on Prony's method : MUSIC, ESPRIT, ...
 - Parametric (number of sources must be known)
 - Extension to 2D is very computationally intensive
 - Strong assumptions on noise (Gaussian, white), signal and measurement model

Point sources

In many applications signals of interest are point sources :

- Celestial bodies (astronomy)
- Fluorescent molecules (microscopy)
- Line spectra (spectroscopy, signal processing)
- Traditional approaches
 - 1. Fitting point-spread function to each source (matched filtering)
 - Sensitive to noise and high dynamic ranges
 - 2. Algorithms based on Prony's method : MUSIC, ESPRIT, ...
 - Parametric (number of sources must be known)
 - Extension to 2D is very computationally intensive
 - Strong assumptions on noise (Gaussian, white), signal and measurement model
- This talk : Super-resolution via convex programming

Outline of the talk

Basic model

Estimation from noisy data

Basic model

Estimation from noisy data

Mathematical model

• Signal : superposition of Dirac measures with support T

$$x = \sum_{j} a_{j} \delta_{t_{j}}$$
 $a_{j} \in \mathbb{C}, t_{j} \in T \subset [0, 1]$

Data : low-pass Fourier coefficients with cut-off frequency f_c

$$y = \mathcal{F}_{c} x$$
$$y(k) = \int_{0}^{1} e^{-i2\pi kt} x (dt) = \sum_{j} a_{j} e^{-i2\pi kt_{j}}, \quad k \in \mathbb{Z}, |k| \leq f_{c}$$

Compressed sensing vs super-resolution

Estimation of sparse signals from undersampled measurements suggests connections to compressed sensing

spectrum interpolation

spectrum extrapolation

Sparsity is not enough

Compressed sensing : measurement operator is well conditioned when acting upon any sparse signal (restricted isometry property)

Not the case in super-resolution !

Definition : The minimum separation Δ of a discrete set T is

$$\Delta = \inf_{(t,t')\in \mathcal{T}\,:\,t\neq t'} \,|t-t'|$$

Total-variation norm

- Continuous counterpart of the ℓ_1 norm
- If $x = \sum_{j} a_{j} \delta_{t_{j}}$ then $||x||_{\mathsf{TV}} = \sum_{j} |a_{j}|$
- Not the total variation of a piecewise-constant function

Total-variation norm

- Continuous counterpart of the ℓ_1 norm
- If $x = \sum_j a_j \delta_{t_j}$ then $||x||_{\mathsf{TV}} = \sum_j |a_j|$
- Not the total variation of a piecewise-constant function
- Formal definition : For a complex measure v

$$||\nu||_{\mathsf{TV}} = \sup \sum_{j=1}^{\infty} |\nu(B_j)|,$$

(supremum over all finite partitions B_j of [0, 1])

Estimation via convex programming

In a zero-noise limit, i.e. $y = \mathcal{F}_c x$, we solve

$$\min_{\tilde{x}} ||\tilde{x}||_{\mathsf{TV}} \quad \text{subject to} \quad \mathcal{F}_{c} \, \tilde{x} = y,$$

over all finite complex measures \tilde{x} supported on [0, 1]

Estimation via convex programming

In a zero-noise limit, i.e. $y = \mathcal{F}_c x$, we solve

$$\min_{\tilde{x}} ||\tilde{x}||_{\mathsf{TV}} \quad \text{subject to} \quad \mathcal{F}_c \, \tilde{x} = y,$$

over all finite complex measures \tilde{x} supported on [0, 1]

Theorem [Candès, F. '12]

If the minimum separation of the signal support T obeys

$$\Delta \geq 2/f_c := 2\lambda_c,$$

then recovery is exact in 1D

Nonparametric approach (no previous knowledge of the number of spikes)

Estimation via convex programming

In a zero-noise limit, i.e. $y = \mathcal{F}_c x$, we solve

$$\min_{\tilde{x}} ||\tilde{x}||_{\mathsf{TV}} \quad \text{subject to} \quad \mathcal{F}_c \, \tilde{x} = y,$$

over all finite complex measures \tilde{x} supported on [0,1]

Theorem [Candès, F. '12]

If the minimum separation of the signal support T obeys

$$\Delta \geq 2.38 \,/f_c := 2.38 \,\lambda_c,$$

then recovery is exact in 2D

Nonparametric approach (no previous knowledge of the number of spikes)

 $\lambda_c/2$ is the Rayleigh resolution limit

 $\lambda_c/2$ is the Rayleigh resolution limit

 $\lambda_c/2$ is the Rayleigh resolution limit

Sketch of proof : Dual certificate

A sufficient condition for

$$x = \sum_{j \in \mathcal{T}} a_j \delta_{t_j} = \sum_{j \in \mathcal{T}} |a_j| e^{i\phi_j} \delta_{t_j}$$

to be the unique solution is that there exists q such that

1.
$$q(t) = \sum_{k=-f_c}^{f_c} b_k e^{i2\pi kt}$$
 (low pass polynomial)
2. $q(t_j) = e^{i\phi_j}$, $t_j \in T$ (interpolates the sign of the signal on T)
3. $|q(t)| < 1$, $t \in T^c$

q is a subgradient of the TV norm at the signal x that is orthogonal to the null space of the measurement operator

Sketch of proof : Dual certificate

$$q(t) = \sum_{t_j \in T} \alpha_j \, K(t - t_j),$$

$$q(t) = \sum_{t_j \in T} \alpha_j \, K(t - t_j),$$

$$q(t) = \sum_{t_j \in T} \alpha_j \, K(t - t_j),$$

$$q(t) = \sum_{t_j \in T} \alpha_j \, K(t - t_j),$$

$$q(t) = \sum_{t_j \in T} \alpha_j \, K(t - t_j),$$

Problem : Magnitude of polynomial locally exceeds 1

Problem : Magnitude of polynomial locally exceeds 1 Solution : Add correction term and force $q'(t_k) = 0$ for all $t_k \in T$

$$q(t) = \sum_{t_j \in T} \alpha_j \, K(t-t_j) + \beta_j \, K'(t-t_j)$$

Problem : Magnitude of polynomial locally exceeds 1 Solution : Add correction term and force $q'(t_k) = 0$ for all $t_k \in T$

$$q(t) = \sum_{t_j \in T} \alpha_j \, \mathcal{K}(t - t_j) + \beta_j \, \mathcal{K}'(t - t_j)$$

Basic model

Estimation from noisy data

Estimation from noisy data

We assume additive noise with norm bounded by $\boldsymbol{\delta}$

$$y = \mathcal{F}_c x + \mathbf{z}$$

Our estimator is the solution to

$$\min_{\tilde{x}} ||\tilde{x}||_{\mathsf{TV}} \quad \text{subject to} \quad ||\mathcal{F}_c \, \tilde{x} - y||_2 \leq \delta,$$
Estimation from noisy data

We assume additive noise with norm bounded by $\boldsymbol{\delta}$

$$y = \mathcal{F}_c x + \mathbf{z}$$

Our estimator is the solution to

$$\min_{\tilde{x}} ||\tilde{x}||_{\mathsf{TV}} \quad \text{subject to} \quad ||\mathcal{F}_c \, \tilde{x} - y||_2 \leq \delta,$$

Metrics to quantify estimation accuracy :

- 1. Approximation error at a higher resolution
- 2. Support-detection error

Super-resolution factor : spectral viewpoint

Super-resolution factor

$$SRF = \frac{f}{f_c}$$

Super-resolution factor : spatial viewpoint

Signal at a resolution λ : convolution with a kernel ϕ_{λ} of width λ

Super-resolution factor

$$\mathsf{SRF} = \frac{\lambda_c}{\lambda_f}$$

Approximation at a higher resolution

At the resolution of the measurements

$$||\phi_{\lambda_{c}} * (x_{\text{est}} - x)||_{L_{1}} \leq \delta$$

How does the estimate degrade at a higher resolution?

Approximation at a higher resolution

At the resolution of the measurements

$$||\phi_{\lambda_{c}} * (x_{\text{est}} - x)||_{L_{1}} \leq \delta$$

How does the estimate degrade at a higher resolution?

```
Theorem [Candès, F. 2012]

If \Delta \ge 2/f_c then the solution \hat{x} to

\min_{\tilde{x}} ||\tilde{x}||_{\text{TV}} \quad \text{subject to} \quad ||\mathcal{F}_c \tilde{x} - y||_2 \le \delta,
satisfies ||\phi_{\lambda_f} * (\hat{x} - x)||_{L_1} \lesssim \text{SRF}^2 \delta
```

- Non-asymptotic results, whereas most theory for Prony-based methods is asymptotic (convergence of sample autocorrelation matrices)
- Usual proof techniques from high-dimensional statistics do not apply
 - 1. Conditions (restricted-isometry property, restricted-eigenvalue condition, etc.) do not hold
 - 2. Estimation takes place over a continuous domain
- Proofs are based on generalizations of the dual certificate for the noiseless problem

Sketch of proof

We partition the unit interval into

$$\mathsf{NEAR} := \left\{ t : \min_{t_j \in T} |t - t_j| \le 0.1 \, \lambda_f \right\}$$

 $FAR := NEAR^{c}$

Sketch of proof

$$e := \hat{x} - x$$

We establish an approximate null-space property to bound

 $||e_{\mathsf{FAR}}||_{\mathsf{TV}} \lesssim \mathsf{SRF}^2 \delta$

 $\mathsf{Controlling} \quad \left|\left|\left(e\ast\phi_{\lambda_f}\right)_{\mathsf{NEAR}}\right|\right|_{L_1}\lesssim\,\mathsf{SRF}^2\,\delta\quad\text{ is more challenging}$

Sketch of proof : $||(e * \phi_{\lambda_f})_{\mathsf{NEAR}}||_{L_1} \lesssim \mathsf{SRF}^2 \delta$

We apply a Taylor expansion at each $t_j \in T$

$$e * \phi_{\lambda_{f}}(t) pprox e * \phi_{\lambda_{f}}(t_{j}) + (e * \phi_{\lambda_{f}})'(t_{j})(t - t_{j})$$

This yields the bound

$$\begin{split} \left| \left| \left(e * \phi_{\lambda_f} \right)_{\mathsf{NEAR}} \right| \right|_{L_1} &\leq \sum_{t_j \in T} \left| \int_{|t-t_j| \leq 0.1 \, \lambda_f} e\left(\mathsf{d}t \right) \right| \\ &+ \frac{1}{\lambda_f} \left| \int_{|t-t_j| \leq 0.1 \, \lambda_f} \left(t - t_j \right) e\left(\mathsf{d}t \right) \right| \end{split}$$

To complete the proof we show that both quantities $\lesssim\,{\rm SRF}^2\,\delta$

 $\mathsf{Sketch of proof}: \quad ||(\textit{e}*\phi_{\lambda_{\textit{f}}})_{\mathsf{NEAR}}||_{\textit{L}_1} \lesssim \mathsf{SRF}^2 \delta$

Build low-pass polynomial q almost constant in NEAR so

$$\sum_{t_j \in \mathcal{T}} \left| \int_{|t-t_j| \le 0.1 \lambda_f} e(\mathsf{d}t) \right| \approx \langle q_{\mathsf{NEAR}}, e_{\mathsf{NEAR}} \rangle$$
$$\leq |\langle q, e \rangle| + |\langle q_{\mathsf{FAR}}, e_{\mathsf{FAR}} \rangle$$

Sketch of proof : $||(e * \phi_{\lambda_f})_{\mathsf{NEAR}}||_{L_1} \lesssim \mathsf{SRF}^2 \delta$

Because q is low-pass and both x and \hat{x} are feasible

$$\begin{aligned} \langle q, e \rangle &| \leq ||q||_2 ||\mathcal{F}_c e||_2 \\ &\leq ||\mathcal{F}_c x - y||_2 + ||y - \mathcal{F}_c \hat{x}||_2 \\ &\leq 2\delta \end{aligned}$$

We can show $||\textbf{\textit{q}}||_{\infty} \leq 1$ so

 $|\langle q_{\mathsf{FAR}}, e_{\mathsf{FAR}} \rangle| \leq ||q||_{\infty} ||e_{\mathsf{FAR}}||_{\mathsf{TV}} \lesssim \mathsf{SRF}^2 \delta$

As a result

$$\sum_{t_j \in \mathcal{T}} \left| \int_{|t-t_j| \le 0.1 \lambda_f} e(\mathsf{d}t) \right| \le |\langle q, e \rangle| + |\langle q_{\mathsf{FAR}}, e_{\mathsf{FAR}} \rangle| \\ \lesssim \mathsf{SRF}^2 \delta$$

 $\mathsf{Sketch of proof}: \quad ||(\textit{e}*\phi_{\lambda_{\textit{f}}})_{\mathsf{NEAR}}||_{\textit{L}_1} \lesssim \mathsf{SRF}^2 \delta$

Build low-pass polynomial q almost linear in NEAR and $||q||_{\infty} \lesssim \lambda_c$

$$\sum_{t_j \in \mathcal{T}} \frac{1}{\lambda_f} \left| \int_{|t-t_j| \le 0.1 \lambda_f} (t-t_j) e(\mathsf{d}t) \right| \approx \frac{1}{\lambda_f} \langle q_{\mathsf{NEAR}}, e_{\mathsf{NEAR}} \rangle$$
$$\lesssim \mathsf{SRF}^2 \delta$$

Minimum separation : $1.5 \lambda_c$

SNR 20 dB

SNR 20 dB

SNR 15 dB

SNR 15 dB

SNR 5 dB

SNR 5 dB

Support-detection accuracy

- ► Original support : T
- Estimated support : \hat{T}

Theorem [F. 2013]

For any $t_i \in T$, if $|a_i| > C_1 \delta$ there exists $\hat{t}_i \in \hat{T}$ such that

$$\left|t_{i}-\hat{t}_{i}\right|\leq rac{1}{f_{c}}\sqrt{rac{C_{2}\delta}{|a_{i}|-C_{1}\delta}}$$

No dependence on the amplitude of the signal at other locations

Consequence

Robustness of the algorithm to high dynamic ranges

SNR 20 dB (15 dB without the large spike)

Consequence

Robustness of the algorithm to high dynamic ranges

SNR 20 dB (15 dB without the large spike)

Conclusion

Convex programming is a powerful tool for estimation from low-res data :

- Precise theoretical analysis
- Non-asymptotic stability guarantees

Conclusion

Convex programming is a powerful tool for estimation from low-res data :

- Precise theoretical analysis
- Non-asymptotic stability guarantees

Things I haven't talked about :

- > In 1D, infinite-dimensional problem can be solved without discretizing
- Other noise and signal models

Conclusion

Convex programming is a powerful tool for estimation from low-res data :

- Precise theoretical analysis
- Non-asymptotic stability guarantees

Things I haven't talked about :

- > In 1D, infinite-dimensional problem can be solved without discretizing
- Other noise and signal models

Lots of work to do :

- Poisson noise
- Super-resolution of 2D curves
- Blind deconvolution : joint estimation of signal + point-spread function

Related work

- Deconvolution in seismography [Claerbout, Muir '73], [Levy, Fullagar '81], [Santosa, Symes '86]
- Modulus of continuity of super-resolution [Donoho 1992]
- Line-spectra estimation with missing data [Tang et al 2012], denoising via convex optimization [Tang et al 2013]
- Other work on super-resolution of spikes via convex programming [Azais et al 2012, Duval and Peyré 2013]

For more details

- Towards a mathematical theory of super-resolution. E. J. Candès and C. Fernandez-Granda. Communications on Pure and Applied Math 67(6), 906-956.
- Super-resolution from noisy data. E. J. Candès and C. Fernandez-Granda. Journal of Fourier Analysis and Applications 19 (6), 1229-1254.
- Support detection in super-resolution. C. Fernandez-Granda. Proceedings of SampTA 2013, 145-148.

Thank you

Figures courtesy of V. Morgenshtern, Stanford

Practical implementation

Primal problem :

 $\min_{\tilde{x}} ||\tilde{x}||_{\mathsf{TV}} \quad \text{subject to} \quad \mathcal{F}_c \, \tilde{x} = y$

Infinite-dimensional variable \tilde{x} (measure in [0, 1])

First option : Discretizing + ℓ_1 -norm minimization

Practical implementation

Primal problem :

 $\min_{\tilde{x}} ||\tilde{x}||_{\text{TV}} \text{ subject to } \mathcal{F}_{c} \tilde{x} = y$ Infinite-dimensional variable \tilde{x} (measure in [0, 1]) First option : Discretizing + ℓ_1 -norm minimization

Dual problem :

$$\max_{\widetilde{u}\in\mathbb{C}^n} \operatorname{Re}\left[y^*\widetilde{u}\right] \quad \text{subject to} \quad ||\mathcal{F}_c^* \, \widetilde{u}||_\infty \leq 1, \quad n := 2f_c + 1$$

Finite-dimensional variable \tilde{u} , but infinite-dimensional constraint

$$\mathcal{F}_c^* \, \tilde{u} = \sum_{k \le |f_c|} \tilde{u}_k e^{i 2\pi k t}$$

Second option : Solving the dual problem

Lemma : Semidefinite representation

The Fejér-Riesz Theorem and the semidefinite representation of polynomial sums of squares imply that

$$\left|\left|\mathcal{F}_{c}^{*} \, \tilde{u}
ight|\right|_{\infty} \leq 1$$

is equivalent to

There exists a Hermitian matrix $Q \in \mathbb{C}^{n imes n}$ such that

$$\begin{bmatrix} Q & \tilde{u} \\ \tilde{u}^* & 1 \end{bmatrix} \succeq 0, \qquad \sum_{i=1}^{n-j} Q_{i,i+j} = \begin{cases} 1, & j=0, \\ 0, & j=1,2,\ldots,n-1. \end{cases}$$

Consequence : The dual problem is a tractable semidefinite program

How do we obtain an estimator from the dual solution?

Dual solution vector : Fourier coefficients of low-pass polynomial that interpolates the sign of the primal solution (follows from strong duality)

Idea : Use the polynomial to locate the support of the signal

1. Solve semidefinite program to obtain dual solution

2. Locate points at which corresponding polynomial has unit magnitude
Super-resolution via semidefinite programming

3. Estimate amplitudes via least squares