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Motivation : Limits of resolution in imaging

The resolving power of lenses, however perfect, is limited (Lord Rayleigh)

Di�raction imposes a fundamental limit on the resolution of optical systems
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spectroscopy, medical imaging, astronomy, geophysics, etc.

Signals of interest are often point sources : celestial bodies (astronomy),
line spectra (signal processing), molecules (�uorescence microscopy), . . .
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Mathematical model

I Signal : superposition of Dirac measures with support T

x =
∑
j

ajδtj aj ∈ C, tj ∈ T ⊂ [0, 1]

I Measurements : low-pass �ltering with cut-o� frequency fc

y = Fc x (vector of low-pass Fourier coe�cients)

y(k) =

∫
1

0

e−i2πktx (dt) =
∑
j

aje
−i2πktj , k ∈ Z, |k | ≤ fc
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Equivalent problem : line-spectra estimation

Swapping time and frequency

I Signal : superposition of sinusoids

x(t) =
∑
j

aje
i2πfj t aj ∈ C, fj ∈ T ⊂ [0, 1]

I Measurements : equispaced samples

x(1), x(2), x(3), . . . x(n)

I Classical problem in signal processing
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Prior art

Based on Prony's method : MUSIC, ESPRIT, matrix pencil, . . .

I An estimate of the number of spikes is needed

I Do not apply to multiple dimensions (not even 2D)

I Noise must be Gaussian and white

I Incorporating additional structure is di�cult (di�erent point-spread
functions, assumptions on the signal)

This talk

I Non-parametric estimation

I Provably stable in the presence of noise

I Flexible variational framework based on convex programming
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Estimation of sparse signals from undersampled measurements suggests
connections to compressed sensing

Compressed sensing Super-resolution

spectrum interpolation spectrum extrapolation



Compressed sensing vs super-resolution

Estimation of sparse signals from undersampled measurements suggests
connections to compressed sensing

Compressed sensing Super-resolution

spectrum interpolation spectrum extrapolation



Compressed sensing vs super-resolution

Compressed sensing Super-resolution

spectrum interpolation spectrum extrapolation



Compressed sensing

I Compressed sensing theory establishes robust recovery of spikes from
random Fourier measurements [Candès, Romberg & Tao 2004]

I Crucial insight : measurement operator is well conditioned when
acting upon sparse signals

I Equivalently, the energy of all sparse signals is preserved by the
randomized measurements (restricted isometry property)

I This is a necessary condition for stable estimation, but
is it the case in super-resolution ?
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Discretize support to lie on a grid with N = 4096 points
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Compute singular values of resulting linear operator
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on prolate spheroidal sequences
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Sparsity is not enough

Theory

Proof (sketch)
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Robustness to noise



Minimum separation

To exclude highly-clustered signals from our model, we control the
minimum separation ∆ of the support T

∆ = inf
(t,t′)∈T : t 6=t′

|t − t ′|



Total-variation norm

I Continuous counterpart of the `1 norm

I If x =
∑

j ajδtj then ||x ||TV =
∑

j |aj |
I Not the total variation of a piecewise-constant function

I Formal de�nition : For a complex measure ν

||ν||
TV

= sup
∞∑
j=1

|ν (Bj)| ,

(supremum over all �nite partitions Bj of [0, 1])
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Recovery via convex programming

In the absence of noise, i.e. if y = Fc x , we solve

min
x̃
||x̃ ||

TV
subject to Fc x̃ = y ,

over all �nite complex measures x̃ supported on [0, 1]

Theorem [Candès, F. 2012]

If the minimum separation of the signal support T obeys

∆ ≥ 2 /fc := 2λc ,

then recovery is exact
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Minimum-distance condition

I λc/2 is the Rayleigh resolution limit (half-width of measurement �lter)

I Numerical simulations show that TV-norm minimization fails if
∆ < λc

I If ∆ < λc/2 some signals are almost in the nullspace of the
measurement operator (no method can achieve stable estimation)



Minimum-distance condition

I λc/2 is the Rayleigh resolution limit (half-width of measurement �lter)

I Numerical simulations show that TV-norm minimization fails if
∆ < λc

I If ∆ < λc/2 some signals are almost in the nullspace of the
measurement operator (no method can achieve stable estimation)



Minimum-distance condition

I λc/2 is the Rayleigh resolution limit (half-width of measurement �lter)

I Numerical simulations show that TV-norm minimization fails if
∆ < λc

I If ∆ < λc/2 some signals are almost in the nullspace of the
measurement operator (no method can achieve stable estimation)



Sparse recovery in overcomplete dictionaries

If we discretize the support

I Sparse recovery via `1-norm minimization in an overcomplete Fourier
dictionary

I Previous theory based on dictionary incoherence is very weak, due to
high column correlation

I If N = 20000 and n = 1000, how many spikes can we recover ?

Previous theory [Dossal 2005] : 3 spikes

Our result : n/4 = 250 spikes
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Higher dimensions

I Signal : superposition of point sources (delta measures) in 2D

I Measurements : low-pass 2D Fourier coe�cients

Theorem [Candès, F. 2012]

TV-norm minimization yields exact recovery if

∆ ≥ 2.38λc

In dimension d , ∆ ≥ Cd λc , where Cd only depends on d



Higher dimensions

I Signal : superposition of point sources (delta measures) in 2D

I Measurements : low-pass 2D Fourier coe�cients

Theorem [Candès, F. 2012]

TV-norm minimization yields exact recovery if

∆ ≥ 2.38λc

In dimension d , ∆ ≥ Cd λc , where Cd only depends on d



Higher dimensions

I Signal : superposition of point sources (delta measures) in 2D

I Measurements : low-pass 2D Fourier coe�cients

Theorem [Candès, F. 2012]

TV-norm minimization yields exact recovery if

∆ ≥ 2.38λc

In dimension d , ∆ ≥ Cd λc , where Cd only depends on d



Extensions

I Signal : piecewise-constant function

I Measurements : low-pass Fourier coe�cients

Corollary

Solving min ‖x̃ (1)‖TV subject to Fc x̃ = y

yields exact recovery if ∆ ≥ 2λc

Similar result for cont. di�erentiable piecewise-smooth functions
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Optimality conditions

Consider the problem

min
x̃

f (x̃) subject to A x̃ = y ,

where f is convex

Lemma

If there exists a subgradient g(x) of f at a feasible point x such that

g(x) = A∗v for some v, then x is a solution

For any h such that Ah = 0

f (x + h) ≥ f (x) + 〈g(x), h〉 by de�nition of subgradient and convexity of f

= f (x) + 〈A∗v , h〉
= f (x) + 〈v ,Ah〉
= f (x)
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Certi�cate of optimality

q is a subgradient of the total-variation norm at x =
∑

j∈T |aj | e iφj δtj if{
q(tj) = e iφj , tj ∈ T

|q(t)| ≤ 1, t ∈ [0, 1] \ T
(1)

To certify optimality we also need

q(t) = F∗c v =
fc∑

k=−fc

vke
i2πkt

If (1) is strengthened to

|q(t)| < 1, t ∈ [0, 1] \ T

then x is the unique solution
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Certi�cate of optimality



Construction of the certi�cate

1st idea : interpolation with a low-frequency fast-decaying kernel K

q(t) =
∑
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αjK (t − tj),



Construction of the certi�cate

1st idea : interpolation with a low-frequency fast-decaying kernel K

q(t) =
∑
tj∈T

αjK (t − tj),



Construction of the certi�cate

1st idea : interpolation with a low-frequency fast-decaying kernel K

q(t) =
∑
tj∈T

αjK (t − tj),



Construction of the certi�cate

1st idea : interpolation with a low-frequency fast-decaying kernel K

q(t) =
∑
tj∈T

αjK (t − tj),



Construction of the certi�cate

1st idea : interpolation with a low-frequency fast-decaying kernel K

q(t) =
∑
tj∈T

αjK (t − tj),



Construction of the certi�cate

Problem : magnitude of polynomial locally exceeds 1

Solution : add correction term and force q′(tk) = 0 for all tk ∈ T

q(t) =
∑
tj∈T

αjK (t − tj) + βjK
′(t − tj)
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Practical implementation

I Primal problem :

min
x̃
||x̃ ||

TV
subject to Fc x̃ = y ,

In�nite-dimensional variable x (measure in [0, 1])

First option : Discretize domain and apply `1-norm minimization

I Dual problem :

max
u∈Cn

Re [y∗u] subject to ||F∗c u||∞ ≤ 1, n := 2fc + 1

Finite-dimensional variable u, but in�nite-dimensional constraint

F∗c u =
∑
k≤|fc |

uke
i2πkt

Second option : Recast dual problem as semide�nite program
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Lemma : Semide�nite representation

The Fejér-Riesz Theorem and the semide�nite representation of polynomial
sums of squares imply that

||F∗c u||∞ ≤ 1

is equivalent to

There exists a Hermitian matrix Q ∈ Cn×n such that[
Q u

u∗ 1

]
� 0,

n−j∑
i=1

Qi ,i+j =

{
1, j = 0,

0, j = 1, 2, . . . , n − 1.



Using the dual solution

We can solve the dual problem, but how do we retrieve a primal solution ?

Dual solution vector : Fourier coe�cients of low-pass polynomial that
interpolates the sign of the primal solution (follows from strong duality)

Idea : Use the polynomial to locate the support of the signal and then
estimate the amplitudes by least squares
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Super-resolution via semide�nite programming
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3. Estimate amplitudes via least squares



Sparsity is not enough

Theory

Proof (sketch)

Implementation via semide�nite programming

Robustness to noise



Estimation from noisy data

I Without noise, we achieve perfect precision, i.e. in�nite resolution

y = Fcx

I In practice, there is always noise

y = Fcx + z

Understanding the performance in a noisy setting is crucial for
applications

I Metrics :

1. Approximation error at a higher resolution

2. Support-detection error
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Super-resolution factor : spatial viewpoint

Super-resolution factor

SRF =
λc
λf



Super-resolution factor : spectral viewpoint

Super-resolution factor

SRF =
f

fc



Approximation at a higher resolution

Resolution at scale λ is quanti�ed by convolution with kernel φλ of width λ

At the resolution of the measurements

||φλc
∗ (xest − x)||L1 ≤ δ

How does the estimate degrade at a higher resolution ?

Theorem [Candès, F. 2012]

If ∆ ≥ 2 /fc then the solution x̂ to

min
x̃
||x̃ ||

TV
subject to ||Fc x̃ − y ||

2
≤ δ,

satis�es
∣∣∣∣φλf

∗ (x̂ − x)
∣∣∣∣
L1

. SRF2 δ
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Example

SNR : 25 dB
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Support detection

I Original signal, support T

x =
∑
j

ajδtj aj ∈ C, tj ∈ T ⊂ [0, 1]

I Estimated signal, support T̂

x̂ =
∑
j

âjδt̂j âj ∈ C, t̂j ∈ T̂ ⊂ [0, 1]

How accurately can we detect the support at a certain noise level δ ?
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Support-detection accuracy

Theorem [F. 2013]

For any ti ∈ T , if |ai | > C1δ there exists t̂i ∈ T̂ such that

∣∣ti − t̂i
∣∣ ≤ 1

fc

√
C2δ

|ai | − C1δ

The support-detection accuracy is not a�ected by aliasing
(no dependence on the amplitude of the signal at other locations)



Support-detection accuracy

Theorem [F. 2013]

For any ti ∈ T , if |ai | > C1δ there exists t̂i ∈ T̂ such that

∣∣ti − t̂i
∣∣ ≤ 1

fc

√
C2δ

|ai | − C1δ

The support-detection accuracy is not a�ected by aliasing
(no dependence on the amplitude of the signal at other locations)



Consequence

Robustness of the algorithm to high dynamic ranges

 

 

Measurements
High−res signal



Consequence

Robustness of the algorithm to high dynamic ranges
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Conclusion and future work

I To obtain theoretical guarantees for super-resolution in realistic
settings, we need conditions that avoid clustered supports

I Under a minimum-separation condition, convex programming achieves
exact recovery

I The optimization problem can be recast as a tractable semide�nite
program

I The method is provably robust to noise

I Research directions :

I Super-resolution of images with sharp edges
I Developing fast solvers to solve sdp formulation
I Extending results to other overcomplete dictionaries
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For more details

I Towards a mathematical theory of super-resolution. E. J. Candès
and C. Fernandez-Granda. Comm. on Pure and Applied Math.

I Super-resolution from noisy data. E. J. Candès and
C. Fernandez-Granda. Journal of Fourier Analysis and Applications

I Support detection in super-resolution. C. Fernandez-Granda.
Proceedings of SampTA 2013

I Prolate spheroidal wave functions, Fourier analysis, and

uncertainty V - The discrete case. D. Slepian. Bell System
Technical Journal, 57 :1371-1430, 1978
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