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Super-resolution

Aim : estimating �ne-scale structure from low-resolution data

Equivalently, extrapolating the high end of the spectrum
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Applications

Optics (di�raction-limited systems), electronic imaging, signal processing,
radar, spectroscopy, medical imaging, astronomy, geophysics, etc.

Signals of interest are often modeled as superpositions of point sources

Celestial bodies in astronomy

Line spectra in speech analysis

Molecules in �uorescence microscopy
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Mathematical model

Signal : superposition of delta measures with support T

x =
∑
j

ajδtj aj ∈ C, tj ∈ T ⊂ [0, 1]

Measurement process : low-pass �ltering with cut-o� frequency fc

Measurements : n = 2 fc + 1 noisy low-pass Fourier coe�cients

y(k) =

∫
1

0

e−i2πktx (dt) + z(k)

=
∑
j

aje
−i2πktj + z(k), k ∈ Z, |k | ≤ fc

y = Fn x + z
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When is super-resolution well posed ?

Signal Spectrum

10
−10

10
−5

10
0

SampTA 2013 Support Detection in Super-resolution C. Fernandez-Granda 6 / 25



When is super-resolution well posed ?

Signal Spectrum

10
−10

10
−5

10
0

SampTA 2013 Support Detection in Super-resolution C. Fernandez-Granda 6 / 25



When is super-resolution well posed ?

Signal Spectrum

10
−10

10
−5

10
0

10
−10

10
−5

10
0

SampTA 2013 Support Detection in Super-resolution C. Fernandez-Granda 6 / 25



When is super-resolution well posed ?

Signal Spectrum

10
−10

10
−5

10
0

10
−10

10
−5

10
0

SampTA 2013 Support Detection in Super-resolution C. Fernandez-Granda 6 / 25



Minimum-separation condition

Necessary condition : measurement operator must be well
conditioned when acting upon signals of interest

Problem : even very sparse signals may be almost completely
suppressed by low-pass �ltering if they are highly clustered
(sparsity is not enough)

Additional conditions are necessary

Minimum separation of the support T of a signal :

∆(T ) = inf
(t,t′)∈T : t 6=t′

|t − t ′|
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Total-variation norm

Continuous counterpart of the `1 norm

If x =
∑

j ajδtj then ||x ||TV =
∑

j |aj |
Not the total variation of a piecewise constant function

Formal de�nition : For a complex measure ν

||ν||
TV

= sup
∞∑
j=1

|ν (Bj)| ,

(supremum over all �nite partitions Bj of [0, 1])
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Recovery via convex programming

In the absence of noise, i.e. if y = Fn x , we solve

min
x̃
||x̃ ||

TV
subject to Fn x̃ = y ,

over all �nite complex measures x̃ supported on [0, 1]

Theorem [Candès, F. 2012]

If the minimum separation of the signal support T obeys

∆(T ) ≥ 2 /fc

then recovery is exact
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Estimation from noisy data

We consider noise bounded in `2 norm

y = Fn x + z , ||z ||
2
≤ δ

Otherwise, the perturbation is arbitrary and can be adversarial

Estimation algorithm

min
x̃
||x̃ ||

TV
subject to ||Fn x̃ − y ||

2
≤ δ,

over all �nite complex measures x̃ supported on [0, 1]

The problem is in�nite-dimensional, but its dual is sdp-representable
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Implementation

Dual solution vector : Fourier coe�cients of low-pass polynomial that
interpolates the sign of the primal solution

To estimate the support we

1 solve the sdp

2 determine where the
magnitude of the
polynomial equals 1
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Example

SNR : 14 dB

 

 

Measurements
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Example

SNR : 14 dB

 

 

Measurements
High−res signal
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Example

Average localization error : 6.54 10−4

 

 

High−res Signal
Estimate
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Support-detection accuracy

Original signal, support T

x =
∑
j

ajδtj aj ∈ C, tj ∈ T ⊂ [0, 1]

Estimated signal, support T̂

x̂ =
∑
j

âjδt̂j âj ∈ C, t̂j ∈ T̂ ⊂ [0, 1]

Main result : Theoretical guarantees on the quality of the estimate under
the minimum-separation condition

∆(T ) ≥ 2 /fc
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Theorem [F. 2013] Spike detection

(1) :
∣∣∣aj − ∑

{t̂l∈T̂ : |t̂l−tj |≤c/fc}
âl

∣∣∣ ≤ C1δ ∀tj ∈ T , c := 0.1649
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Theorem [F. 2013] Support-detection accuracy

(2) :
∑

{t̂l∈T̂ , tj∈T : |t̂l−tj |≤c/fc}
|âl |
(
t̂l − tj

)2 ≤ C2δ

f 2c
, c := 0.1649
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Theorem [F. 2013] False positives

(3) :
∑

{t̂l∈T̂ : |t̂l−tj |>c/fc ∀tj∈T}
|âl | ≤ C3δ, c := 0.1649
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Support-detection accuracy

Corollary

For any ti ∈ T, if ai > C1δ there exists t̂i ∈ T̂ such that

∣∣ti − t̂i
∣∣ ≤ 1

fc

√
C2δ

|ai | − C1δ
.

In previous work :

The estimation errors of the di�erent spikes cannot be decoupled
[Candès, F. 2012]

The bounds depend on the amplitude of the estimate, not of the
original signal [Azais et al 2013]
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Consequence

Robustness of the algorithm to high dynamic ranges

 

 

Measurements
High−res signal

SampTA 2013 Support Detection in Super-resolution C. Fernandez-Granda 19 / 25



Consequence

Robustness of the algorithm to high dynamic ranges

 

 

High−res Signal
Estimate (Real)
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Proof techniques

Main proof technique : construction of interpolating polynomials

To establish the spike-detection bound∣∣∣aj − ∑
{t̂l∈T̂ : |t̂l−tj |≤c/fc}

âl

∣∣∣ ≤ C1δ ∀tj ∈ T

we construct a low-pass polynomial for each tj ∈ T

qtj (t) =
fc∑

k=−fc

bke
i2πkt
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Sketch of proof

qtj satis�es qtj (tj) = 1 and qtj (tl ) = 0 for tl ∈ T/ {tj}

∫
[0,1]

qtj (t)x(dt) = aj
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Sketch of proof

 

 

High−res Signal
Spike at t

j

qtj satis�es qtj (tj) = 1 and qtj (tl ) = 0 for tl ∈ T/ {tj}∫
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Sketch of proof

 

 

Estimate
Estimate near t

j

We can establish (using the support-detection bound)∫
[0,1]

qtj (t)x̂(dt) =
∑

{t̂l∈T̂ : |t̂l−tj |≤c/fc}
âl + Ω (δ)
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Sketch of proof

By our assumption on the noise, ||Fnx − y ||
2
≤ δ

Since x̂ is feasible ||Fnx̂ − y ||
2
≤ δ

Consequently, by the triangle inequality ||Fn (x̂ − x)||
2
≤ 2δ

∣∣∣aj − ∑
{
t̂l∈T̂ : |t̂l−tj |≤ c

fc

} âl

∣∣∣ =

∣∣∣∣∣
∫
[0,1]

qtj (t)x(dt)−
∫
[0,1]

qtj (t)x̂(dt)

∣∣∣∣∣+ Ω (δ)

=
∣∣∣ fc∑
k=−fc

bkFn(x − x̂)k

∣∣∣+ Ω (δ) (Parseval)

≤
∣∣∣∣qtj ∣∣∣∣L2 ||Fn(x − x̂)||

2
+ Ω (δ) (Cauchy-Schwarz)

= Ω (δ)
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Conclusion and future work

Under a minimum-separation condition, super-resolution via convex
programming achieves accurate support detection in the presence of
noise even at high dynamic ranges

Research directions :

Lower bounds on support-detection accuracy

Developing fast solvers to solve sdp formulation

Super-resolution of images with sharp edges

For more details,

C. Fernandez-Granda. Support detection in super-resolution.

Proceedings of SampTA 2013

E. J. Candès and C. Fernandez-Granda. Towards a mathematical theory

of super-resolution. To appear in Comm. on Pure and Applied Math.
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