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Separable nonlinear (SNL) inverse problems

We consider phenomena governed by known nonlinear function φt

Combination between sources or components is linear

f (t) :=
k∑

i=1

ciφt(θi ) (1)

Aim: estimate parameters θ1, . . . , θk ∈ Rd from n samples

y :=

f (s1)
...

f (sn)

 =
k∑

i=1

ci ~φ(θi )



Spectral super-resolution

Classical problem in signal processing

Parameters encode frequencies of sinusoids

tϕt(θ1)

tϕt(θ2)

tϕt(θ3)



Spectral super-resolution (data)

y = ~φ(θ1) + 2 ~φ(θ2) + 0.5 ~φ(θ3)

t



Deconvolution

Popular model in imaging and geophysics

Parameters encode spike locations

t

t

t
ϕt(θ1)

ϕt(θ2)

ϕt(θ3)



Deconvolution (data)

y = ~φ(θ1) + 2 ~φ(θ2) + 0.5 ~φ(θ3)

t



Heat source localization

Parameters encode source locations

Nonlinear function is obtained by solving the heat equation

tϕt(θ1)

tϕt(θ2)

tϕt(θ3)



Heat source localization (data)

y = ~φ(θ1) + 2 ~φ(θ2) + 0.5 ~φ(θ3)

t



Electroencephalography

Parameters encode locations of brain activity

θ1 θ2

θ3



~φ(θ1)



~φ(θ2)



~φ(θ3)



y = ~φ(θ1) + ~φ(θ2) + ~φ(θ3)



Methods to tackle SNL problems

I Nonlinear least-squares solved by descent methods
Drawback: local minima

I Prony-based / Finite-rate of innovation
Drawback: challenging to apply beyond super-resolution

I Reformulate as sparse-recovery problem
Drawback: very slow

I Learning-based methods
Drawback: we don’t understand what’s going on



Linearization

Linearize problem by lifting to a higher-dimensional space

True parameters: θT1 , . . . , θTk

Grid of parameters: θ1, . . . , θN , N >> n

y =
[
φ(θ1) · · · φ(θT1) · · · φ(θTk

) · · · φ(θN)
]


0
· · ·
c (1)
· · ·
c (s)
0


=

k∑
j=1

c (j)φ(θTj
)



Sparse Recovery for SNL Problems

Find a sparse c̃ such that

y = Φgridc̃

Underdetermined linear inverse problem with sparsity prior



Popular approach: `1-norm minimization

minimize ||c̃ ||1
subject to Φgridc̃ = y



Popular approach: `1-norm minimization

I Deconvolution:
Deconvolution with the `1 norm, Taylor et al (1979)

I EEG:
Selective minimum-norm solution of the biomagnetic inverse problem,
Matsuura and Okabe (1995)

I Direction-of-arrival in radar / sonar:
A sparse signal reconstruction perspective for source localization with
sensor arrays, Malioutov et al (2005)

I and many, many others...



Main question

Under what conditions can SNL problems be solved by
`1-norm minimization?

Wait, isn’t this just compressed sensing?
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Compressed sensing

Recover s-sparse vector x of dimension m from n < m measurements

y = Ax

Key assumption: A is random, and hence satisfies restricted-isometry
properties with high probability



Restricted isometry property (Candès, Tao 2006)

An m× n matrix A satisfies the restricted isometry property (RIP) if there
exists 0 < κ < 1 such that for any s-sparse vector x

(1− κ) ||x ||2 ≤ ||Ax ||2 ≤ (1 + κ) ||x ||2

2s-RIP implies that for any s-sparse signals x1, x2

||Ax2 − Ax1||2 = ||A (x2 − x1)||2
≥ (1− κ) ||x2 − x1||2
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Columns of randomized matrix

A75

A150

A225



Inter-column correlations
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Separable nonlinear problems

Does RIP hold? Are all columns uncorrelated?



Correlations for spectral super-resolution
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Correlations for deconvolution
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Correlations for heat-source localization
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Correlations for EEG



Beyond sparsity

Due to high local correlations sparsity is not enough

Some sparse signals are impossible to estimate

But methods work in practice

Goal: Theory of sparse estimation relevant to SNL problems



Common property: Correlation decay
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Minimum separation in parameter space

The minimum separation ∆ of θ1, . . . , θk equals

∆ = min
i 6=j
|θi − θj |

A large enough minimum separation ensures that columns corresponding
to active parameters are uncorrelated

Empirical observation: Recovery is exact if ∆ is large enough



Spectral super-resolution
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Deconvolution
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Heat-source localization
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EEG
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Analysis of `1-norm minimization

I Aim: Prove that if Ax = y where A has correlation decay and x is
well separated, then the solution to

minimize
∣∣∣∣x ′∣∣∣∣1

subject to Ax ′ = y

equals x

I Strategy: Build dual certificate associated to an arbitrary
well-separated x
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Subgradient

The subgradient of f : Rn → R at x ∈ Rn is a vector g ∈ Rn such that

f (y) ≥ f (x) + gT (y − x) , for all y ∈ Rn

The set of all subgradients at x is called the subdifferential



Subgradients



Subdifferential of `1 norm

g is a subgradient of the `1 norm at x ∈ Rn if and only if

g [i ] = sign (x [i ]) if x [i ] 6= 0

|g [i ]| ≤ 1 if x [i ] = 0



Subdifferential of `1 norm
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Subdifferential of `1 norm



Dual certificate

v ∈ Rm is a dual certificate associated to x if

q := AT v

satisfies

qi = sign (xi ) if xi 6= 0
|qi | < 1 if xi = 0

q is a subgradient of the `1 norm at x

For any vector u

||x + u||1 ≥ ||x ||1 + qTu
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Dual certificate

For any x + h such that Ah = 0

||x + h||1 ≥ ||x ||1 + qTh (q is a subgradient)

= ||x ||1 + vTAh (q = AT v)
= ||x ||1

If AT (where T is the support of x) is injective, x is the unique solution
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Strategy

We need to interpolate the sign of an arbitrary well-separated signal with
vectors in the row space of A

Correlation function ATAi is in the row space!
(Ai = ith col of A)

Proof of exact recovery:

I Use correlations to interpolate

I Show that if separation is sufficient this yields valid certificate
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Dual certificate construction
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Guarantees for SNL problems with decaying correlation

Theorem [Bernstein, Liu, Papadaniil, F. 2019]

In 1D, for any SNL problem with decaying correlation, `1-norm
minimization achieves exact recovery as long as the true parameters are
sufficiently separated with respect to the correlation

I Result proved for continuous version of `1 norm

I Additional condition: Decay of derivatives of correlation function

I Proof technique generalizes to higher dimensions



Dual certificate in higher dimensions



Robustness to noise / outliers

Variations of dual certificates establish robustness at small noise levels
(Candès, F. 2013), (F. 2013), (Bernstein, F. 2017)

Exact recovery with constant number of outliers (up to log factors)
(F., Tang, Wang, Zheng 2017), (Bernstein, F. 2017)

Open questions: Analysis of higher-noise levels and discretization error,
robustness for positive amplitudes



For more information

Sparse recovery beyond compressed sensing: Separable nonlinear inverse
problems. B. Bernstein, S. Liu, C. Papadaniil, C. Fernandez-Granda



Application to magnetic-resonance fingerprinting

Supported by a Moore-Sloan Data Science Environment seed grant and
NIH R21 EB027241

Joint work with Jakob Assländer, Brett Bernstein, Martijn Cloos, Quentin
Duchemin, Cem Gutelkin, Vlad Kobzar, Florian Knoll, Sylvain Lannuzel,
Riccardo Lattanzi, and Sunli Tang



Quantitative MRI via fingerprinting

Radio-frequency pulses are designed to produce irregular magnetization
signals (fingerprints) encoding relaxation parameters
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Multicompartment magnetic resonance fingerprinting

I Assumption in MRF: One tissue per voxel

I Problematic at tissue boundaries

I Ignores sub-voxel structure



Additive model: Separable nonlinear inverse problem
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Correlation structure0 1 2 3
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Multicompartment MRF via `1-norm regularization

I Fast-thresholding methods don’t work

I We use an efficient interior-point solver

I Solving sequence of reweighted problems improves the solution

Drawback: Very slow



Validation with phantom



Validation with phantom
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Current research

Goal: Fast multicompartment MRF for non-additive model

I Measurement design via ODE-constrained optimization

I Parameter estimation using a feedforward deep neural network trained
on simulated data



For more information

Multi-Compartment MR Fingerprinting via Reweighted-l1-norm
Regularization. S. Tang, J. Asslaender, L. Tanenbaum, R. Lattanzi, M.
Cloos, F. Knoll, C. Fernandez-Granda. ISMRM 2017

Multicompartment magnetic resonance fingerprinting. S. Tang, C.
Fernandez-Granda, S. Lannuzel, B. Bernstein, R. Lattanzi, M. Cloos, F.
Knoll and J. Asslaender. Inverse Problems 34 (9) 4005. 2018

Hybrid-State Free Precession for Measuring Magnetic Resonance
Relaxation Times in the Presence of B0 Inhomogeneities. V. Kobzar,
C. Fernandez-Granda, J. Asslaender. ISMRM 2019



Separable nonlinear inverse problems

Machine learning for inverse problems



Data-driven estimation of sinusoid frequencies

Joint work with Brett Bernstein, Gautier Izacard, and Sreyas Mohan



Spectral super-resolution

Infinite samples N = 40 N = 20

Time

0 10 20 30 40 50
Time

0 10 20 30 40 50
Time

0 10 20 30 40 50
Time

Frequency

0 0.1 0.2 0.3
Frequency

0 0.1 0.2 0.3
Frequency

0 0.1 0.2 0.3
Frequency



Traditional methodology

I Linear estimation (periodogram)

I Parametric methods based on eigendecomposition of sample
covariance matrix (MUSIC, ESPRIT, matrix pencil)

I Sparsity-based methods



Learning-based approach
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Comparison to state of the art
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For more information

A Learning-Based Framework for Line-Spectra Super-resolution.
G. Izacard, B. Bernstein, C. Fernandez-Granda. ICASSP 2019

Data-driven Estimation of Sinusoid Frequencies. G. Izacard,
S. Mohan, C. Fernandez-Granda. NeurIPS 2019



Blind denoising via convolutional neural networks

Joint work with Zahra Kadkhodaie, Sreyas Mohan, and Eero Simoncelli



Image denoising via deep learning

Goal: Estimate image x from data y := x + z (z is noise)

Feedforward convolutional neural networks are the state of the art

Interesting phenomenon: Removing additive constants in architecture
provides generalization across noise levels

f (y) = WLR(. . .W2R(W1y+) + . . .)+
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Image denoising via deep learning

Goal: Estimate image x from data y := x + z (z is noise)

Feedforward convolutional neural networks are the state of the art

Interesting phenomenon: Removing additive constants in architecture
provides generalization across noise levels
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Generalization across noise levels

Training data
(low noise)

Test image
(high noise)

CNN BF-CNN



Bias-free CNN is locally linear

f (y) = WL R WL−1...R W1y = Ayy

We can use linear-algebraic tools to visualize what is going on!



Rows interpreted as filters

Estimate at pixel i :

fBF(y)(i) = (Ayy)(i) =< ith row of Ay , y >



Low noise
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Medium noise

Noisy image Denoised
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High noise

Noisy image Denoised
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Bias-free CNNs implement adaptive filters

Estimate at pixel i :

fBF(y)(i) = (Ayy)(i) =< ith row of Ay , y >

Rows can be interpreted as filters adapted to image structure and noise

Connection to classical Wiener denoising and nonlinear filtering



SVD analysis

Ay = U S V T

Empirical observations:

I Matrix is approximately symmetric U ≈ V

I Matrix is approximately low-rank



Singular vectors computed from noisy image

Clean image

Large singular
values

Small singular
values



Bias-free CNNs enforce union-of-subspaces prior

Ay ≈ U S UT

Low-dimensional subspace captures image features

BF-CNN implements union-of-subspaces prior

Connection to sparsity-based denoising



For more information

Robust and interpretable blind image denoising via bias-free
convolutional neural networks
S. Mohan, Z. Kadkhodaie, E. Simoncelli, C. Fernandez-Granda



Conclusion

Analysis of `1-norm minimization based on correlation decay and signal
separation (as opposed to sparsity and incoherence)

Impressive empirical performance of machine-learning methods

Local linear-algebraic analysis reveals connections to existing techniques

Challenge: Develop mathematical understanding of ML methods!


	Separable nonlinear inverse problems
	Machine learning for inverse problems

