

Optimization methods for inverse problems: The times they are a-changin'

Carlos Fernandez-Granda

www.cims.nyu.edu/~cfgranda

10/22/2019

Separable nonlinear inverse problems

Machine learning for inverse problems

Separable nonlinear inverse problems

Machine learning for inverse problems

Acknowledgements

Joint work with Brett Bernstein, Sheng Liu and Chrysa Papadaniil

Project supported by NSF award DMS-1616340

Separable nonlinear (SNL) inverse problems

We consider phenomena governed by known nonlinear function ϕ_t

Combination between sources or components is linear

$$f(t) := \sum_{i=1}^{k} c_i \phi_t(\theta_i)$$
(1)

Aim: estimate parameters $\theta_1, \ldots, \theta_k \in \mathbb{R}^d$ from *n* samples

$$y := \begin{bmatrix} f(s_1) \\ \vdots \\ f(s_n) \end{bmatrix} = \sum_{i=1}^k c_i \vec{\phi}(\theta_i)$$

Spectral super-resolution

Classical problem in signal processing

Parameters encode frequencies of sinusoids

Spectral super-resolution (data)

$$y=ec{\phi}(heta_1)+2\,ec{\phi}(heta_2)+0.5\,ec{\phi}(heta_3)$$

Deconvolution

Popular model in imaging and geophysics

Parameters encode spike locations

Deconvolution (data)

$$y=ec{\phi}(heta_1)+2\,ec{\phi}(heta_2)+0.5\,ec{\phi}(heta_3)$$

Heat source localization

Parameters encode source locations

Nonlinear function is obtained by solving the heat equation

Heat source localization (data)

$$y=ec{\phi}(heta_1)+2\,ec{\phi}(heta_2)+0.5\,ec{\phi}(heta_3)$$

Electroencephalography

Parameters encode locations of brain activity

 $y=ec{\phi}(heta_1)+ec{\phi}(heta_2)+ec{\phi}(heta_3)$

Methods to tackle SNL problems

- Nonlinear least-squares solved by descent methods Drawback: local minima
- Prony-based / Finite-rate of innovation
 Drawback: challenging to apply beyond super-resolution
- Reformulate as sparse-recovery problem Drawback: very slow
- Learning-based methods
 Drawback: we don't understand what's going on

Linearization

Linearize problem by lifting to a higher-dimensional space

True parameters: $\theta_{T_1}, \ldots, \theta_{T_k}$

Grid of parameters: $\theta_1, \ldots, \theta_N$, N >> n

$$y = \begin{bmatrix} \phi(\theta_1) & \cdots & \phi(\theta_{T_1}) & \cdots & \phi(\theta_{T_k}) & \cdots & \phi(\theta_N) \end{bmatrix} \begin{bmatrix} 0 \\ \cdots \\ c(1) \\ \cdots \\ c(s) \\ 0 \end{bmatrix}$$
$$= \sum_{j=1}^k c(j) \phi(\theta_{T_j})$$

Sparse Recovery for SNL Problems

Find a sparse \tilde{c} such that

$$y = \Phi_{\mathsf{grid}} \tilde{c}$$

Underdetermined linear inverse problem with sparsity prior

Popular approach: ℓ_1 -norm minimization

 $\begin{array}{ll} \mbox{minimize} & || \tilde{c} ||_1 \\ \mbox{subject to} & \Phi_{\rm grid} \tilde{c} = y \end{array}$

Popular approach: ℓ_1 -norm minimization

• Deconvolution: Deconvolution with the ℓ_1 norm, Taylor et al (1979)

EEG:

Selective minimum-norm solution of the biomagnetic inverse problem, Matsuura and Okabe (1995)

- Direction-of-arrival in radar / sonar: A sparse signal reconstruction perspective for source localization with sensor arrays, Malioutov et al (2005)
- and many, many others...

Main question

Under what conditions can SNL problems be solved by $\ell_1\text{-norm}$ minimization?

Main question

Under what conditions can SNL problems be solved by $\ell_1\text{-norm}$ minimization?

Wait, isn't this just compressed sensing?

Recover *s*-sparse vector *x* of dimension *m* from n < m measurements

$$y = Ax$$

Key assumption: A is random, and hence satisfies restricted-isometry properties with high probability

An $m \times n$ matrix A satisfies the restricted isometry property (RIP) if there exists $0 < \kappa < 1$ such that for any *s*-sparse vector **x**

 $(1 - \kappa) ||x||_2 \le ||Ax||_2 \le (1 + \kappa) ||x||_2$

An $m \times n$ matrix A satisfies the restricted isometry property (RIP) if there exists $0 < \kappa < 1$ such that for any *s*-sparse vector **x**

$$(1 - \kappa) ||x||_2 \le ||Ax||_2 \le (1 + \kappa) ||x||_2$$

2s-RIP implies that for any s-sparse signals x_1, x_2

$$||Ax_2 - Ax_1||_2$$

An $m \times n$ matrix A satisfies the restricted isometry property (RIP) if there exists $0 < \kappa < 1$ such that for any *s*-sparse vector **x**

$$(1 - \kappa) ||x||_2 \le ||Ax||_2 \le (1 + \kappa) ||x||_2$$

2s-RIP implies that for any s-sparse signals x_1, x_2

$$||Ax_2 - Ax_1||_2 = ||A(x_2 - x_1)||_2$$

An $m \times n$ matrix A satisfies the restricted isometry property (RIP) if there exists $0 < \kappa < 1$ such that for any *s*-sparse vector **x**

$$(1 - \kappa) ||x||_2 \le ||Ax||_2 \le (1 + \kappa) ||x||_2$$

2s-RIP implies that for any s-sparse signals x_1, x_2

$$\begin{aligned} ||Ax_2 - Ax_1||_2 &= ||A(x_2 - x_1)||_2 \\ &\geq (1 - \kappa) ||x_2 - x_1||_2 \end{aligned}$$

Columns of randomized matrix

Inter-column correlations

Separable nonlinear problems

Does RIP hold? Are all columns uncorrelated?

Correlations for spectral super-resolution

Correlations for deconvolution

Correlations for heat-source localization

Correlations for EEG

Due to high local correlations sparsity is not enough

Some sparse signals are impossible to estimate

But methods work in practice

Goal: Theory of sparse estimation relevant to SNL problems
Common property: Correlation decay

Minimum separation in parameter space

The minimum separation Δ of $\theta_1, \ldots, \theta_k$ equals

$$\Delta = \min_{i \neq j} |\theta_i - \theta_j|$$

A large enough minimum separation ensures that columns corresponding to *active* parameters are uncorrelated

Empirical observation: Recovery is exact if Δ is large enough

Spectral super-resolution

Deconvolution

Heat-source localization

Analysis of ℓ_1 -norm minimization

Aim: Prove that if Ax = y where A has correlation decay and x is well separated, then the solution to

minimize	$ x' _1$
subject to	Ax' = y

equals x

Analysis of ℓ_1 -norm minimization

Aim: Prove that if Ax = y where A has correlation decay and x is well separated, then the solution to

minimize	$ x' _1$
subject to	Ax' = y

equals x

 Strategy: Build dual certificate associated to an arbitrary well-separated x

Subgradient

The subgradient of $f : \mathbb{R}^n \to \mathbb{R}$ at $x \in \mathbb{R}^n$ is a vector $g \in \mathbb{R}^n$ such that $f(y) \ge f(x) + g^T(y - x)$, for all $y \in \mathbb{R}^n$

The set of all subgradients at x is called the subdifferential

Subgradients

g is a subgradient of the ℓ_1 norm at $x \in \mathbb{R}^n$ if and only if

$$g[i] = \operatorname{sign} (x[i])$$
 if $x[i] \neq 0$
 $|g[i]| \leq 1$ if $x[i] = 0$

 $v \in \mathbb{R}^m$ is a dual certificate associated to x if

$$q := A^T v$$

satisfies

$$q_i = ext{sign}(x_i) \quad ext{if } x_i \neq 0$$

 $|q_i| < 1 \quad ext{if } x_i = 0$

 $v \in \mathbb{R}^m$ is a dual certificate associated to x if $q := A^T v$

$$egin{aligned} q_i = ext{sign}\left(x_i
ight) & ext{if } x_i
eq 0 \ |q_i| < 1 & ext{if } x_i = 0 \end{aligned}$$

q is a subgradient of the ℓ_1 norm at x

For any vector u

$$||x + u||_1 \ge ||x||_1 + q^T u$$

For any x + h such that Ah = 0

 $||x + h||_1 \ge ||x||_1 + q^T h$ (q is a subgradient)

For any x + h such that Ah = 0

$$||x + h||_1 \ge ||x||_1 + q^T h$$

= $||x||_1 + v^T A h$

(q is a subgradient) $(q = A^T v)$

For any x + h such that Ah = 0

$$||x + h||_1 \ge ||x||_1 + q^T h$$

= $||x||_1 + v^T A h$
= $||x||_1$

(q is a subgradient) $(q = A^T v)$

For any x + h such that Ah = 0

$$\begin{aligned} ||x + h||_1 &\geq ||x||_1 + q^T h & (q \text{ is a subgradient}) \\ &= ||x||_1 + v^T A h & (q = A^T v) \\ &= ||x||_1 \end{aligned}$$

If A_T (where T is the support of x) is injective, x is the unique solution

We need to interpolate the sign of an arbitrary well-separated signal with vectors in the row space of A

Strategy

We need to interpolate the sign of an arbitrary well-separated signal with vectors in the row space of A

Correlation function $A^T A_i$ is in the row space! ($A_i = i$ th col of A)

Strategy

We need to interpolate the sign of an arbitrary well-separated signal with vectors in the row space of A

Correlation function $A^T A_i$ is in the row space! ($A_i = i$ th col of A)

Proof of exact recovery:

Use correlations to interpolate

Show that if separation is sufficient this yields valid certificate

-----_ _ _ _ _ _ _ _

Guarantees for SNL problems with decaying correlation

Theorem [Bernstein, Liu, Papadaniil, F. 2019]

In 1D, for any SNL problem with decaying correlation, ℓ_1 -norm minimization achieves exact recovery as long as the true parameters are sufficiently separated with respect to the correlation

- ▶ Result proved for continuous version of ℓ_1 norm
- Additional condition: Decay of derivatives of correlation function
- Proof technique generalizes to higher dimensions

Dual certificate in higher dimensions

Variations of dual certificates establish robustness at small noise levels (Candès, F. 2013), (F. 2013), (Bernstein, F. 2017)

Exact recovery with constant number of outliers (up to log factors) (F., Tang, Wang, Zheng 2017), (Bernstein, F. 2017)

Open questions: Analysis of higher-noise levels and discretization error, robustness for positive amplitudes

For more information

Sparse recovery beyond compressed sensing: Separable nonlinear inverse problems. B. Bernstein, S. Liu, C. Papadaniil, C. Fernandez-Granda

Application to magnetic-resonance fingerprinting

Supported by a Moore-Sloan Data Science Environment seed grant and NIH R21 EB027241

Joint work with Jakob Assländer, Brett Bernstein, Martijn Cloos, Quentin Duchemin, Cem Gutelkin, Vlad Kobzar, Florian Knoll, Sylvain Lannuzel, Riccardo Lattanzi, and Sunli Tang

Quantitative MRI via fingerprinting

Radio-frequency pulses are designed to produce irregular magnetization signals (fingerprints) encoding relaxation parameters

Multicompartment magnetic resonance fingerprinting

- Assumption in MRF: One tissue per voxel
- Problematic at tissue boundaries
- Ignores sub-voxel structure

Additive model: Separable nonlinear inverse problem

Correlation structure

Multicompartment MRF via ℓ_1 -norm regularization

- Fast-thresholding methods don't work
- ▶ We use an efficient interior-point solver
- Solving sequence of reweighted problems improves the solution

Drawback: Very slow

Validation with phantom

Validation with phantom

Goal: Fast multicompartment MRF for non-additive model

- Measurement design via ODE-constrained optimization
- Parameter estimation using a feedforward deep neural network trained on simulated data

Multi-Compartment MR Fingerprinting via Reweighted-I1-norm Regularization. S. Tang, J. Asslaender, L. Tanenbaum, R. Lattanzi, M. Cloos, F. Knoll, C. Fernandez-Granda. ISMRM 2017

Multicompartment magnetic resonance fingerprinting. S. Tang, C. Fernandez-Granda, S. Lannuzel, B. Bernstein, R. Lattanzi, M. Cloos, F. Knoll and J. Asslaender. Inverse Problems 34 (9) 4005. 2018

Hybrid-State Free Precession for Measuring Magnetic Resonance Relaxation Times in the Presence of B0 Inhomogeneities. V. Kobzar, C. Fernandez-Granda, J. Asslaender. ISMRM 2019 Separable nonlinear inverse problems

Machine learning for inverse problems

Data-driven estimation of sinusoid frequencies

Joint work with Brett Bernstein, Gautier Izacard, and Sreyas Mohan

Spectral super-resolution

Traditional methodology

- Linear estimation (periodogram)
- Parametric methods based on eigendecomposition of sample covariance matrix (MUSIC, ESPRIT, matrix pencil)
- Sparsity-based methods

Learning-based approach

Comparison to state of the art

For more information

A Learning-Based Framework for Line-Spectra Super-resolution. G. Izacard, B. Bernstein, C. Fernandez-Granda. ICASSP 2019

Data-driven Estimation of Sinusoid Frequencies. G. Izacard, S. Mohan, C. Fernandez-Granda. NeurIPS 2019

Blind denoising via convolutional neural networks

Joint work with Zahra Kadkhodaie, Sreyas Mohan, and Eero Simoncelli

Image denoising via deep learning

Goal: Estimate image x from data y := x + z (z is noise)

Feedforward convolutional neural networks are the state of the art

Image denoising via deep learning

Goal: Estimate image x from data y := x + z (z is noise)

Feedforward convolutional neural networks are the state of the art

Interesting phenomenon: Removing additive constants in architecture provides generalization across noise levels

$$f(y) = W_L R(\ldots W_2 R(W_1 y + b_1) + b_2 \ldots) + b_L$$

Image denoising via deep learning

Goal: Estimate image x from data y := x + z (z is noise)

Feedforward convolutional neural networks are the state of the art

Interesting phenomenon: Removing additive constants in architecture provides generalization across noise levels

$$f(y) = W_L R(\dots W_2 R(W_1 y + b_1) + b_2' \dots) + b_L'$$

Generalization across noise levels

Bias-free CNN is locally linear

$$f(y) = W_L R W_{L-1} \dots R W_1 y = A_y y$$

We can use linear-algebraic tools to visualize what is going on!

Rows interpreted as filters

Estimate at pixel *i*:

 $f_{\mathsf{BF}}(y)(i) = (A_y y)(i) = < i \mathsf{th} \text{ row of } A_y, y >$

Low noise

Noisy image

Denoised

Pixel 1

Pixel 3

Medium noise

Noisy image

Denoised

Pixel 1

Pixel 3

High noise

Noisy image

Denoised

Pixel 1

Pixel 3

Bias-free CNNs implement adaptive filters

Estimate at pixel *i*:

$$f_{\mathsf{BF}}(y)(i) = (A_y y)(i) = < i$$
th row of $A_y, y >$

Rows can be interpreted as filters adapted to image structure and noise

Connection to classical Wiener denoising and nonlinear filtering

SVD analysis

$$A_y = U S V^T$$

Empirical observations:

- Matrix is approximately symmetric $U \approx V$
- Matrix is approximately low-rank

Singular vectors computed from noisy image

Clean image

Large singular values

Small singular values

Bias-free CNNs enforce union-of-subspaces prior

$$A_y \approx U S U^T$$

Low-dimensional subspace captures image features

BF-CNN implements union-of-subspaces prior

Connection to sparsity-based denoising

Robust and interpretable blind image denoising via bias-free convolutional neural networks

S. Mohan, Z. Kadkhodaie, E. Simoncelli, C. Fernandez-Granda

Conclusion

Analysis of ℓ_1 -norm minimization based on correlation decay and signal separation (as opposed to sparsity and incoherence)

Impressive empirical performance of machine-learning methods

Local linear-algebraic analysis reveals connections to existing techniques

Challenge: Develop mathematical understanding of ML methods!