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1 Distributions, characteristic functions, weak

convegence

1. Characterizations of measures

(a) Statement: Each probability measure P on R is equivalently
characterized its distribution function F (monotonic/R-cnts/onto/[0, 1]-
valued) or characteristic function φ (cnts and equal to 1 at t =
0/pos. def./C-valued).

(b) Depends on: The relationship is F (x) = P ((−∞, x]). Countable
additivity of P follows by using right continuity to make a compact
under-approximation and using the FIP. Char fns and dbns are
related via the Fourier transform (and inverse transform).

(c) Used for: Dbn fns and char fns are easier to deal with than
probability measures (set fns), especially when proving weak con-
vergence, convergence of sums, the list goes on.

2. Weak convergence

(a) Statement: Weak convergence of measures is equivalent to point-
wise convergence of the dbn fns (at points of continuity). This is
equivalent to convergence in integrals of any bounded cnts fns
(weak * convergence on the space of cnts fns). This is also equiv-
alent to pointwise convergence of the char fns. Furthermore, any
limit of char fns that is cnts at 0 is the char fn of some dbn.

(b) Depends on: Cvgnce of integrals from pointwise cvgnce of dbn
fns follows from Riemann integrals on a compact interval. We can
show weak cvgnce from pointwise cgnce of char fns by constructing
a distribution fn from its skeleton on the rationals (’subdistribu-
tion fn’).

(c) Used for: WLLN, CLT (any time we want to prove cvgnce in
dbn for things expressed more readily by char fns e.g., sums of
indep. r.v.’s). In particular, the definition using integrals against
cnts functions shows the relationship between weak convergence
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in probability theory with weak * convergence in the space of
continuous function on Ω (since the dual of C(Ω) is the set of
nonneg. measures on Ω).

2 Sums of random variables and limit theo-

rems

1. Chebyshev’s inequality

(a) Statement: An upper bound of on the probability that a random

variable X exceeds M (in abs. val) is
‖X‖p

p

Mp

(b) Depends on: property of measure and integral - just estimate.

(c) Used for: easily showing a WLLN for i.i.d. r.v.’s with finite vari-

ance. Kolmogorov’s inequality and Doob’s inequality specialize
this bound to sums of indep. r.v.’s and martingales, respectively.

2. WLLN

(a) Statement: Given a sequence of i.i.d. r.v.’s with finite first mo-
ment, their sample mean converges in probability to the distribu-
tion mean.

(b) Depends on: taylor-expansions of char fns and the fact that
weak cvgnce to the point mass measure is equivalent to cvgnce in
probability to that constant.

(c) Used for: (obvious applications) In fact from the proof with
char fns we see that we do not really need a finite first moment -
just differentiability of the char fn at 0 - see examples. The first
moment is necessary for the SLLN.

3. Kolmogorov’s consistency theorem

(a) Statement: Suppose we have an infinite product (measurable)
space (where the space is separable metric space) with a sequence
of probability measures defined on the finite-dimensional product
spaces that are consistent with each other. Then there exists a
c.a. prob. measure on the infinite product space.

(b) Depends on: Extension theorem and defining a c.a. measure
on the field generated by finite dimensional cylinder sets. We
need tightness of measure (for compact under-approximations),
diagonalization, and the FIP to show countable additivity.
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(c) Used for: This is a very technical theorem but is crucial since
otherwise any talk of limits of sums of random variables wont make
any sense (since these require the existence of infinite product mea-
sures that agree with the natural intuition on finite-dimensional
cylinders). In particular, Borel Cantelli, the 1/2/3-series, and
SLLN would not make sense.

4. Borel-Cantelli Lemma

(a) Statement: If we have an infinite sequence of events, whose prob-
abilities sum up to a finite value, then the probability that ω ∈ An

for infintely many n is 0. Conversely, if the events are indepen-
dent and the probabilities sum up to ∞, then the probability that
ω ∈ An for infinitely many n is 1.

(b) Depends on: Interpretation of the statement in terms of lim sup An

and lim inf Ac
n. The identity 1− x ≤ e−x is also useful for the sec-

ond part.

(c) Used for: Proving ’almost sure’ thoerems. In particular, it is
used in proving the 3-series theorem and SLLN in showing that
sequence of random variables is equal (a.s.) to their truncated
versions eventually (either sufficiently later in the sequence or
for sufficiently large truncation values). We can also reinterpret
Borel-Cantelli as saying that on the infinite-product space with

the infinite-product measure (generated by copying the orignal
space/measure), the probability that ω(n) = xn ∈ An infinitely
many times is 0 or 1 and so on. In other words, taking an ω in
the single space and testing membership in each An is equivalent
to taking an ω in the product space (an infinite sequence) and
testing membership of the n’th member in the sequence in An for
each n.

5. Kolmogorov’s inequality and Levy’s inequality

(a) Statement: Consider a sequence of indep. random variables with
0 mean and finite variances σ2

i . Let EM be the event that the ran-
dom walk defined by summing the variables exceeded a value M
at any time j, 1 ≤ j ≤ n. Then P (EM) is bounded above by

{
n∑

j=1

σ2

j }/M2.
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Suppose also that we know that the probability that any tail of
the random walk (up to time n) exceeds M/2 is bounded above
by δ. Then P (EM) is bounded above by δ

1−δ
.

(b) Depends on: Partitioning EM into n events (the random walk
exceeds M for the first time at time j) and exploiting indepen-
dence of Sn − Sm and Sm for any 1 ≤ m ≤ n. To show the first
we use Chebyshev and complete a square to bound each part. To
show the second we condition EM on whether Sn ≤ M/2 or not.

(c) Used for: Kolmogorov’s inequality is like Chebyshev’s inequality
specialized to sums of indep. r.v.’s. It tells us that taking the
sup over the random walk costs nothing more. It is used to prove
the 1-series convergence theorem. Levy’s inequality is similar but
tells you more given stronger assumptions - it is used to prove that
cvgnce in prob. of a sum of indep. r.v.’s implies cvgnce almost
surely.

6. Sufficient conditions for a.s. cvgnce

(a) Statement: If a sequence of functions (fn) satisfies a stronger
version of cauchy-in-measure (probability) convergence which in-
volves the variable sup

m≤k≤n
|fk − fm|, then the sequences converges

a.e. to a limit function.

(b) Depends on: Similar to proving a subsequence cvgs a.e. if the
sequence cvgs in measure. However, in this case we construct a
special subsequence with the extra sup condition. The rest follows
the same format.

(c) Used for: This is the link we need to establish a.s. conver-
gence for sums of indep. r.v.’s. The sup assumption of this result
is guaranteed by using either Kolmogorov’s inequality (for finite
variance r.v.’s) or assuming cvgnce in probability and applying
Levy’s inequality.

7. Levy’s theorem for sums of r.v.’s

(a) Statement: For sums of independent r.v.’s weak convergence,
convergence in probability, and a.s. convergence are all equivalent.

(b) Depends on: Going from weak cvgnvce to cvgnce in prob. uses
cvgnce of the char fn and expressing it as an infinite product
to show that the sequence must be cauchy-in-prob. Going from
cvgnce in prob. to a.s. cvgnce uses Levy’s inequality.
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(c) Used for: This tells us how special sums of indep. r.v.’s are in
terms of their convergence.

8. Kolmogorov 1-series, 2-series, 3-series

(a) Statement: If a sequence of indep. 0-mean r.v.’s have finite vari-
ances σ2

i that are summable, then the sum cvgs a.s. to some limit
variable (1-series). This generalizes to r.v.’s with nonzero mean
if the means are summable (2-series). This generalizes further to
r.v.’s with possibly infinite means/variances if there is a cutoff C
for which the sum over n that the |Xn| exceeds C is summable.

(b) Depends on: 1-series is basically Kolmogorov’s inequality and
the sup-cauchy condition. 2-series is just subtracting the mean
and applying 1-series. 3-series is applying Borel-Cantelli Lemma
to the sequence of events that |Xn| exceeds C (so that a.s. conver-
gence of the truncations is equivalent to a.s. convergence of the
original series) and applying 2-series.

(c) Used for: SLLN, useful in their own right since here the r.v.’s
are not necessarily identically distributed.

9. SLLN

(a) Statement: If a sequence of i.i.d. r.v.’s has finite first moment,
then their sample mean converges a.s. to the ’true’ mean (WLOG
= 0 since we can subtract off the mean).

(b) Depends on: The 3-series applied to special truncated versions
of the sequences (with truncation relaxing as n increases). Borel
Cantelli to show that convergence between these versions and a
variant of the sample mean is equivalent. Kronecker’s lemma to
show that convergence of the variant of the sample mean implies
convergence of the sample mean.

(c) Used for: (obvious applications) Note that the finite first moment
assumption is necessary. To see why, note that E[|X|] is finite iff∑

P (|X| ≥ n) is (rearrangement of sums). If that sum is infinite,
then by Borel Cantelli part 2 we have that |Xn| ≥ n infinitely
many times a.s. , which makes it impossible for Sn/n to converge
a.s. (it is not cauchy).

10. Kolmogorov 0/1 Law
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(a) Statement: Events in the tail field of an infinite product space
(intersection of the sigma fields generated by tails) have probabil-
ity 0 or 1 wrt the infinite product measure.

(b) Depends on: Show that the event is independent of all measur-
able events (including itself) using the monotone class theorem.

(c) Used for: Gives us alternative intuition of the SLLN (sum con-
verges to point mass measure), Borel-Cantelli (prob is 0/1), which
tell us things about events in the tail field. Now we can say
things about the probability that the sample mean is asymptoti-
cally O(nα) for any α.

11. Central limit theorem

(a) Statement: Suppose we have a sequence of i.i.d. r.v.’s with finite
first and second moments. Then the distribution of X1+...Xn√

n
cvgs

weakly to the normal distribution with mean and variance same
as that of X1.

(b) Depends on: Char fns, taylor expansions, and limit-proprety of
e.

(c) Used for: (obvious applications)

12. Lindeberg’s theorem

(a) Statement: Generalization of CLT to non-identically distributed
indep. r.v.’s. If, when considering each Sn, the fraction of the total
variance coming from values outside an ǫ standard deviation of 0
goes to 0 as n → ∞ for arbitrarily small ǫ, then the CLT still
holds.

(b) Depends on: The proof is long and painful but the general ap-
proach using triangular arrays is useful. See text or other notes.

(c) Used for: This tells us to what extent we can weaken the the
indentically distributed assumption. The CLT can fail in 2 notable
cases. If the variances are summable, it can cvg to a possibly non-
Gaussian r.v. (1-series). Even if the variances are not summable,
if the probability of each summand being nonzero is small enough
to be summable but the total variance diverges to ∞, then the
sum divided by

√
n goes to 0 a.s (not normal).

13. Law of iterated logarithm
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(a) Statement: The lim sup / lim inf of the sum of i.i.d mean-0 variance-
1 r.v.’s divided by

√
n is ±∞ (respectively) with probability 1. In

particular, they grow asymptotically on the order of ±
√

2 log log n
with probability 1.

(b) Depends on: The Kolmogorov 0/1 law and CLT together im-
mediately imply the first part (this is a tail event). The proof of
the second part is complicated- it involves Borel Cantelli on the
events where the maximum sum between two specified indices (in
a special index sequence) exceeds a constant times

√
x log log x

evalauted at the lower index. Each summand is bounded using
Levy’s inequality and choosing the index seqience to be ρn for
some ρ > 1.

(c) Used for: Not that many applications. But it is important to
know that the sum divded by

√
n will never converge a.s. to

another r.v. We need to normalize by a power of n biiger then 1

2
.

3 Dependent random variables

1. Existence of conditional expectation

(a) Statement: Any random variable with finite first moment has
a conditional expectation random variable (also integrable) wrt
any sub-sigma-field (defined uniquely up to sets of 0-measure). In
addition, conditional expectations satisfy, the law of iterated con-
ditional expectation (tower property), conditional nonnegativity,
linearity, and conditional Jensen’s inequality.

(b) Depends on: Existence/uniqueness is basically taking a Radon-
Nikodym derivative of the measure defined by integrating the ran-
dom variable (restricted to the sub sigma-field) with respect to the
original prob. measure (again, the restricted to the sub sigma-
field). Jensen’s can be proved using the property that convex
functions are sup’s of linear functions.

(c) Used for: Developing the whole theory of dependent random
variables, Martingales and markov chains, etc. Conditional ex-
pectation also gives a notion of ’information’ of 1 random variable
coming from another random variable.
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4 Markov chains

1. MC’s and the Chapman Kolmogorov equations

(a) Statement: MC’s are essentially special classes of distributions
on an infinite product measure space, in which the cylinder set
probabilities depend only on the penultimate fixed point in the
sequence (which may in general depend on the size of the cylin-
der’s base) (1-step transition probs). These measures induce l-step
transition probabilities by just repeatedly integrating the 1-steps.
Any n-step transition probability from time k can be arrived at
by ’integrating out’ any intermediate state (just by conditioning).
In addition, these agree with the conditional probabilities coming
from the infinite product measure defining the MC (a.e.).

(b) Depends on: formal manipulation and definition of conditional
probability.

(c) Used for: Not sure - this theorem is a ’common sense’ fact. Our
natural intuition of ’m-step transition’ probabilities is now guar-
anteed to make sense with respect to the infinite product measure
coming from Kolmogorov’s consistency theorem. This is especially
obvious for the time-homogeneous case and finite state space in
which the transition probabilities is just a stochastic matrix.

2. Strong markov property for MC

(a) Statement: Given a MC and a stopping time τ , the conditional
distribution of the sequence following a stopping time given ’infor-
mation up to the stopping time’ (this is the stopping time sigma-
field - take any measurable set, intersect it with event that τ ≤ n,
and see if it is Fn-measurable) is the same as the original chain
but starting at the state attained at the stopping time (Xτ ) - a.e.
in the set where τ is finite.

(b) Depends on: The standard procedure for proving conditional
probabilities - take any τ -measurable set, intersect with any event
pertaining to a finite sequence following the stopping time. By
conditioning on τ = k and summing over k, we can exploit the
definition of τ -measurable sets.

(c) Used for: This shows that our intuitive notion of the Markov
property (i.e. If we know the sequence at some fixed point in
time is x, the distribution on values thereafter is like starting the
sequence over at x) now extends to stopping times. When τ is
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just the hitting time of some state, they are interpreted as renewal
times.

3. Irreducible markov chains

(a) Statement: If an MC is irreducible and has a countable state
space, then the states are either all transient, all positive recurrent,
or all null recurrent.

(b) Depends on: If there is communication between 2 states, it fol-
lows that one is recurrent iff the other is. If x is positive recurrent,
we can bound the expected recurrence time of y by the sum of the
expected hitting time of x starting at y and the reverse expected
hitting time, which in turn is bounded by 2/p times the expected
recurrence time of x, where p is the probability of hitting y before
x starting at x.

(c) Used for: ?

4. Necessary/sufficient conditions for transcience

(a) Statement: If an MC is irreducible and has a countable state
space, then it is transient iff the expected number of hits (includ-
ing possible the first) to state y starting at state x is finite for
some pair of states (x, y). In addition, this value is equal to the
probability that you hit y eventually starting at x, multiplied by
the expected hits to y starting at y. Finally, the expected number
of hits to x starting from x the reciprocal of probability that you
never return to x starting from x.

(b) Depends on: The number of returns is a random variable with
geometric distribution and parameter equal to the probability that
you will return eventually. To get the expected number of visits
to y starting from x, we just compute the probability of getting
to y eventually, and using the renewal property we just multiply
this by the expected number returns to y starting from y.

(c) Used for: For specific MC’s, we can figure out whether it is tran-
sient or not just by analyzing the n-step transition probabilities
on emphone pair of states. Usually we can pick x = y = 0 and
check this.

5. SSRW on Z
d

(a) Statement: Consider the simple symmetric random walk on Zd

where you add ±1 to some coordinate at each time step w.p 1/2d.
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The 2n-step transition probability from 0 to 0 is asymptotically
order of 1/(nd/2) (and 0 for odd-step transitions). It follows that
for d ≤ 2 the MC is null recurrent and for d > 2, it is transient.

(b) Depends on: Once we show the estimate, just apply the previous
theorem. Showing the estimate involves interpreting the random
walk as fourier coefficients of an L2 function on the d-dimensional
torus [−π, π]d.

(c) Used for: ?

6. Positive recurrence and invariant distributions

(a) Statement: Consider an (irreducible) recurrent MC with count-
able state space. If the MC is null recurrent, then the n-step
transition between any state pair goes to 0. If the MC is positive
recurrent, then the n-step transition from x to y tends to the re-
ciprocal of the expected recurrence time of y (and is indep. of x).
In particular, this limit is an invariant distribution for the MC.

(b) Depends on: This corresponds to basic intuitition that for large
n, the n-step transition should be the asymptotic fraction of time
that the chain spends in state y, i.e. one over the mean recurrence
time.

(c) Used for:

5 Martingales

1. Doob’s inequality - analog of chebychev’s for martingales

(a) Statement: If we we have submartingale sequence, the probabil-
ity that the maximum size of the sequence up to time n exceeds
a number l is bounded above by the p’th moment of Xn divided
by lp for any p ≥ 1. There is also the following corollary - the
p’th moment of the sup of the sequence (up to time n) is bounded
above by ( p

p−1
)p times the p’th moment of the n’th element in the

sequence. Finally, this also naturally generalizes to continuous-
time martingales that have cnts sample paths.

(b) Depends on: Similar conditioning trick as in Kolmogorov’s in-
equality. Bound the probability of the event that the sequence
exceeds l for the first time at time j using Markov’s inequality
and the fact that any convex function e.g., |.| of a (sub)martingale
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is a submartingale (this is basically Jensen’s inequality). To show
the corollary is manipulations using Fubini/Holders.

(c) Used for: This gives us a chebychev-type bound on the sup of
the sequence that depends only on the last element of the se-
quence. This gives us hope for proving some types of convergence
of martingales.

2. Martingales with L2 differences

(a) Statement: Suppose a martingale sequence has square-integrable
differences, and assume also that the sequence is uniformly bounded
in the L2-norm. Then the sequence converges in L2 to some L2

random variable.

(b) Depends on: Since the covariance of 2 distinct difference is 0,
we can write the second moment of a martingale element, as the
sum of the second moments of the differences. Then we can use
the cauchy-criterion in L2.

(c) Used for: This is a convergence result specialized for L2 - however
if we assume the martingale is uniformly bounded in ω and time,
then all types of Lp convergence are equivalent. This will be used
in proving more general convergence results (see below).

3. ’Projected’ martingales converge in Lp and a.s.

(a) Statement: Suppose a martingale sequence is generated by tak-
ing conditional expectations (projections) of a random variable X
wrt a filtration. Then if X is in Lp for some p ≥ 1, the martingale
converges to X in Lp and a.s.

(b) Depends on: Lp convergence is easier - show first for bounded X
using the previous theorem. Then if X is Lp we can approximate
it with a bounded function and generate a martingale with respect
to that function, then apply Minkowski’s inequality. A.s. cvgnce
is hard - see book.

(c) Used for: This is the first of the convergence results for mar-
tingale. It’s not so useful because we have to already know there
is a random variable ’generating’ the martingale sequence. The
following theoerems address this.

4. Sufficient conditions for ’projection limit’ and Lp convergence
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(a) Statement: Suppose a martingale sequence is uniformly bounded
in the Lp norm for some p > 1. Then there is a r.v. in Lp which
generates the martingale via projections wrt the filtration, and
the martingale converges to this variable in Lp.

(b) Depends on: The last part follows from the previous theorem.
To show the first part, use Lp duality (need p > 1) and weak
compactness of bounded sets in Lp to get a weakly convergent
subsequence of the martingale in Lp (as an Lq fn take the char fn
of some Fn-measurable set).

(c) Used for: ?

5. Sufficient conditions for ’projection limit’ and L1 convergence

(a) Statement: Suppose a martingale sequence is uniformly inte-
grable. Then there is a r.v. in L1 which generates the martingale
via projections wrt the filtration, and the martingale converges to
this variable in L1.

(b) Depends on: The uniform integrability gives us weak compact-
ness in L1, and so we can follow the strategy in the previous
theorem.

(c) Used for: ?

6. Stopping time properties

(a) Statement: Constant times are stoppping times. Stopping times
are preserved under nondec. functions that lie above the diagonal.
They are also preserved under max and min operations. If we have
a sequence measurable wrt filtration, the sequence at a stopping
time is measurablwe wrt the stopping time field.

(b) Depends on: easy.

(c) Used for: If a stopping time is finite a.s., we take τ = lim min{tau, n}
(a limit of bounded stopping times).

7. Optional stopping theorem

(a) Statement: Given a (sub/super)martingale sequence and 2 non-
neg. bounded and ORDERED stopping times (0 ≤ τ1 ≤ τ2 ≤ C)
(a.s.), the conditional expectation of the sequence at the later
stopping time wrt the sigma-field generated by the former stop-
ping time is equal to (more/less) the value of the sequence at the
former stopping time (a.s.).
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(b) Depends on: Reduce it to showing that for any time greater than
a stopping time (a.s.), the conditional expectation of the sequence
at that time wrt the stopping time field is just the sequence at the
stopping time (a.s.). Then use iterated conditional expectation.

(c) Used for: A common application is to use τ1 as constantly 0 and
τ2 some bounded stopping time to get that the expected value of
the martingale at the stopping time is just the mean at time 0.
Typically if a stopping time is unbounded (e.g., the hitting time
of some value) we can take a limit of bounded stopping times.
This can be used to derive the ’Gambler’s ruin’ result - for SSRW,
what is the probability that you hit a before −b?

8. Doob decomposition theorem

(a) Statement: Any submartingale can be written as a sum of a mar-
tingale and a sequence An of (a.s.) nondecreasing r.v.’s starting at
0, and where An is Fn−1-measurable for n ≥ 2. The decomposition
is unique.

(b) Depends on: Just define the nondecreasing sequence inductively
by adding the conditional expectation of the n-to-(n− 1) martin-
gale differences wrt the Fn−1. The rest is just verification.

(c) Used for: Extending results on martingales to results on sub/supermartingales.
For instance, the optional stopping time can be extended to sub-
martingales with equality replaced by an inequality.

9. L1 martingales

(a) Statement: A martingale sequence uniformly bounded in the L1

norm can be written as the difference of 2 nonneg. martingales
(with the same filtration). In addition a nonnegative uniformly
bnded martingale (wrt L1 norm) has an almost sure limit (this
limit may not in general ’generate’ the martingale).

(b) Depends on: Doobs inequality and the L1 bound imply that the
probability that martingale exceeds l is less than K/l, which in
turn implies that this maximum is finite w.p. 1. Restricting to this
set where the sequence is uniformly bounded, any ω for which the
limit DNE must ’upcross’ some pair of rationals infinitely often.
The upcrossing inequality says that the prob. of this happening
for any pair of rationals is 0.

(c) Used for: ?
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10. Doob’s upcrossing inequality

(a) Statement: The expected number of upcrossings of an interval
(by a martingale sequence)up till time n is bounded above by the
expected value of the rectified difference between the left endpoint
and the n’th value of the martingale, divided by the length of the
interval.

(b) Depends on: Optional stopping theorem - create stopping times
associated with the martingale entering the area above or below
the interval in question (use a minimum trick). Then look at
the sum of the difference in the sequence values at this time (each
difference is more than the length of the interval) and how it relates
to the number of upcrossings. Show that the expected value of
this sum (except the last term) is 0 by Optional stopping time
theorem.

(c) Used for: Showing that L1-bounded martingales have a.s. limits.

6 Ergodic theorems

1. Equivalence of stationary stochastic processes and measure-
preserving maps

(a) Statement: Stationary (doubly-infinite) sequences are essentially
equivalent to measure-preserving maps on the probability space.

(b) Depends on: To go forward, we interpret the sequence as random
variables on the product space of infinite sequences. The measure-
preserving map is just the shift operator. To go backward, take
any r.v. X and define a sequence of other r.v.’s Xn = X(T nω)
where T is the given measure-preserving map. The resulting se-
quence is then stationary.

(c) Used for: This basically says we can look at infinite sequences
as moving from ω to ω via repeated application of a measure-
preserving operator on a simple space (this is like moving in space)
OR think of the entire sequence as one ω in a product space (this
is like moving in time).

2. Ergodic theorem

(a) Statement: Let P be a T -invariant measure. Then for any inte-
grable function f the ’time’ average of f (by repeated application
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of T ) converges a.s. to the conditional expectation of f wrt the
sigma-field of T -invariant sets. If P is ergodic for T then this is
just the expectation (’space’ avg) of f . If f is in Lp then we have
convergence in Lp also.

(b) Depends on: For p = 2 we can use Hilbert space techniques
involving orthogonal decomposition. The idea is to consider the
operator (Uf)(ω) = f(Tω) and consider the subspace Ker(U−I).
The RHS is just a projection onto this subspace

(c) Used for: This is a generalization of the SLLN to dependent
random variables, namely ergodic sequences. For these sequences,
taking a time average (over several samples) is asymptotically
equivalent to taking a space average (i.e. an expectation integral).

3. Extremal measures

(a) Statement: The set of T -invariant measures on a probability
space is a convex set. Furthermore, a T -invariant measure is er-
godic for T iff it is an extremal point in this set. Any 2 distinct
ergodic measures are orthogonal.

(b) Depends on: Convexity is easy to show. If P is not extremal
(i.e. a convex combo), we can apply the ergodic theorem to its two
consitutent T -invariant measures and use ergodicity to show that
the constitutents must be identical measures. If P is not ergodic,
then there is a T -invariant set on which they differ. We can define
2 measures that linearly combine to get the original measure (just
restrict to the set and its complement).

(c) Used for: This is another characterization of what ergodic mea-
sures for a map T are. Notice that these are exactly the measures
for which the space/time average are asymptotically equivalent.

4. Invariant measures for stationary MC’s

(a) Statement: Consider an MC with state space (X,B) and tran-
sitions π. The set of dbns M on (X,B) that are invariant for π
is a convex set. Furthermore, µ is extremal in M iff the induced
measure Pµ is ergodic in the set of shift-invariant measures on the
infinite product space (Ω,F)

(b) Depends on:

(c) Used for:

5. CLT for martingales
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(a) Statement: The CLT holds for stationary ergodic sequences that
are uniformly L2-bounded martingale differences (that is, the con-
ditional expectation of the n’th element wrt the n−1’th sigma-field
is 0).

(b) Depends on: characteristic functions

(c) Used for: Proving CLT’s for special sequences of dependent ran-
dom variables. For instance we can apply this (nontrivially) to
the sequence generated by applying a function f to an MC.
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