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Abstract. We identify all the weak sequential limits of smooth maps in
W 1;2 (M;N). In particular, this implies a necessary and su¢ cient topological
condition for smooth maps to be weakly sequentially dense in W 1;2 (M;N).

1. Introduction

AssumeM and N are smooth compact Riemannian manifolds without boundary
and they are embedded into Rl and Rl respectively. The following spaces are of
interest in the calculus of variations:

W 1;2 (M;N) =
n
u 2W 1;2

�
M;Rl

�
: u (x) 2 N a.e. x 2M

o
;

H1;2
W (M;N) =

�
u 2W 1;2 (M;N) : there exists a sequence ui 2 C1 (M;N)

such that ui * u in W 1;2 (M;N)
	
:

For a brief history and detailed references on the study of analytical and topological
issues related to these spaces, one may refer to [2, 3, 7]. In particular, it follows
from theorem 7.1 of [3] that a necessary condition for H1;2

W (M;N) = W 1;2 (M;N)
is that M satis�es the 1-extension property with respect to N (see section 2.2 of
[3] for a de�nition). It was conjectured in section 7 of [3] that the 1-extension
property is also su¢ cient for H1;2

W (M;N) = W 1;2 (M;N). In [1, 7], it was shown
that H1;2

W (M;N) = W 1;2 (M;N) when �1 (M) = 0 or �1 (N) = 0. Note that if
�1 (M) = 0 or �1 (N) = 0, then M satis�es the 1-extension property with respect
to N . In section 8 of [4], it was proved that the above conjecture is true under the
additional assumption that N satis�es the 2-vanishing condition. The main aim of
the present article is to con�rm the conjecture in its full generality. More precisely,
we have

Theorem 1.1. Let Mn and N be smooth compact Riemannian manifolds without
boundary (n � 3). Take a Lipschitz triangulation h : K !M , then

H1;2
W (M;N)

=
�
u 2W 1;2 (M;N) : u#;2 (h) has a continuous extension to M w.r.t. N

	
=

�
u 2W 1;2 (M;N) : u may be connected to some smooth maps

	
:

In addition, if � 2 [M;N ] satis�es � � hjjK1j = u#;2 (h), then we may �nd a
sequence of smooth maps ui 2 C1 (M;N) such that ui * u in W 1;2 (M;N), [ui] =
� and dui ! du a.e..
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Here u#;2 (h) is the 1-homotopy class de�ned by White [8] (see also section 4 of
[3]) and [M;N ] means all homotopy classes of maps from M to N . It follows from
Theorem 1.1 that

Corollary 1.1. Let Mn and N be smooth compact Riemannian manifolds with-
out boundary and n � 3. Then smooth maps are weakly sequentially dense in
W 1;2 (M;N) if and only if M satis�es the 1-extension property with respect to N .

For p 2 [3; n� 1] being an natural number, it remains a challenging open problem
to �nd out whether the weak sequential density of smooth maps in W 1;p (M;N)
is equivalent to the condition that M satis�es the p � 1 extension property with
respect to N . This was veri�ed to be true under further topological assumptions
on N (see section 8 of [4]). However, even for W 1;3

�
S4; S2

�
, it is still not known

whether smooth maps are weakly sequentially dense. Some very interesting recent
work on this space can be found in [5].
The paper is written as follows. In Section 2, we will present some technical

lemmas. In Section 3, we will prove the above theorem and corollary.
Acknowledgments. The research of the author is supported by National Sci-

ence Foundation Grant DMS-0209504.

2. Some preparations

The following local result, which was proved by Pakzad and Riviere in [7], plays
an important role in our discussion.

Theorem 2.1 ([7]). Let N be a smooth compact Riemannian manifold. Assume
n � 3, B1 = Bn1 , f 2 W 1;2 (@B1; N) \ C (@B1; N), f � const, u 2 W 1;2 (B1; N),
uj@B1

= f , then there exists a sequence ui 2 W 1;2 (B1; N) \ C
�
B1; N

�
such that

uij@B1
= f , ui * u in W 1;2 (B1; N) and dui ! du a.e.. In addition, if v 2

W 1;2 (B2nB1; N) \ C
�
B2nB1; N

�
satis�es vj@B1

= f and vj@B2
� const, then we

may estimateZ
B1

jduij2 dHn � c (n;N)

 Z
B1

jduj2 dHn +

Z
B2nB1

jdvj2 dHn

!
:

For convenience, we will use those notations and concepts in section 2, 3 and 4 of
[3]. The following lemma is a rough version of Luckhaus�s lemma [6]. For reader�s
convenience, we sketch a proof of this simpler version using results from section 3
of [3].

Lemma 2.1. Assume Mn and N are smooth compact Riemannian manifolds
without boundary. Let e > 0, 0 < � < 1, A > 0, then there exists an " =
" (e; �; A;M;N) > 0 such that for any u; v 2W 1;2 (M;N) with jdujL2(M) ; jdvjL2(M) �
A and ju� vjL2(M) � ", we may �nd a w 2W 1;2 (M � (0; �) ; N) such that, in the
trace sense w (x; 0) = u (x), w (x; �) = v (x) a.e. x 2M and

jdwjL2(M�(0;�)) � c (M)
p
�
�
jdujL2(M) + jdvjL2(M) + e

�
:

Proof. Let "M > 0 be a small positive number such that

V2"M (M) =
�
x 2 Rl : d (x;M) < 2"M

	
is a tubular neighborhood of M . Let �M : V2"M (M) ! M be the nearest point
projection. Similarly we have "N , V2"N (N) and �N for N . Choose a Lipschitz
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cubeulation h : K !M . We may assume each cell in K is a cube of unit size. For
� 2 Bl"M , x 2 jKj, let h� (x) = �M (h (x) + �). Assume "M is small enough such
that all h��s are bi-Lipschitz maps. Set m =

�
1
�

�
+ 1, using [0; 1] = [mi=1

�
i�1
m ; im

�
,

we may divide each k-cube in K into mk small cubes. In particular, we get a
subdivision of K, called Km. It follows from section 3 of [3] that for a.e. � 2 Bl"M ,
u � h�; v � h� 2 W1;2 (Km; N). Applying the estimates in section 3 of [3] to each
unit size k-cube in

��Kk
m

��, we getZ
Bl
"M

dHl (�)

Z
jKk

mj

���d�u � h�jjKk
mj

����2 dHk � c (M) �k�n jduj2L2(M) ;Z
Bl
"M

dHl (�)

Z
jKk

mj

���d�v � h�jjKk
mj

����2 dHk � c (M) �k�n jdvj2L2(M) ;

and  Z
Bl
"M

ju � h� � v � h�j2L1(jK1
mj)

dHl (�)

! 1
2

� c (�;M)
�
jd (u� v)j

3
4

L2(M) ju� vj
1
4

L2(M) + ju� vjL2(M)

�
� c (�; A;M) "

1
4 :

By the mean value inequality, we may �nd a � 2 Bl"M such that u � h�; v � h� 2
W1;2 (Km; N),

ju � h� � v � h�jL1(jK1
mj)

� c (�; A;M) "
1
4 < "N when " is small enough,

and Z
jKk

mj

����d�u � h�jjKk
mj

����2 + ���d�v � h�jjKk
mj

����2� dHk

� c (M) �k�n
�
jduj2L2(M) + jdvj

2
L2(M)

�
for 1 � k � n. Fix a � 2 C1 (R;R) such that 0 � � � 1, �j(�1; 13 )

= 1 and

�j( 23 ;1) = 0. Letting f = u � h�, g = v � h�, we will de�ne � : jKj � [0; �] ! N

inductively. First set � (x; 0) = f (x) and � (x; �) = g (x) for x 2 jKj. For � 2
K1
mnK0

m, on �� [0; �], we let

� (x; t) = �N

�
�

�
t

�

�
f (x) +

�
1� �

�
t

�

��
g (x)

�
x 2 �; 0 � t � �:

For � 2 K2
mnK1

m, let y� be the center of �, and de�ne � on � � [0; �] as the
homogeneous degree zero extension of �j@(��[0;�]) with respect to

�
y�;

�
2

�
. Next we

handle each 3-cube, 4-cube, � � � , n-cube in a similar way. Calculations show thatZ
jKj�[0;�]

jd�j2 dHn+1

� c (n)
nX
k=1

�n+1�k
Z
jKk

mj

����d�u � h�jjKk
mj

����2 + ���d�v � h�jjKk
mj

����2� dHk + c (�; A;M) "
1
2

� c (M) �
�
jduj2L2(M) + jdvj

2
L2(M) + e

2
�
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when " is small enough. Finally w : M � [0; �] ! N , de�ned by w (x; t) =

�
�
h�1� (x) ; t

�
, is the needed map. �

Lemma 2.2. Assume N is a smooth compact Riemannian manifold, n � 2, B1 =
Bn1 , u; v 2W 1;2 (B1; N) such that uj@B1

= vj@B1
. De�ne w : B1 � (0; 1)! N by

w (x; t) =

8><>:
u (x) ; x 2 B1nBt;

u
�
t2

jxj
x
jxj

�
; x 2 BtnBt2 ;

v
�
x
t2

�
; x 2 Bt2 ;

then w 2W 1;2 (B1 � (0; 1) ; N) and

jdwjL2(B1�(0;1)) � c (n)
�
jdujL2(B1)

+ jdvjL2(B1)

�
:

Proof. Note that

jdw (x; t)j �

8><>:
jdu (x)j ; t < jxj ;

c (n)
���du� t2jxj xjxj���� t2

jxj2 ; t2 < jxj < t;

c (n)
��dv � xt2 ��� 1t2 ; jxj < t2:

Hence Z
0<t<1
t2<jxj<t

jdw (x; t)j2 dHn+1 (x; t)

� c (n)

Z 1

0

dt

Z t

t2
dr

Z
@Br

����du� t2r2x
�����2 t4r4 dHn�1 (x)

= c (n)

Z 1

0

dt

Z 1

t

ds

Z
@Bs

t2(n�2)

s2(n�2)
jdu (y)j2 dHn�1 (y)

� c (n) jduj2L2(B1)
;

and Z
0<t<1
jxj<t2

jdw (x; t)j2 dHn+1 (x; t)

� c (n)

Z 1

0

dt

Z
Bt2

���dv � x
t2

����2 1
t4
dHn (x)

� c (n) jdvj2L2(B1)
:

The lemma follows. �

3. Identifying weak limits of smooth maps

In this section, we shall prove Theorem 1.1 and Corollary 1.1.

Proof of Theorem 1.1. Let h : K !M be a Lipschitz cubeulation. We may assume
each cell in K is a cube of unit size. Let "M > 0 be a small number such that

V2"M (M) =
�
x 2 Rl : d (x;N) < 2"M

	
is a tubular neighborhood of M . Denote �M : V2"M (M)!M as the nearest point
projection. For � 2 Bl"M , we let h� (x) = �M (h (x) + �) for x 2 jKj, the polytope
of K. We may assume "M is small enough such that all h� are bi-Lipschitz maps.
Replacing h by h� when necessary, we may assume f = u � h 2 W1;2 (K;N).
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Then we may �nd a g 2 C (jKj ; N) \ W1;2 (K;N) such that
�
g � h�1

�
= � and

gjjK1j = f jjK1j (see the proof of theorem 5.5 and theorem 6.1 in [4]). For each cell
� 2 K, let y� be the center of �. For x 2 �, let jxj� be the Minkowski norm with
respect to y�, that is

jxj� = inf
�
t > 0 : y� +

x� y�
t

2 �
�
:

Step 1: For every� 2 K2nK1, we may �nd a sequence �i 2 C (�; N)\W 1;2 (�; N)
such that �ij@� = gj@�, �i ! f j� in W 1;2 (�; N) and d�i ! d (f j�) a.e. (see
lemma 4.4 in [3]). For x 2 �, let

fi (x) =

8><>:
�i (x) ; jxj� � 1

2i ;

�i

�
y� +

1
22ijxj�

x�y�
jxj�

�
; 1

22i � jxj� �
1
2i ;

g
�
y� + 2

2i (x� y�)
�
; jxj� � 1

22i :

It is clear that fi * f j� in W 1;2 (�; N), dfi ! d (f j�) a.e. on �,

jdfijL2(�) � c �
�
jd�ijL2(�) + jd (gj�)jL2(�)

�
� c (f; g)

and fi 2 C
���K2

�� ; N�. In addition, if we de�ne h2;i : �� [0; 1]! N by

h2;i (x; t) =

8>>>>>><>>>>>>:

�i (x) ; jxj� � 1
2i +

2i�1
2i t;

�i

 
y� +

�
1

2i
+ 2i�1

2i
t
�2

jxj�
x�y�
jxj�

!
;
�
1
2i +

2i�1
2i t

�2
� jxj� � 1

2i +
2i�1
2i t;

g

 
y� +

x�y��
1

2i
+ 2i�1

2i
t
�2
!
; jxj� �

�
1
2i +

2i�1
2i t

�2
:

Then by Lemma 2.2, we know h2;i 2W 1;2 (�� [0; 1] ; N),

jdh2;ijL2(��[0;1]) � c �
�
jd�ijL2(�) + jd (gj�)jL2(�)

�
� c (f; g)

and h2;i 2 C
���K2

��� [0; 1] ; N�.
Step 2: Assume for some 2 � k � n � 1, we have a sequence fi 2 C

���Kk
�� ; N� \

W1;2
�
Kk; N

�
and hk;i 2 C

���Kk
��� [0; 1] ; N� such that for each � 2 Kk, fi * f j�

in W 1;2 (�; N), hk;i 2W 1;2 (�� [0; 1] ; N),
(3.1) jd (fij�)jL2(�) � c (f; g) ; jdhk;ijL2(��[0;1]) � c (f; g)

and hk;i (x; 0) = fi (x), hk;i (x; 1) = g (x) for x 2
��Kk

��. Since for every � 2
Kk+1nKk, fi * f j@� inW 1;2 (@�; N), for �xed j by Lemma 2.1 we may �nd a nj �
j such that for each � 2 Kk+1nKk, there exists a wj 2 W 1;2

�
@��

�
0; 2�j

�
; N
�

with wj (x; 0) = f (x), wj
�
x; 12j

�
= fnj (x) and

jdwj jL2(@��(0; 1
2j
)) �

c (n)

2
j
2

�
jd (f j@�)jL2(@�) +

��dfnj ��L2(@�) + 1� � c (f; g)

2
j
2

:

Without loss of generality, we may replace fi by fni and hk;i by hk;ni . Fix a
� 2 Kk+1nKk. For x 2 �, let

 i (x) =

8<: f
�
y� +

2i(x�y�)
2i�1

�
; jxj� � 2i�1

2i ;

wi

�
y� +

x�y�
jxj�

; jxj� � 2i�1
2i

�
; 2i�1

2i � jxj� � 1:
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Then  ijjKkj = fi and  i ! f j� in W 1;2 (�; N) as i!1 for each � 2 Kk+1nKk.
By Theorem 2.1 and (3.1) (use hk;i and g for the needed �v�in Theorem 2.1, one
may refer to lemma 9.8 of [4]), for every� 2 Kk+1nKk, we may �nd �i 2 C (�; N)\
W 1;2 (�; N) such that �ij@� = fij@�, j�i �  ijL2(�) < 1

2i , jd�ijL2(�) � c (f; g) andZ
M

jd�i � d ij
1 + jd�i � d ij

dHk+1 � 1

2i
:

After passing to subsequence, we may assume d�i ! d (f j�) a.e. on �. Fix a
� 2 Kk+1nKk, for any x 2 �, de�ne

gk+1;i (x) =

(
hk;i

�
y� +

x�y�
jxj�

; 1 + 2
�
1
2 � jxj�

��
; 1

2 � jxj� � 1;
g (y� + 2 (x� y�)) ; jxj� � 1

2 ;

fi (x) =

8><>:
�i (x) ; jxj� � 1

2i ;

�i

�
y� +

1
22ijxj�

x�y�
jxj�

�
; 1

22i � jxj� �
1
2i ;

gk+1;i
�
y� + 2

2i (x� y�)
�
; jxj� � 1

22i ;

ehk+1;i (x; t) =

8>>>>>><>>>>>>:

�i (x) ; jxj� � 1
2i +

2i�1
2i t;

�i

 
y� +

�
1

2i
+ 2i�1

2i
t
�2

jxj�
x�y�
jxj�

!
;
�
1
2i +

2i�1
2i t

�2
� jxj� � 1

2i +
2i�1
2i t;

gk+1;i

 
y� +

x�y��
1

2i
+ 2i�1

2i
t
�2
!
; jxj� �

�
1
2i +

2i�1
2i t

�2
;

eehk+1;i (x; t) =

8<: hk;i

�
y� +

x�y�
jxj�

; 1 + 2
�
1+t
2 � jxj�

��
; 1+t

2 � jxj� � 1;

g
�
y� +

2
1+t (x� y�)

�
; jxj� � 1+t

2 ;

and

hk+1;i (x; t) =

( ehk+1;i (x; 2t) ; 0 � t � 1
2 ;eehk+1;i (x; 2t� 1) ; 1

2 � t � 1:
Simple calculations show that for any � 2 Kk+1nKk, fi * f j� in W 1;2 (�; N),
dfi ! d (f j�) a.e. on �, hk+1;i 2W 1;2 (�� [0; 1] ; N),

jdfijL2(�) � c (f; g) ; jdhk+1;ijL2(��[0;1]) � c (f; g)

and hk+1;i (x; 0) = fi (x), hk+1;i (x; 1) = g (x) for x 2
��Kk+1

��. Hence we �nish
when we reach fi 2 C (jKj ; N) \ W1;2 (K;N) and hn;i 2 C (jKj � [0; 1] ; N). Let
vi = fi � h�1. Then it is clear that vi 2 C (M;N) \ W 1;2 (M;N), [vi] = �,
jvi � ujL2(M) ! 0, jdvijL2(M) � c (u; g) and dvi ! du a.e. on M . Hence, we may
�nd ui 2 C1 (M;N) such that jui � ujL2(M) ! 0, jduijL2(M) � c (u; g), [ui] = �

and dui ! du a.e. on M . In particular, this shows

H1;2
W (M;N) �

�
u 2W 1;2 (M;N) : u#;2 (h) has a continuous extension to M w.r.t. N

	
:

The other direction of inclusion was proved in section 7 of [3]. To see

H1;2
W (M;N) =

�
u 2W 1;2 (M;N) : u may be connected to some smooth maps

	
;

we only need to use the above proved equality and proposition 5.2 of [3], which
shows �

u 2W 1;2 (M;N) : u#;2 (h) has a continuous extension to M w.r.t. N
	

=
�
u 2W 1;2 (M;N) : u may be connected to some smooth maps

	
:
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�
We remark that many constructions above are motivated from section 5 and

section 6 of [4].

Proof of Corollary 1.1. This follows from Theorem 1.1 and corollary 5.4 of [3]. �
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