

Tuesday 1:25 pm to 3:15 pm, Warren Weaver Hall 512

Instructor

Edwin Gerber

gerber[at]cims[dot]nyu[dot]edu (e-mail is the best way to reach me)

WWH 911, Office hours by appointment

212.998.3269

Course Description

What effects the large scale circulation of the atmosphere? Like the antiquated heating system of a New York apartment, solar radiation unevenly warms the Earth, leading to gradients in energy in both altitude and latitude. But unlike the simple convection of air in your drafty home, the effects of rotation, stratification, and moisture lead to exotic variations in weather and climate, giving us something to chat about over morning coffee ... and occasionally bringing modern life to a standstill.

The goals of this course are to describe and understand the processes that govern atmospheric fluid flow, from the Hadley cells of the tropical troposphere to the polar night jet of the extratropical stratosphere, and to prepare you for research in the climate sciences. Building on the foundation in Geophysical Fluid Dynamics, we will explore how stratification and rotation regulate the atmosphere's response to gradients in heat and moisture. Much of our work will be to explain the zonal mean circulation of the atmosphere, but in order to accomplish this we'll need to learn a great deal about deviations from the zonal mean: eddies and waves. It turns out that eddies and waves, planetary, synoptic (weather system size) and smaller in scale, are the primary drivers of the zonal mean circulation throughout much, if not all, of the atmosphere.

There will also be a significant numerical modeling component to the course. You will learn how to run an atmospheric model on NYU's High Performance Computing facility, and then design and conduct experiments to test the theory developed in class for a final course project.

Expectations

I hope that students will have taken a course on Geophysical Fluid Dynamics, or the equivalent, and so are already familiar with the equations of fluid flow appropriate for the Earth's atmosphere. If you haven't taken a course on this subject, you will likely need to do a bit of catch up work — we will be using reduced equations (e.g. the quasi-geostrophic or primitive equations, as opposed to the full blown Naviers-Stokes equations in rotating frame), and I will assume that you're familiar with the assumptions behind their derivation, and their limitations. If you are concerned, please contact me individually and we can discuss your background.

In terms of the course itself, I look forward to seeing you in all the lectures! If you can't make it, please e-mail me in advance if at all possible. Do the homework; it will solidify the lectures. Work together; you'll learn more as a group. Ask questions, both of me and your fellow classmates!

Your grade will be based on a final project. You'll be expected to present them in a short, conference style talk. While solid results are certainly the most important requisite for a successful research career, as with most things in life, the packaging matters, so it's important to learn good communication and presentation skills!

Recommended Textbook

Vallis, Geoffrey K., 2017, *Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation* (Second Edition), Cambridge University Press, 946 pp.
(We can work with the 2006 version if you have already purchased it.)

Additional Resources (for background and context)

Lorenz, Edward 1967, *The Nature and Theory of the General Circulation of the Atmosphere*, World Meteorological Organization, 161 pp. (find it on course page)
Marshall, John and R. Alan Plumb 2008, *Atmosphere, Ocean, and Climate Dynamics: An Introductory Text*, Academic Press, 319 pp.
Walker, Gabrielle, 2007, *An Ocean of Air*, Houghton Mifflin Harcourt, 288 pp.

Topics for the Semester

Why is Earth Habitable? (And will it remain so?) *0-Dimensional Climate Models*
Energy balance and global warming
Devil in the details: why weather matters for climate
What sets the vertical structure of the atmosphere? *1-D atmospheric models*
Dry and moist convection
Finding the right variable(s): (Equivalent) potential temperature
What sets the latitudinal structure of our atmosphere? *The zonal mean circulation*
Tropics: Axis-symmetric models of the Hadley Circulation
Extratropics: Jets, Storm tracks, and the essential role of eddies
What can we say about the eddies, absent a computer? *Eddy-Mean Flow Interactions*
The Transformed Eulerian Mean Equations
Diffusive closures
Revisiting the vertical structure of the atmosphere
Why is Lisbon warmer than New York? *Longitudinal variations in the circulation*
Stationary planetary waves
The Stratospheric Circulation

Final Project

The goal is to design and conduct an experiment with an Atmospheric General Circulation Model to further explore material we've covered in the course, or illustrate another topic of the atmospheric circulation. In lieu of a written report, I'd like you to develop a website that outlines your experiments and results. This way we can build up a record of nice experiments with the models for future students! At the end, each student will also present their results in class in a short conference presentation. We will use the model as part of the course, so you'll have time to get familiar with its use before the time comes to select a project.