VOL. 32, NO. 2 JOURNAL OF

THE ATMOSPHERIC SCIENCES

FEBRUARY 1975

The Geostrophic Momentum Approximation and the Semi-Geostrophic Equations

Brian J. Hoskins

U. K. Universities’ Atmospheric Modelling Group, University of Reading
(Manuscript received 7 May 1974, in revised form 13 August 1974)

ABSTRACT

Consideration of flows in which the rate of change of momentum is much smaller than the Coriolis force
suggests that the advected quantity momentum may be approximated by its geostrophic value but that
trajectories cannot be so approximated. The resulting set of equations imply full forms of the equations for
potential temperature, three-dimensional vorticity, potential vorticity and energy. A transformation of
horizontal coordinates produces the “semi-geostrophic’ system in which conservation of potential vorticity
and potential temperature suffice to determine the motion. The system is capable of describing the forma-
tion of fronts, jets, and the growth of baroclinic waves into the nonlinear regime. It sheds some light on the

success and failure of the quasi-geostrophic equations.

1. Introduction

The historical development of the equations that
meteorologists use to study synoptic and large-scale
systems may be traced from the barotropic vorticity
equation through the quasi-geostrophic equations to
the “primitive” equations. The latter set is used by
most of those engaged in predictive integrations on the
computer. However, the fact that these equations are
so general leads to many complications in their applica-
tion. It also means that the theoretician bent on
understanding the development of the flow is unable to
cope with their complexity. He is thus left with the
quasi-geostrophic equations and the approximations in-
herent in them. In particular, nonlinearities in which
the vertical component of relative vorticity is compar-
able with the Coriolis parameter are beyond his reach.

In this paper we are interested in atmospheric mo-
tions in which the Rossby number, defined as the ratio
of the magnitudes of the rate of change of momentum
and of the Coriolis force, is small. In symbols,

Dv
DI
| fvl

This condition is much less restrictive than that ob-
tained by assuming a velocity scale V, length scale L,
and demanding

Ro= 1.

Dy

Dt V/L V
Ro= ~ ——

/vl Vv fL

be small. We can hope to describe the formation of jet
streams and fronts, provided their curvature is not
large in some sense, and also the growth of baroclinic
waves into the nonlinear regime.

It will be shown that the small Rossby number con-
dition suggests the geostrophic momentum approxima-
tion. This leads to a system of equations first suggested
by Eliassen (1948) and used by Fjortoft (1962). This
system and, more frequently, that of Charney (1962)
have been described as the balance equations. They
were introduced as one possible alternative for numeri-
cal integrations before the almost universal adoption of
the primitive equations. The balance equations in com-
mon with the quasi-geostrophic equations do not de-
scribe gravity wave motion. They are, therefore, in
principle, simpler for numerical or analytical work.
Since less terms are ignored than in the latter equations,
they are more general. One important quality of the
equations with the geostrophic momentum approxima-
tion is the preservation of the form of the four “pseudo-
conservation” relations for entropy, three-dimensional
vorticity, Ertel’s potential vorticity and energy. The
equations are the natural extension to three dimensions
of those used previously by the author (e.g., Hoskins
and Bretherton, 1972) to examine the formation of
straight fronts with trivial variation along them.

The equations are made much more amenable to
analysis by a transformation of horizontal coordinates.
These momentum or geostrophic coordinates are also
the extension of those used previously. The horjzontal
ageostrophic velocities become implicit in the coordinate
transformation. The time development of the fluid mo-
tion is determined by conservation of potential vorticity
and potential temperature in the interior and of the
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latter on horizontal boundaries. We refer to this set of
equations as the semi-geostrophic equations. Of partic-
ular interest is the case of uniform potential vorticity
since the semi-geostrophic equations then simplify and
provide much insight into the success and failure of the
usual quasi-geostrophic equations. In a subsequent
paper, integrations of the semi-geostrophic equations
will be described.

2. The primitive equations and the quasi-
geostrophic approximation

To keep the discussion as simple as possible, we
consider the primitive equations in their hydrostatic,
Boussinesq form:

Du ¢
—— frb—=0, M
Dt dx
Dr dp
——+ fut—=0, )
Dt dy
8 9o
=
00 0z
du dv Jdw
—f——=0,
dx dy 9z
Do
—=0.
Dt

Here the time derivative following a fluid particle is

D 4 a 3 ]
—=—+tu—+1r—+w—.
Dt ot ox 9y 0z

The Coriolis parameter f is taken as constant. As
boundary conditions we take

w=0on z=0, H.

We refer to z as height, though a more consistent
derivation of the above equations is obtained by taking
z proportional to p* (see Hoskins and Bretherton, 1972).
Other symbols are the geopotential ¢, the potential
temperature §, and a constant reference potential tem-
perature 6.

The above set of equations provides four important
pseudo-conservation relations:

(i) Conservation of potential temperature
D8/Di=0
(i) Three-dimensional vorticity equation
D

¢
—=(Z V)u—kxig—vo,
Dt fo
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where

dv ou dv  Ju
c=<——, -, f+——-—>
dz 02 dx dy

(ili) Potential vorticity conservation

Dy

— 0,

Dt
where

q=¢-vé

(iv) Energy equation

D
—(K+P)=—V-(u¢),
Dt

where

K=3(+v7),

g
P=——z0.
o

As stated in the Introduction, in the usual geostrophic
and quasi-geostrophic theory, scales for velocity V and
length L are postulated. The Rossby number

Ro=V/(fL)

provides a measure of the ratio of the inertia terms to
the Coriolis terms in the momentum equations. Taking

V=10ms™, L=1000km, f=10~¢s",

gives Ro=0.1, so that an expansion in Rossby number
is possible. The zero-order approximation gives the
geostrophic relations :

1 8¢
U=u,=—~—

foy

Combined with the hydrostatic relation these give the
thermal wind relations

19¢

V=== —
f ox
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dv, g 90
9z 8o 3y oz
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The first-order equations yield an approximation to the
vertical component of the vorticity equation:

] 9 ) dw
<—+“y_+7)y—“>§g =/
ot dx dy 0z
where
: dv, Odu,
o= fH+——" (3)
dx  Jy :

The nonlinear stretching and twisting terms are ne-
glected. The quasi-geostrophic system is completed by
approximating the static stability as a function of 3
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only in the thermodynamic equation:

] d ) A%
<'—+u{/—+vﬂ—>0= —w ’

ot dx  dy g
where
g dO
N(g)=——. )]
00 (lZ

Combining (3) and (4) gives the quasi-potential vor-
ticity equation

3 8 o i
<_+ug—+7)y—>l:¢xx+¢yy+<_¢z> }: 0.
ot dx 9y N2/,

Integration by parts gives for a horizontally periodic
domain

©)

K+ P=constant,
where

1 g
K=/%(u02+v(,2)le, P=/-— —[0—-0(x) V.
N2 gy

In the usual atmospheric situation of equatorward
temperature gradient, potential energy is released by
moving heat poleward, rather than upward as in the
primitive equations.

3. The geostrophic momentum approximation

Quasi-geostrophic theory has been used with a fair
measure of success in situations in which its validity is
not clear. Cross sections of averaged zonal velocities
show a jet stream with winds in excess of 30 m s™L.
Large shears are commonplace. The typical cyclone
contains vorticities comparable with the Coriolis pa-
rameter, particularly in frontal regions, yet quasi-
geostrophic models such as that of Phillips (1956) pro-
duce remarkably realistic results.

We now proceed to develop a theory based on the
smallness of the Rossby number. We do not assume
overall velocity and length scales but do take account
of the fact that at each point in the atmosphere, the
flow is in a definite direction. We use a rectangular
Cartesian coordinate system with the £ axis in the di-
rection of the horizontal projection of the direction of
flow, and the 5 axis perpendicular to it. If X is the angle
the £ axis makes with some fixed direction and V the

velocity, then
Dv /DV Dx
b(r
Dt \Dt Dt

Then the small Rossby number implies

DV
—<fV, (6)
Dt
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The magnitude and direction of the momentum of a
fluid particle changes little in the time 1/f~3 h. If 7 is
the radius of curvature of fluid particle paths, the latter
condition is

Vv
—<1. (7)
fr
The momentum equations in this coordinate system are
DV o9
Dt et
DX 3¢
~V—FtfV4+—=0.
Dt an
The small Rossby number then implies
¢ DV P
———= [ D= —— (8)
an Dt a¢
Thus the momentum vector (V,0) is approxi-

mately equal to the “geostrophic momentum” vector
(—f7"¢s, [¢:) in magnitude and direction.! Thus in
this paper we approximate the momentum by the geo-
strophic momentum. This does not imply that we should
approximate the horizontal advecting velocity by its
geostrophic value, In the presence of large cross-stream
gradients in momentum or temperature, the small angles
between the directions of particle motion and the geo-
potential surfaces could be crucial. This treatment of
horizontal ageostrophic motions is entirely analogous
to the hydrostatic approximation in which the vertical
component of momentum is neglected but vertical ad-
vection is retained.

An alternative but equivalent consideration of the
geostrophic momentum approximation may be obtained
by substituting for the momentum in (1) and (2) from
the Coriolis terms in (2) and (1). The equations may
then be rewritten

v="0,+ Du,— D,
u=u,— Dv,— Du,
where

1D

D=——,
f D

The geostrophic momentum approximation is obtained
if the last terms in the two equations are neglected. This
is clearly valid if

©)

Tt should be noted that the second derivatives of each

DuLn, DKo,

1Shapiro (1970) using similar considerations found this to be
true in a case study of an upper level front.
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component of the velocity is neglected compared with
the same component of velocity. In the flows considered
here, it is quite possible that, for example,

DE>u.
From the above equations
v= 0,4+ D, — D (v,4 Do)+ D (v, +Duy)—. . .,
u=1y,— D0, — D (1, — Dvy) + D (g — Do) — . . ..

Higher -order approximations may be obtained from
different truncations of these series.

The full equations with the geostrophic momentum
approximation are

Duy, d¢ 3
—fo+—=0
Dt - Ox
Dy, d¢
—+fu+—=0
Dt dy
6 d¢
i (10)
0y 0z
ou dv Jw
ox dy az—
Do
p

where

If a stationary front is forming approximately parallel
to geopotential lines, then the above equations reduce
to the system suggested by a scaling analysis and used
in Hoskins and Bretherton (1972). The set (10) was
produced by the author as the natural extension to three
dimensions of the one used in the frontogenesis work.
It was later found to have been previously introduced
by Eliassen (1948) and Fjortoft (1962)%. They form a
balanced system in that they cannot describe gravity
wave propagation. They can, however, describe regions
of large shear vorticity such as jets or fronts in an
arbitrary direction, provided that the curvature vor-
ticity is small compared with the Coriolis parameter.
In contrast, the usual balance equations described by
Charney (1962) include a full representation of curva-
ture effects, but are not formally valid in regions of
large shear or curvature vorticity. It is shown in the

2 Fjortoft also mentioned the condition (9) and a form of the
three-dimensional vorticity equivalent to that given below in (ii).
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Appendix that, for the case of steady circular motion,
the geostrophic momentum approximation is very ac-
curate when the curvature vorticity is small.

One of the strong advantages and indications of the
consistency of the geostrophic momentum approxima-
tion is the retention of the four important pseudo-
conservation relations derived from the primitive equa-
tions in only slightly modified form:

() Conservation of potential temperature

De
-
Dt

(i1) Three-dimensional vorticity equation

Dy, g
—= (¢, VYu—kXxX—V4,
Dt o
where

o

dv, Ou, dv, Ou,
bl ? + >
dz 0Oz ox Jy

1 8(ugvy) 1 3(ugv,) 1 0(2g,0,)
+<} 002 1 0 f o) )
(ili) Potential vorticity conservation
Dy,
Dt -

)

where .
go=14, VO

(iv) Energy equation

D
—(K,+P)=0,
Dt

where
Ko=3%(u+v,%),

4
P=——26.
fo

Apart from the additional Jacobian term in the defi-
nition of vorticity, these relations are identical with
those for the primitive equations except that wherever
the velocity occurs in the quantity which is advected,
it is replaced by its geostrophic value. The approxima-
tion could also, therefore, be referred to as the geo-
strophic potential vorticity approximation, or the geo-
strophic kinetic energy approximation. The extra term
in the definition of vorticity is necessary for mathemati-
cal consistency. However, in the flows of interest in this
paper it is only a small correction. This may be seen
by taking the x axis parallel to the local geostrophic
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velocity vector. Thus, locally v,=0, and

dv, du, dv, Ouy,
(g= (_—7 _7 f+————)
dz 0z ox

adu, adv, of
NI
f oz f oz f

(1 dv, dug, 1 Ou, dv, 1 du, 6‘0,)
——— e — ),

foz ay f oz ox f 9y dx
where
v, ou,
Q== ——
dy dox

The last two terms are small consistent with the geo-
strophic momentum approximation and the implied
conditions:

1) Convergence of the geostrophic wind field («) small
compared with f.

2) Where the horizontal components of vorticity are
not negligible (in their contribution to the po-
tential vorticity) then | du,/dz{>>| dv,/3z2], i.e.,
in regions of large gradients, # lines are nearly
parallel to the direction of flow.

3) 9vy/ dxLf [from (7')].

Despite the simple and consistent nature of the primi-
tive equations including the geostrophic momentum
approximation, and the beauty of the conservation
relations derived from them, they are not amenable for
use in the form (10). Prognostic equations for #, and v,
cannot be solved separately. The ageostrophic motion
is only implied in the equations. We now show how
progress may be made using a coordinate transforma-
tion and the conservation of potential temperature and
potential vorticity.

4. A transformation of coordinates

We use as independent variables in the x and y
directions

X=x+v,/f, Y=y—u,/]. (11)
Since
DX 1 Dy, DY 1 Du,
e =y, ——m v — =, (12)
Dt f Dt Dt f Dt

these may be referred to as geostrophic coordinates.
They are the positions particles would have had if they
had moved with their geostrophic velocity at every
instant. For convenience, when using X and ¥ as inde-
pendent variables, we use
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We also set

1 1 1 1 1
a=ﬁ¢n: b=}_2¢xy: C=ﬁ¢‘w: a=ﬁ¢z=; B=};¢yz-

Then
d d
_-—= (1+a)—+b—
x X aY
—=b—+(1+)— ¢
dy X
J a3 a9
———p—+—
9z d8X oY dZ

The Jacobian of the transformation is the nondimen-
sional vertical component of absolute vorticity :

J=(14a)(1+c)—-b=k-{,/f. (13)
The inverse transformation is
i) d a
J—=(14¢)——b—, (14)
0X dx dy
i) a i}
J—=—b—+(14a)—, (15)
Yy ox dy
i) d a a
I —[a(1+e)~8b)——[B(1+a) —ab}—+J—,
YA ox dy 0z
1
=-{,; V. (16)
f
If we now define
b=¢+3us+v), (a7
it is easily verified that
0P 9P 9P op dp I
('—_y — _>=<_7 ] _> (18)
X aY oZ dx dy 0z

Thus the geostrophic velocity and potential temperature

may be represented in terms of one function in the

transformed coordinates, just as in physical coordinates.
Direct application of (14) and (15) gives

7ox
J dv J du
B (19)
jov  fax
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The product of the first and third equations minus the
square of the second gives

1 1 1
]2’:<1———-<I>XX><1 ————-@yy) —""X’XY?:|=],
I I A
so that
1 1
J=1——(Pxx+Pyy) +—(PxxPyyr—Pxv?). (20)
Ia 7t

Finally, we note that the potential vorticity is

a9

7e=8o V0= f]—. (21)
YA
Following a fluid particle the time derivative is
D 4
—=D+4w—, (22)
DT 9z
where from (12),
d ) d
D=—tu,—+v,—
aT 98X oY
1 (A
Uy= ——‘I’y, ' vg=~<I>X
Conservation of potential temperature is
9
(ZD—I—w >0=0, (23)
VA
where
8
'—'92 fpz.
bo
Conservation of potential vorticity is
a.
<i0+ze)—~>q,,=0, (24)
9z

where from (18), (20) and (21),

1 1 f6o
—(@xx+Pry) ——(PxxPyy—Oxy)+—Pzz=1. (23)
I 7 ' 840

On horizontal boundaries,

DO=0. (26)

The horizontal ageostrophic velocities are implicit in
the coordinate transformation. Vertical advection re-
mains in the equations but the vertical velocity is not
determined explicitly. It is implied by the advection of
potential temperature and potential vorticity, both of
which are determined by one function. Given a solution
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in transformed space, the position of fluid particles in
physical space may be obtained from the inverse co-
ordinate transformation. The geostrophic velocity and
potential temperature are known on these fluid parti-
cles. The actual velocities may be obtained froni identi-
fication of the same fluid particle at different instants.
Tt is clear that the whole analysis is an extension of that
given in Hoskins and Bretherton (1972). The equations
there are obtained if ¥ derivatives are neglected in the
above equations.

In this paper we shall refer to the above set of
equations (22)-(26) as the semi-geostrophic equations.
Since no further approximation has been introduced,
they are formally equivalent to the primitive equations
with the geostrophic momentum approximation (10).

If the potential vorticity is uniform at some instant,
it remains so at all times:

S0

qy——'—l\m;
4

where IV is the Brunt-Viisild frequency in the fluid if
no velocity gradients are present. In the interior of the
fluid for all time, (24) gives

1 1 1
F(q)XX'*'q)}'Y)+A—72‘I’ZZ"F(¢XX¢YY’_@X yH=1. (27)

The time development is forced by the advection of
potential temperature on horizontal boundaries:

(6 109 0

—=0, on Z=0,H.
T foY 0X foX aY

10 I3 \0P
) (28)
YA

The potential temperature equation may be used in the
interior to determine the vertical motion of particles,
though this is not necessary for the solution of the
problem.

A possible numerical scheme for integration of the
semi-geostrophic equations when the potential vorticity
is not uniform is sketched below (the potential tempera-
ture equation in the interior is used as a diagnostic
equation for w; the superfix refers to the time step):

n+1 n—1 9, 9, 994\"
g =g 200 —u——v ;T —w——
X 9y oz

in the interior;
a0 a6 AN
frit= en—1+2At( —ug——vﬂm~w—>
ax oY 9z

on horizontal boundaries.

With ®%t1=g8*+/8, on the boundaries, we solve (25)
z & ) 4
for @1, This determines %211, v"*1 and §*+1; w™H! is
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determined from
Al a0 a0 AN
S P B
2 X 24 YA
a0 a6 AN
—I—(—ug——vg—-—w—) :|
X D VA

The transformation to physical space is

x"+1=X”+1——v;‘+1/f, yn+1= yn+1_*_ug+1/f_

5. Comparison with the quasi-geostrophic equations
and simple deductions concerning nonlinear
baroclinic waves

The semi-geostrophic equations include the advection
of an approximation to the full potential vorticity, as
opposed to the quasi-potential vorticity advected in the
quasi-geostrophic equations. Ageostrophic advection of
potential vorticity and potential temperature is included
in the former system. In quasi-geostrophic theory the
only ageostrophic advection is by the vertical velocity
where it acts on a standard vertical temperature
gradient.

From this point on, we simplify the comparison by
considering only the uniform potential vorticity case.
The quasi-geostrophic equations would be identical with
the semi-geostrophic equations (27) and (28) except
that @, X, ¥ and Z would be replaced by ¢, x, ¥ and 3,
and the nonlinear term in (26) would not appear. From
(19), we have

1
J[l———(@xx+4’yy)}= 1—(06—b2).
f2

Thus the nonlinear term is negligible if the correction
to the geostrophic vorticity discussed in Section 3 is
negligible.

The more important difference is that the geostrophic
velocities and potential temperature are predicted at
(X,Y,Z) not (x,y,2). From the nature of the coordinate
transformation it is easily seen (e.g., Fig. 1) that positive
relative vorticity is increased and the region in which it
occurs is decreased. Negative relative vorticity is de-
creased in magnitude and the region in which it occurs
is increased. Thus the semi-geostrophic theory allows
the production of sharp fronts, small vigorous low pres-
sure cells, and broad weak high pressure cells. This
clearly depends on the inclusion of advection by the
convergent or divergent wind field and the nonlinearity
in the stretching of vorticity. Using the semi-geostrophic
equations, systems that are vertical using quasi-geo-
strophic theory tend to orient themselves along absolute
vortex lines [from (16)]. This was commented on by
Fjortoft. This is exactly the sloping of frontal regions
found in the frontal studies.
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Fie. 1. A y-velocity pattern that is sinusoidal on quasi-geo-

strophic theory, or on semi-geostrophic theory in X space, is

represented in A. In B is shown the physical space velocity

pattern. The anticyclonic center H is broadened and weakened.
The cyclonic center L is tightened and strengthened.

x

Another property of nonlinear baroclinic waves as
described by the semi-geostrophic equations may be
simply inferred. The phases of the temperature and
pressure waves as given by quasi-geostrophic theory are
always such that near the surface, the temperature
perturbation maximum occurs in the cyclonic region
and the minimum in the anticyclonic region. Thus the
semi-geostrophic equations imply that the area of warm
anomaly is decreased and that of cold anomaly is in-
creased. Higher up in the atmosphere the reverse is
true. This is clearly the occlusion process in which warm
air is moved upward, thus releasing potential energy.
As remarked previously, in quasi-geostrophic theory,
potential energy is released by moving warm air pole-
ward and the occlusion process is not described.

Despite the much less stringent approximations made
in the derivation of the semi-geostrophic equations, they
predict merely a dislortion of the quasi-geostrophic solution
in a range of parameter space in which the derivation of
the laiter is not consistent. This may go some way to
explaining the point commented on earlier: that the
quasi-geostrophic equations have been successfully used
in situations in which their validity is not clear.

6. The Eady wave solution of the semi-geostrophic
equations

We now consider perturbations to a basic state of
uniform potential vorticity in which the zonal wind
increases linearly in height associated with a linear
north-south temparature gradient:

Usz < ‘200 feo U
Z—— Y.
H g g

(29)

The exponentially growing quasi-geostrophic solutions
are the classic Eady (1947) baroclinic waves. We use
the semi-geostrophic equations (27) and (28). The basic
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state corresponding to (29) is

NZ* fU
d=gZ+ ——YZ, (30)
H
where
X=x
Uz p.
V=y——r
fH
The linearized equations for perturbations & are
1 1
—(®xx'+Pry) +—D22=0,
p) N2
with
d UZ o U
<——+———— ———)@Z’————‘:IJX’= 0.
oT H X H
The Eady wave solutions are
&' = ¢ ™ (a coshmZ* coskX*
—+b sinhmZ* sinkX*) sinlV*, (31)
where
Uf U
T*=—T, X*= (X——T)—f—, Y*=-f—Y
NH 2 /NH NH
L 32)
Z—H/2 ,
T*— . m2=k2p
e k m m b kym m
(1= eon”), oL tamh 1) a9
b m 2 2 a m\2 2

The growth rates are unchanged from quasi-geostrophic
theory. The pressure pattern, geostrophic velocities and
potential temperature are also identical except that they
are distributed along lines ¥'= constant, i.e.,

Uz
y———=constant.

These lines are parallel to the absolute vorticity vector
of the basic state. They slope upward and northward
at an angle tan~'(U/ fH) with the vertical. Taking

U~30ms™, H~10km, f~10-4s7,

this angle is approximately 88°. The lines are displaced
300 km in the northward direction from surface to lid.
To obtain the value of v, we note that

1 Du,
V=14 .
f Dt

If we denote

e*T"(a coshmZ* coskX*-+b sinhmZ* sinkX*).
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by &, then from (31)

R Uz* | Us _
v=Px* sinlV* ———Idx* cosl V* ———Id coslT*,
N

NH
. Uz v Ul
= <I>x*|:sinl< v* )-1—0( >:‘ ———qg®d coslV*.
NH ANZ[H? NH

Since the maximum value of ¢ is 0.219(1—/m?)},
the last term is a very small correction which is 90°
out of phase with the dominant term in both direc-
tions. Assuming that Ul/(2NH) is small, the first cor-
rection term combines with the dominant term to
produce a tilt in the northward direction. Using non-
dimensional variables, the » pattern tilts a small angle
U/NH from the v, pattern and ¥* lines. But the v,
pattern and ¥* lines themselves tilt an angle U/NH
from the vertical in nondimensional physical space.
Thus the v pattern tilts by 2U/NH. In dimensional
space, the tilt is tan1(2U/fH). This result was sug-
gested by the work of McIntyre (1965) and Derome and
Dolph (1970) using expansions in Rossby numbers to
an order beyond quasi-geostrophic theory.

7. Conclusion

We have been investigating flows in which the mag-
nitude of the rate of change of momentum vector is
small compared with the magnitude of the Coriolis
force. Reference to coordinates parallel to the direction
of flow suggested that the momentum could be approxi-
mated by its geostrophic value. Trajectories may not be
approximated in such a manner without further assump-
tions. The equations with the geostrophic momentum
approximation preserve the four pseudo-conservation
relations for potential temperature, three-dimensional
vorticity, potential vorticity and energy in only slightly
modified form. A transformation of horizontal coordi-
nates produces the semi-geostrophic equations. The
fluid motion is specified by conservation of potential
temperature and potential vorticity. The horizontal
ageostrophic velocities are implicit in the coordinate
transformation.

The semi-geostrophic equations fill a position between
the primitive equations and the quasi-geostrophic equa-
tions. In the general non-uniform potential vorticity
case, their solution is scarcely more complicated than
that of the latter system. Unlike the quasi-geostrophic
equations or the usual balance equations (which have
always proved difficult to integrate), they are able to
describe the formation of regions in which the vorticity
is large but particle accelerations are small, e.g., fronts
and jet streams. Unlike the primitive equations, their
simplicity allows dynamical insight into these nonlinear
phenomena. This is particularly true when the potential
vorticity is uniform. In a subsequent paper, examples
will be given of the nonlinear development of baroclinic
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waves, including the formation of realistic warm and
cold fronts and the occlusion process.

In this paper, effects due to the variation of the
Coriolis parameter with latitude have been ignored.
For systems of meridional scale much smaller than the
radius of the earth, to the same accuracy as the g-plane
approximation in quasi-geostrophic theory, it would
appear that the variation of f should be included only
where it occurs explicitly in the potential vorticity
equation (21) and, equivalently, in the last term on the
left-hand side of (25). The method of inclusion of
physical processes such as precipitation and boundary
layer processes is not straightforward. It may be pos-
sible to revert to the primitive equation form (10) and
include them in a viable numerical procedure. These
topics deserve further study.

There is clearly some similarity with the equations
used by Bleck (1973a). He approximated potential
vorticity by its geostrophic value and used coordinates
which stretch baroclinic zones in the vertical. He ad-
vected the potential vorticity with the geostrophic
velocity. In Section 3 we showed that the geostrophic
momentum approximation leads to a form of potential
vorticity almost identical with that obtained by insert-
ing geostrophic values everywhere. In this paper we
stretch baroclinic zones in the horizontal using (X,¥)
coordinates. This has the advantage of giving small
gradients on the boundaries also and simple conditions
to be imposed there. In a later version, to achieve more
realistic results, Bleck (1973b) estimated the ageo-
strophic velocities and advected with these also. In this
form, his equations are almost equivalent to ours. The
success of his model, particularly in predicting cases of
strong development, suggests the power and validity of
the equations when applied to real situations, even when
no more “physics” is included.
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APPENDIX
Steady Circular Flow

The horizontal equations of motion for steady circular
flow »(r) reduce to the gradient wind formula

7)2

—+ fo=fo,.

7

Introducing two Rossby numbers
v Uy
Jr fr

the gradient wind formula may be written in the non-
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Fic. 2. A comparison of the geostrophic momentum approxima-
tion (dashed line) with the gradient wind solution (continuous
line) for steady circular motion: R=1v/fr, R,=v,/ fr.

dimensional form
R24-R—R,=0,
so that
R=—~0.5+(R,+0.25)%,

The geostrophic momentum approximation is

1Yy
—+fo=fo,,
r

so that
R,

T 14R,

R

Fig. 2 shows the accuracy of the approximation (pre-
viously commented on by Fjortoft). The error in

R is less than 109, for a surprisingly large range,
—0.2<R,~0.55.
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