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ABSTRACT

The approximation of geostrophic balance across a front is studied. Making this approximation, an
analytic approach is made to a frontogenesis model based on the classic horizontal deformation field. Kelvin's
circulation theorem suggests the introduction of a new independent variable in the cross-front direction.
The problem is solved exactly for a Boussinesq, uniform potential vorticity fluid. Non-Boussinesq, non-
uniform potential vorticity, latent heat, and surface friction effects are all studied. Using a two-region
fluid we model the effects of confluence near the tropopause. A similar approach is made to the appearance
of fronts in the finite-amplitude development of the simplest Eady wave; this is also solved analytically.
Based on the surface fronts produced by these models, we give a general model of a strong surface front.
There is a tendency to form discontinuities in a finite time.

1. Introduction

There are at least eight mechanisms which may be
important in changing temperature gradients and form-
ing atmospheric fronts (Fig. 1): (i) a horizontal defor-
mation field, stretching in one horizontal dimension
balanced by contraction in another, (ii) a horizontal
shearing motion, (iii) a wvertical deformation field,
stretching or contraction in one horizontal dimension
balanced by vertical displacements, (iv) differential ver-
tical motion, (v) latent heat release, (vi) surface friction,
(vit) turbulence and mixing, and (viii) radiation.

A horizontal deformation field is the classical fronto-
genetic mechanism postulated by Bergeron (1928). In
Fig. 2, which is a schematic representation of a nascent
extratropical cyclone, there is clearly horizontal
stretching at A along the isotherms and contraction
across them. The instantaneous circulation in vertical
planes induced by a horizontal deformation field acting
on a given temperature distribution has been investi-
gated by Sawyer (1956), and the subsequent time de-

B AT gxs =k

I'16. 1. Four mechanisms for changing horizontal temperature
gradients: (i) horizontal deformation, (ii) horizontal shear, (iii)
vertical deformation, (iv) differential vertical motion.

! The National Center for Atmospheric Research is sponsored
by the National Science Foundation.

velopment by Stone (1966), Williams and Plotkin (1968)
and Williams (1968) using quasi-geostrophic theory.
Such circulations formed large gradients in temperature
at the ground, but discontinuities did not occur in a
finite time. Their “fronts” were vertical and had large
negative, as well as positive, relative vorticity. The
reason that their results are not realistic is that the
quasi-geostrophic equations are not valid as soon as
gradients in temperature and wind velocity become com-

F16. 2. Schematic extratropical cyclone (L) and anticyclone
(H). Continuous lines represent isobars and broken lines iso-
therms. Large-scale flow is around the isobars in the direction
shown. The temperature gradient at A is changed by horizontal
deformation and that at B by horizontal shear.
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parable with those observed in the weakest atmospheric
fronts.

The horizontal shear mechanism (ii) is obviously
important at B. There are cold northerly winds to the
west and warm southerly winds to the east, which, if
they persist, will lead to a large horizontal temperature
contrast. Observation indicates that this effect is crucial
at many cold fronts. Williams (1967) performed nu-
merical integrations on a model in which it was domi-
nant initially. He found that a realistic cold front
formed.

The vertical deformation field (iii) is crucial in the
dynamics of frontal systems. Sawyer (1956) and Eliassen
(1962) have studied this field associated with particular
geostrophic velocity and temperature distributions
similar to those observed in frontal regions. These were
primarily diagnostic studies, and the development with
time was not considered.

Differential vertical motion (iv) can have either
frontolytic or frontogenetic effects. It has been found
to be largely responsible for the lack of sharpness of
surface fronts in the middle troposphere (Sanders, 1955).
On the other hand, temperature gradients in upper
tropospheric fronts are intensified by the associated up-
gliding and subsidence (Reed, 1955).

In this paper we distinguish between large-scale geo-
strophic processes which intensify horizontal tempera-
ture gradients, and smaller scale ageostrophic motions
embedded in the baroclinic flow which lead to the rapid
formation of a near discontinuity. Mechanisms (i) and
(i) operate on the synoptic quasi-geostrophic scale,
whereas (iii) and (iv) are dominant on the frontal scale
and are not directly associated with large-scale weather
systems. By considering situations in which intensifi-
cation is occurring, we show how the ageostrophic effects
and true front formation arise as a response to the in-
creasing temperature gradient.

Numerical work by Arakawa (1962), Edelmann (1963)
and others has shown that various forms of the equa-
tions of motion of a fluid on a rotating earth are capable
of producing large gradients in physical quantities simi-
lar to those occurring in atmospheric fronts. Edelmann
used a five-layer model of a fluid between two lateral
boundaries. The basic state was a linear zonal thermal
wind from the west increasing from zero at the surface
to a maximum at 300 mb in the middle of the channel.
On this he imposed a small-amplitude wave disturbance.
As this disturbance grew into a strong cyclone-anti-
cyclone system, sharp fronts formed. This happened
despite horizontal and vertical diffusion of heat and
momentum, with and without surface friction, and with
no latent heat release. The experimental work of Fultz
(1952) and Faller (1956) has shown that fronts can be
reproduced in laboratory experiments using differenti-
ally heated rotating water. Therefore, we can conclude
that we may use the ‘“primitive” equations for our
study, and that latent heat (v) and surface friction (vi),
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although important in the detailed formation of each
front, are not essential for the frontogenetic process.

Mixing processes (vil) can smooth temperatures in
one region, thus creating sharper temperature gradients
at the edge of this region. Equally, the smoothing will
lessen the gradients in the region concerned. We consider
that mixing is not a basic mechanism of frontogenesis
but that it provides the frontolytic effect which, when
gradients are extremely large, eventually balances other
frontogenetic processes.

Radiation (viil) is not important on the time and
length scales of frontogenesis.

In this paper we exhibit a new mathematical approach
to two of the simplest models exhibiting effects (i) and
(ii) directly, but also implying (iii) and (iv). The basic
approximation made is that in the direction of strongest
gradients there is geostrophic balance, i.e., balance
between pressure and Coriolis forces. Large-scale extra-
tropical atmospheric flow is always approximately geo-
strophic. Geostrophic balance across a front is an approxi-
mation which observation suggests is quite accurate.
Long-front (horizontal direction tangential to the front)
accelerations are, however, important. The consistency
of any solution found using this balance may be checked
by comparing the neglected cross-front acceleration with
the Coriolis and pressure forces. The approximations
underlying the quasi-geostrophic theory (Pedlosky,
1964) are, however, much more restrictive and are
certainly not valid in a true frontal situation. The vari-
ation of the Coriolis parameter (twice the vertical com-
ponent of the earth’s rotation) with latitude is also
neglected since on the length scales characteristic of
fronts it has little effect.

In an inviscid, adiabatic system potential vorticity
is conserved. It is shown, provided this quantity is
sufficiently smoothly distributed, that discontinuities in
velocity and temperature can occur only at a boundary.
This suggests that we should look for frontogenesis
either at the surface (cf. surface fronts) or at discon-
tinuities in potential vorticity (cf. upper tropospheric
fronts).

We consider two rather different situations, and
approach both using the primitive equations for an in-
viscid, adiabatic fluid, but concentrating on a Lagran-
gian viewpoint following fluid particles.

In the first situation we have a horizontally un-
bounded fluid between two surfaces. An initial tempera-
ture distribution independent of one horizontal co-
ordinate is acted upon by a horizontal deformation
field independent of height and with axis of contraction
perpendicular to lines of constant temperature (mecha-
nism 2). We discuss a hierarchy of models. In the
simplest (Section 3c), the potential vorticity is zero
everywhere. Although this is unrepresentative of the
real atmosphere, the analytic solutions which are readily
obtained display, to a remarkable extent, the qualitative
features of more realistic, less soluble models. If the po-
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tential vorticity is non-zero but uniform, the Boussinesq
approximation enables us to again produce an analytic
solution. Solutions for specific temperature distributions
and the formation of realistic surface fronts in these
solutions have been described in some detail in Hoskins
(1971) (later referred to as H). We also give the methods
of solution when non-Boussinesq effects, smooth changes
in potential vorticity, and crude models of latent heat
and surface friction are included in the problem.

The application of the deformation model to the for-
mation of upper tropospheric fronts and their associated
jet streams is discussed. The troposphere-stratosphere
system is modelled by two perfect fluids of different
potential vorticities, with the internal boundary (tropo-
pause) sloping such that there is zero temperature
gradient along the upper boundary. Again, the solutions
have been given in H.

The second situation was first described by R. T.
Williams. In 1967, he published a numerical study of
the finite-amplitude development of a baroclinic wave
independent of the meridional direction. Williams inte-
grated the Boussinesq equations and found that the
ageostrophic motions distorted the finite-amplitude
wave. A phenomenon similar to an atmospheric surface
cold front formed. The frontogenesis was initiated by
the shear in the meridional velocity of the developing
wave acting on the temperature distribution in that
direction, i.e., by the horizontal shear effect.

This model is studied theoretically (Section 5b). We
show, making only the assumption of geostrophic
balance in the zonal direction, that the full nonlinear
problem may be solved analytically. The solution agrees
well with the numerical one and, in particular, exhibits
frontogenesis at the surface,

Thus, two fundamental mechanisms are shown to
trigger frontogenesis. In each case the quasi-geostrophic
equations describe an intensification of the temperature
contrasts and an increase in relative vorticity until the
scaling assumptions underlying these equations are
breaking down. In both models of surface fronts, when
the relative vorticity is no longer small compared with
the Coriolis parameter, the ageostrophic circulation be-
comes important, producing the tilt of the front and up-
gliding motion up this slope. The vertical deformation
field soon dominates and produces at a rigid boundary a
tendency to form discontinuities in a finite time. In
Section 6 this collapse process is studied in detail. In
the final stages, potential temperature and long-front
velocity are constant on the same plane surfaces of con-
stant slope. These material surfaces move together at
a constant speed determined by the motion away from
the collapse region and discontinuities must form at the
boundary in a finite time. In the upper tropospheric
front, the tropopause acts like a flexible boundary but,
unlike the surface front, discontinuities do not appear.

However, actual discontinuities are not formed in the
atmosphere. The above models eventually break down,
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but this does not occur first in the assumption of geo-
strophic cross-front balance. The Richardson numbers
in the frontal region decrease as the intensity of the
front increases until they become so small that over-
turning and consequent mixing must occur. By this
time, large relative vorticities and strong fronts may be
formed.

The most elegant and, in the authors’ view, most
revealing approach to the problems discussed is the
Lagrangian one given in the main body of the paper.
However, the reader with limited time may find it easier
to read the approach given in the Appendix. There, the
Eulerian equations of motion for a general model are
studied. If this is done, the “Lagrangian’ Sections 3b,
3d and 5b may be largely ignored.

2. Equations, coordinates and vorticity results
a. The equations of motion with a new vertical coordinate

We introduce a Cartesian coordinate system fixed
in the surface of the earth and use the primitive equa-
tions for an inviscid, adiabatic, perfect gas with ratio
of specific heats v and pressure p, density p and potential
temperature 6; values having zero subscripts are typical
of conditions at the earth’s surface, introduced for
dimensional convenience. We make the traditional
quasi-static approximation (Eliassen and Kleinschmidt,
1957, p. 20) of ignoring the vertical acceleration and
the horizontal component of the earth’s rotation. Thus,
we assume hydrostatic balance in the vertical. As ver-
tical coordinate we use a certain function of pressure
rather than p itself, i.e.,

' P (y—=D /vy %
S
Po y—1

where the scale height H,=po/(pog). It should be noted
that increments in ‘“pseudo height” z are connected to
increments in physical height 4 by

0dz = 04dk.

H,, (2.1)

2.2)
Defining

Y
Za=—H,~28 km,

v—1 (2.3)

we have that the pseudo height z is bounded above by
z=23, For an adiabatic atmosphere (§ =6,), z=# exactly.
For a real atmosphere, § normally increases upward
and the physical height exceeds z. The relations for the
ICAO standard atmosphere and for adiabatic -and iso-
thermal atmospheres are shown in Fig. 3 (reproduced
from H). A sounding will almost always produce a curve
between the adiabatic and isothermal curves shown.
Thus, to a good first approximation, z can be con-
sidered as physical height over the troposphere. Since
the slopes of surfaces of constant pressure are O(107%),
they are horizontal to a good approximation. The words
“horizontal” and “height” will often be used to refer to
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Fic. 3. The relation between physical height () and z for the
ICAO standard atmosphere and for isothermal and adiabatic
atmospheres. Pressure is also marked on the z axis {every 100
mb below 300 mb and every 50 mb between 300 and 100 mb).

surfaces z=constant, and to the coordinate 2, respec-
tively. Though not exact, the terminology is suggestive
and useful.

We also introfluce a pseudo density

7(2) =po(p/ o) /" =po(1—2/2,)"/77, (2.4)

which is a known function of z or pressure only. In an
adiabatic atmosphere, » would be the true density.
Hydrostatic balance requires that

rdz=—dp/g=pdh. (2.5)
The equations of motion are
Du/Di+ fkXu+V,p=0, (2.6)
V. (rv)=0, 2.7
Do/Dt=0, (2.8)
¢/ 9z = (g/60)0, (2.9)

where:
w=Dz/Di=—(Dp/Dt)/[gr(2) ]
k=unit vertical vector
u=(2,2,0)
- v=(up,w)=u+wk

V1= (9/9x,0/8y,0) s
V=(9/3x,0/8y,0/0z) = Vh+k£
¢ =geopotential =gh

o f=Corlolis parameter, here taken as constant.
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Note that, with this vertical coordinate, the hydro-
static relation (2.9) assumes a simple and convenient
form. However, the known function 7(z) appears both
in the definition of the vertical velocity % and in the
equation for conservation of mass (2.7). This particular
form of the equations has apparently not been pre-
viously used systematically in analytical studies, but
has certain advantages.

Eq. (2.7) may be rewritten as

Vov=w/[vH,(1—3/2,)].

Clearly, if 1—2/z, is not small (certainly true below
100 mb), and if the height scale for w is much smaller
than the scale height, then the right-hand side of (2.10)
may be neglected and the Boussinesq equations are
obtained. Although we shall make it from time to time,
this approximation is not vital for-our analysis as will be
shown later by some examples.

From the definitions of z and w in terms of pressure,
it is clear that the upper boundary condition is

(2.10)

w=0 at z=3,.

At the surface of a smooth earth we should have D¢/ Dt
=0. But surface pressure varies only within about
+5%. Also, if U is a speed characteristic of meso- and
large-scale atmospheric systems, we have U<<speed
of sound. Then, to a reasonable approximation, as is
often done in the p system of coordinates, the bottom
condition may be written as

w=0 at z#O.

More recent studies have shown that the error intro-
duced here is negligible.

b. Cross-front geostrophic balance

It has been found observationally that in large-scale
atmospheric flow there is always an approximate balance
between the pressure and Coriolis forces. In phenomena
such as jets and fronts, the length scale in one hori-
zontal direction (cross-front) is much smaller than that
in the other (long-front), and the horizontal velocity

- vector has only a small component in the cross-front

direction. It is found that there is approximate geo-.
strophic balance in the cross-front direction. This fact
was used by Sawyer (1956) and Eliassen (1959, 1962)
in their theoretical studies of atmospheric frontogenesis.
In this numerical work showing the production of a-
front, Williams (1967) found that cross-front geo-
strophic balance was well satisfied. It should be re-
marked that geostrophic balance in the long-front direc-
tion of a well-developed jet or front is not a good-
approximation.

We now present a non-dimensionalization of our
equations which shows the consistency of consider-.
ing a straight front with geostrophic balance across it.
Consider a frontal situation in which there are gradients .
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WARM
F16. 4. The horizontal coordinate axes.

of physical quantities in the cross-front direction much
larger than those in the long-front direction. Choose x
coordinate lines in the long-front direction, with x in-
creasing toward warmer air, and y coordinate lines
everywhere in the horizontal direction of maximum
temperature gradient such that (x,y,2) is a set of right-
handed, orthogonal, curvilinear coordinates (Fig. 4).
Since our coordinates are not rectangular Cartesian,
extra terms, —v2/R, uv/R, occur in the x and y acceler-
ations respectively, where R is the local radius of curva-
ture of the front.
We non-dimensionalize using

x=I%,

v="V9,

z=hz, t=TI,
9=0,+03,

u=U#
¢=gz+2¢

The equations of motion (2.6)-(2.9) may then be
written:

y=L3,

ot } (2.11)

® 1\d¢ I
ofDi— v+<———)——a—v2—0 (2.12)
1 fv/ex R
1 1@ 1N/l VN3G I
Dzi—f“ﬂ-i——(————)( ) +—uv 0, (2.13)
a ! fv 9y
on 41 V\NOF 1 W\1 9 l
_+<__>_+(_ _)- ) ——ai=0, (2.14)
¥ \UL/3y \U h/rdz R
Dé=0, (2.15)
® I¢ g@
LAY (2.16)
k02 6
where
_ 17190 Uad Va Wa
D= < —ii— +——77—+‘w“>
U Tat ! % Loy h 0%

a=V/flis a dimensionless measure of wind shear across
the front, and 8=U/V a characteristic tangent of the
angle between the horizontal velocity vector and the
v axis. In a frontal zone we expect

VT=~U/l=W/h2V/L, a=0(1),

but I/LLBK1. If R>al, curvature terms may be
neglected. The smallness of 8 suggests that the accelera-
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tion term in (2.12) may be neglected and the equation
may be approximated by a statement of geostrophic
balance. Then Egs. (2.12) and (2.16) give fV=®&/!
~gh®/(8,). In Egs. (2.13) and (2.14) only the curva-
ture terms may be neglected. We then obtain the equa-
tions for a straight front with the approximation of geo-
strophic balance across the front. The consistency of
this balance in any model may be checked by comparing
the neglected cross-front acceleration with the cross-
front pressure gradient. If the front becomes extremely
sharp and a becomes large enough that 2 is no longer
negligible, we must expect that the approximation will
break down. As we move away from the frontal zone to
where y=0(L), U/V may not be small, but geostrophic
balance still holds because V/fLK1.

For reference, we give the approximated equations in
dimensional form as used hereafter:

Du/Di+ fu+d¢/3y=0, (2.17)
V- (rv)=0, (2.18)
D6/ Dt=0, (2.19)
where
6(g/60) =06/ 9z, (2.20)
fv=0¢/dx. (2.21)
D/Dt=3/d1+v-V. (2.22)

¢. Circulation and potential vorticity assuming cross-front
geostrophic balance

Consider a material circuit 4 and define its circulation

to be
Clit)= f vdy. (2.23)
4
From the equations of motion
d g
—(C+1S) =—f 0dz, (2.24)
at 6o/ a

where S(¢) is the area of the projection of the circuit
into a horizontal surface. This is the form taken by
Kelvin’s circulation theorem, known in meteorological
literature as V. Bjerknes’ first circulation theorem
(Eliassen and Kleinschmidt, p. 14). For a material cir-
cuit on a “horizontal” (constant pressure) boundary
or in a surface of constant potential temperature, the
right-hand side is zero and the “absolute circulation”
is conserved. In our frame moving with the earth, this
is interpreted that change in circulation can be caused
only by horizontal shrinkage or expansion of the cir-
cuit. The production of absolute circulation is posi-
tive if the temperature distribution is such that cy-
clonic flow around the circuit would result in warm air
rising and cold air sinking. Although (2.24) is formally
equivalent to the full Kelvin’s circulation theorem,
inspection of (2.23) shows that under the cross-front
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balance approximation, changes in § 4(udx) are ne-
~glected compared with those in ¢ 4 (vdy).

It is readily shown from (2.17)—(2.22)) that Ertel’s po-
tential vorticity under the balance assumption is

g=[—(8v/32)30/ dx+ (f+0dv/9x)80/3z]/r, (2.25)
and is conserved following fluid particles, i.e.,
Dq/Dt=0. (2.26)

From (2.25) is it seen that changes in du/dy and
(8u/92)00/ 9y are neglected compared with changes in
dv/0x and (dv/83)38/ dx, respectively. Unlike the quasi-
geostrophic form of potential vorticity, ¢ involves
horizontal temperature gradients and components of
vorticity. The importance of including these terms was
stressed by Reed and Sanders (1953) in their demon-
stration of how potential vorticity may be used as a
tracer in upper tropospheric fronts.

There is a deduction concerning frontogenesis which
can be made directly from the potential vorticity equa-
tion. Substituting for » and 6, from (2.20) and (2.21),
in (2.25), we have

(f*+0%/ 92 0%/ 92°— (9°¢/ 3x92)" = (fg/bo)ry,

where ¢ is conserved following fluid particles and is
normally positive everywhere. Thus, we can consider
(2.27) as an equation for ¢ with ¢ some unknown but
positive function of position. It is an elliptic equation
of the Monge-Ampére type. A theorem of Heinz (1961)
says that provided d¢/dx and d¢/dz remain bounded
_everywhere and 7¢-has continuous spatial derivatives up
to the second order, then singularities in the second
derivatives of ¢ are possible only on boundaries. This
tells us that provided v and 6 remain bounded, discon-
tinuities in v or # can occur only on a boundary or at a
discontinuity in potential vorticity or its first or second
derivatives. This important result is in agreement with
the observation that really strong fronts occur only near
the earth’s surface or near the tropopause separating
stratospheric and tropospheric air which have very
different potential vorticities. It proved helpful in for-
mulating the models described later.
We define the component of absolute vorticity normal
to a pressure surface, hereafter loosely called the vertical
component of absolute vorticity, as

(2.27)

=f+dv/ 9, (2.28)
and the Richardson number
Ri={(g/0)(36/9k)/(dv/dh)?

=(g/00)(06/9z)/(dv/dz)%. (2.29)
Then (2.25) may be rewritten as
¢/ f=1/Ri—rg/(f80/0z). (2.30)

"When a strong front is formed, ¢, # and f retain their
original magnitudes but 86/9z becomes large. Then

Ri= f/¢. (2.31)
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Thus, in strong fronts the Richardson numbers will be
small and there will be a tendency for small-scale in-
stability and clear air turbulence to set in.

3. Horizontal deformation and the formation of
surface fronts

a. The basic model

A simple deformation field independent of height may

be written as
u=—ax, v=qy, 3.1)

where « is possibly a function of time and o/f<1,
da/dt< O(a?). We consider the action of this velocity
field on a potential temperature distribution initially in-
dependent y and so widespread in the x direc-
tion that the thermal wind is negligible. We expect
that this potential temperature distribution will re-
main independent of y but will be concentrated in
the x direction.

We seek a solution

u=—ax+u'(x,3,)
v=ay+v'(x,2,f)

w=w(x,3,) 3.2)
¢ = faxy—(a®*+-da/dt)y?/24+¢'(x,2,f)
6=0(x,z,1)

where #', v/, w and horizontal gradients in 6 are negli-
gible everywhere initially and for all time at infinity.
The additional y-dependent term in ¢ is necessary
to ensure the consistency of the y dependence of
the model.

Since we anticipate that we shall form ‘“fronts”
oriented in the y direction, we use the equations of
motion with the assumption of geostrophic balance in
the x direction [Eqgs. (2.17)-(2.22)7]. By inserting (3.2)
into these equations it may be verified that the y-
dependent terms cancel and we have a consistent
problem involving only two space dimensions. From this
point on we shall often refer to “motion in the %, 2z
plane.” Since the y dependence is so trivial, this
is a convenient way to refer to the motion of the point
of intersection of a material line in the y direction with a
plane y=constant. We shall also refer to lines on which
some quantity is constant. Strictly speaking, these are
the intersections of surfaces on which this quantity is
constant and the plane y=constant.

Our interest is in the region near the origin in x and
there the approximation of geostrophic balance in the
x direction is a good one. However, at extremely large
x, the x acceleration implied by the basic deformation
field is not strictly negligible. If this is accounted for
(see Appendix), the equations with =x .geostrophic
balance are obtained except that ¢ is now the geopo-
tential plus (a®—de/df)x?/2. This is a trivial correction
term and does not influence the circulation and potential
vorticity results of Section 2c.
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b. Lagrangian study

We start by identifying three quantities which are
constant or vary in a known manner following “material
particles” as they move in the x, z plane. These charac-
terize the essential dynamics of the system in simple
terms. We will later introduce a transformation of co-
ordinates which exploits these quantities and is the
mathematical innovation which allows significant
progress toward analytic solution of what is other-
wise a hopelessly complex, nonlinear problem.

Clearly, one quantity which is conserved as a
“material particle” moves in the %, z plane is the po-
tential temperature 4.

Another which varies in a known manner is

M=o/~ fx.

To see this we apply Kelvin’s circulation theorem (2.24)
to the circuit A;B:B2A: (Fig. 5), where A;B,, AsB, are
lines of fluid particles parallel to the y axis and of equal
length L. Since # and v are independent of y, and
du/dy is independent of position, these lines remain
parallel to the y axis, but each is extended

—=al.
dt (3.3)

This may be integrated to give
L=Leeb®,

ﬁ=/ a()dr'.
0

The curves AjA., BB, are parallel to each other, and
0 and the tangential velocity have the same value at
corresponding points on each. Thus, they make no
contribution to the net circulation or to the generation
term ¢ 60dz. Then Kelvin’s circulation theorem gives

(3.4)

where

D
—D—t{'z)g’L—i—%ozL2 — (/' L+3al®) 4 fL(xy—x1)} =0,

1.e.,

DML—DML 3.5
"D‘t{l}—a{z}. ()

But as x >, v’ — 0, so there
D(Me?) Dx

= f—+aM = —a fx-+alM =0.
o ot afvte

Choosing A.B, sufficiently distant for this to hold, we
deduce that
DM
—t-aM =0,

Y (3.6)

M=Mye*, (3.7
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Az

F1G. 5. A circuit for Kelvin’s circulation theorem.

following any fluid particle. These relations may also
be readily deduced directly from the equations of
motion. However, this approach via Kelvin’s circula-
tion theorem shows the dynamical significance of the
quantity.

Consideration of a circuit like A;B;B2A; shows that
M,=M, is the condition that the circulation round the
circuit vanishes. Thus, the absolute vorticity vector
lies in the surfaces M =constant. Furthermore,

oM /dx=f+dv/dx=¢,
OM/dz=03v/ 9z,

where 9dv/dz is the component of vorticity in a surface
of constant pressure, perpendicular to the y axis,
multiplied by a known function of pressure. Thus,
is a “streamfunction” for the absolute vorticity in the
%, z plane. An alternative interpretation was provided
by Eliassen (1962) who suggested that M be called the
absolute momentum of a particle.

Tt is also useful to introduce the quantity X such that

M=fX. (3.8)
Thus,
X=x+"/f.

Since we have X =y in the initial state, (3.6) and (3.7)
imply that
DX/Di=—aX, X=X".

Thus, if a particle moved with the geostrophic defor-
mation velocity, its # coordinate would be X, and so
we call X the geostrophic coordinate. However, particles
do not move with the deformation velocity. Since M
is a streamfunction of the absolute vorticity, geo-
strophic coordinate lines must crowd together in regions
of large vorticity.

We have two quantities M and 6 whose variation
following a fluid particle is known for all time and be-
tween them we have the thermal wind relation (assump-
tion of geostrophic balance in the x direction)

JOM/0z=(g/00)36/ dx.

To specify the motion completely, we need one further
Lagrangian property. This must be provided by con-
servation of mass. Using our vertical coordinate, the
mass of a “volume” of fluid dV is equal to r(z)dV. The
simple y dependence implies that mass conservation
may be stated as rdV =constant following a fluid
volume in the #, z plane. Consider the volume between
two neighboring @ surfaces 6—A6/2, 64-46/2, two
neighboring M surfaces M—AM/2, M+-AM/2 which
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in the basic state were M—AM /2, My+AMy/2 (where
AMy=AMeP), and of length L= L in the y direction.
This volume is

, Mo a(M,0)7!
dV=LAMAO|: :' =L0AM0A9[ :]
: d(x,2) 3(x,3)

oM ,0):|“‘.

=constant X I: 5
d(x,2)

thus, mass conservation implies

19(M,0
1 )=q 3.9)

r 9(x,2)

is constant following a fluid particle in the %, z plane.
In fact, substituting for M in (3.9), it is seen that ¢
is precisely Ertel’s potential vorticity under the geo-
strophic balance assumption [Eq. (2.25)]. This is con-
sistent as the only ingredient in the conservation of
potential vorticity which is not contained in the circu-
lation theorem, and conservation of potential tempera-
ture is mass conservation.

Thus, using D to denote the derivative moving with
a particle in the x, z plane, the equations are

DM =—aM
De=0 }, (3.10)
Dg=0

where
rq=0(M,0)/3(x,z), fOM/dz= (g,/Qo) 30/ dx.

A somewhat different constraint follows from these
relations together with the upper and lower boundary
conditions. A surface of material particles is marked
by a constant value of Xe=#, where X =M/ f is the geo-
strophic coordinate introduced above. The mass con-
tained between two such surfaces and the rigid boun-
daries =0, H must be constant. Remembering the
uniform extension parallel to Oy, we have

ef / r(@)[w(X1,5,0) —x(X2,3,1) 1dz

=F(X18*’8) —F(Xge—'ﬂ), (311)

where F(X) is a function which depends only on the
initial conditions. We will consider only situations in
which the initial temperature contrasts are so spread
out that dv’/dz is negligibly small and

X~z at (=0.

Furthermore, we suppose that this remains true as
x— for all subsequent time. In this case

H

F(X)= X/ r(z)dz,
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and (3.11) becomes

/ r(z2)v' (X,2,t)dz=0, (3.12)

where the integration is in a surface of constant X.
This condition and the thermal wind equation enable
us to infer the complete long-front velocity field
v'(x,2,t) from a knowledge only of horizontal tempera-
ture gradients (88/9x)(x,2,1).

¢. The model with zero potential vorticity

We now consider the special case in which everywhere
M and 8 surfaces coincide, i.e., the potential vorticity
is identically zero. This does not imply that any
motion must be irrotational, but it does imply that the
circulation in surfaces of constant 8 is zero for all time.
The reasons for introducing this model are that it can
be solved very easily and that the method of solution
suggests how to attack the general problem. The solu-
tion simply shows many of the characteristics which
are exhibited by solutions of the general problem. The
model has some importance in its own right since one
of the features of well-developed fronts and their associ-
ated cloud systems is that the wet bulb potential tem-
perature is approximately constant up the frontal slope.
As the absolute vorticity vector is usually oriented
approximately along the frontal slope, the effective
potential vorticity based on the wet bulb potential
temperature is approximately zero. Since the idea of
this subsection is to produce simple results, we shall
make the Boussinesq approximation by ignoring dr/dz
in the mass conservation equation, and shall consider a
fluid between boundaries at z=0 and z=H.

Suppose that initially 8 =0,(x) where d8/dx is so small
that dv’/dz is negligible and X =x. Since 8 is conserved
and X=X, * following a fluid particle (where X,
=initial x position),

0(x,2,0) =0, X (x,2,))ef @ ]=O(X 1), (3.16)
say, a known function of both X and time. Then,

a(X,6)

C(xg)

q

is satisfied identically, with X and € both being constant
on lines with slope

0X ,9X oX (

14 a9 f200 6@
—>=——/—. (3.17)
ox/ 0z ox 1?8, 0x g .4
Thus, at any time ¢, the lines on which 8 and X are
constant are straight and of known slope.

To study the effects of mass conservation which
under the Boussinesq approximation is volume con-
servation, we refer to Fig. 6 where CD is at large
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F16. 6. Mass conservation in the zero potential
vorticity model.

enough x such that it is moving with the deformation
velocity, AB is a line on which 6 and X are constant, and
A’B’ is where this line would have been if all points
on it had moved with the deformation velocity. Ac-
cording to Eq. (3.12), we must have

area ABCD =area A’'B’CD.

Therefore, the point £ must be at 2=H/2 and so the
mid-point of each line on which X and 6 are constant
is at the position it would have reached if the whole
line had moved with the horizontal deformation veloc-
ity, i.e., it has x coordinate X. From (3.17), therefore,
a general point on the line has known x coordinate

x=X—(g/[%00)5'90/0X, (3.18)
where z'=z—H/2. On this line, we know 6 and
v'=f(X—x)=(g/100)2'90/3X. (3.19)

Therefore, at any time £ we know »” and 4 as a function
of position. The amount of frontogenesis as determined
by gradients in »" and 6 is easily calculated; thus, for
example, the vertical component of absolute vorticity
is

¢=JoX/dx=f[1—(g/ f*90)'(8*O/0X*) . (3.20)

The determination of the velocities in the x, z plane
which must perform the development described by
(3.16) and (3.18) is not essential to the problem.
However, using

Dx
u=51—=—ozX—(g/ f200)(ez’ +w)00/9X, (3.21)

the continuity equation may be integrated up lines
X =constant to give

<ag 62(9\ H*/4—2?
w=—{— — .
720, 0X2/ 1—(¢/ 1200)7 (3200 X?)

(3.22)

Thus the ‘“‘vertical circulation” (#,w) is known as a
function of position.

We note some general properties of the problem and
its solution.

1) Time has become a parameter; it is not necessary
to find the solution for /< T in order to determine that
at T, but only to specify the total geostrophic defor-
mation €#(T) that has occurred.
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2) Tt is useful to use X and z as independent variables.
The nonlinearity of the problem reduces to the simple
graphical exercise of finding 6(x,2) given 6(X) and
x(X,2).

3) The frontogenesis problem of determining ¢* and
6 at time ¢ has separated from the problem of finding
# and w.

4) Provided the rate of deformation o remains finite,
infinite vorticity and associated discontinuities in
velocity and temperature occur in a finite time, since
in (3.20) 9?0/90X?xe?®, It can be seen that this
“collapse” occurs first on the boundaries. The singu-
larity occurs not in the problem as viewed using X, z,
but in the transformation x(X,z2).

5) Below z=H/2, the largest vertical vorticity at
any time is on the line on which 4?0/9X? is a mini-
mum, which was the line on which, initially, 9%0;/9x?
was a minimum.

6) There is upward motion or downward motion
according as 9°0/9X? is negative or positive.

7) In a region of initially uniform temperature
gradient, there is no vertical motion, no wvertical
vorticity generation and hence no real frontogenesis.

8) From 35), 6) and 7), we may deduce that, in this
model, frontogensis will tend to occur on the lower
boundary toward the warm side of a temperature
contrast.

9) At a boundary, (3.21) may be rewritten as

u=—ax—2c/f)V,
which on differentiation becomes

ou/dx=—a—2a/f)0v'/ 3. (3.23)

The first term on the right-hand side is the basic hori-
zontal deformation, while the second is the vertical
deformation associated with the induced ageostrophic
circulation. For vertical vorticities large compared with
f, the latter dominates.

10) Consistency of the balance approximation de-
mands that

[ (8/02)(Du/D1) | K| fov'/ dz],
which may be shown to imply that
/1L 2/ )72

Typically, since a/f~10"!, we must have {n.K25f.
This restriction is so weak that the model could thus
consistently predict frontal vorticities as large as are
ever observed.

11) Setting ¢=0 in (2.30), we find Rif/¢. Thus,
as the vertical vorticity increases, the Richardson num-
ber decreases until instability (e.g. Kelvin-Helmholtz)
sets in and neglected mixing effects must be important.
We may expect this to happen before Ri=0.1, i.e.,
¢max=10f. Hence, this provides the real restriction on
the model, not the balance approximation. Comment
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F16. 7. Deformation model with zero potential vorticity (lower half domain). Continuous
and broken lines are isolines of potential temperature and long-front velocity, respectively.
Arrowed lines are the velocity vectors drawn on the same scale as the basic deformation

velocity shown beneath the lower surface.

4) should be amended to state that there is a tendency
to form discontinuities in a finite time,

To show the realistic appearance of the solutions of
this simple model, we exhibit in Fig. 7 a solution cor-
responding to an inverse tangent form for the initial
potential temperature distribution. The total geo-
strophic deformation is such that Apmax=35f.

d. Nomn-zero potential vorticity

As suggested by the previous section, we now consider
the general problem using as independent variables X
and Z, where X is the geostrophic coordinate (=x+2'/f)
and Z=z. The latter notation is used so as to simplify
the transformation of coordinates. Equivalent inde-
pendent variables have previously been used by Elias-
sen (1962) to simplify his equation for vertical circula-
tion in frontal zones. Formally, we have

3/ dx=(9X/0x)9/0X, (3.24)
3/9z=(8X/92)9/0X+9/0Z. (3.25)
Now,
aX/ox=1-4(1/f)ov'/dx=¢/f,
and (3.24) thus gives
' /dx=(t/f)0v'/0X.
Adding f to both sides and rearranging, we find
¢/ f=[1—-/Naw'/oX T (3.26)
Since 8X/dz=(1/1)dv"/ 3z, (3.25) gives
&'/ dz=(¢/f)ov'/oZ.
But
36/ x=(;/1)36/ X,
and so the thermal wind equation becomes
f0v'/dZ=(g/60)00/3X. (3.27)

Thus, the simplicity of this basic thermal wind relation-
ship is preserved. An alternative statement of this fact

is as follows: There exists a function ® such that
J'=9%/0X, (g/80)0=0%/32, (3.28)

precisely analogous to the geopotential in physical
space. It is easily seen that

bd=¢'+v'%/2.

The Jacobian of the transformation is {/f and so it
is mathematically valid as long as the vertical com-
ponent of absolute vorticity is positive and finite.

From (3.14),

rg=(5/Lo(M,0)/ (X, Z)].
But M= fX. Therefore
rq=¢988/9Z.

(3.29)

(3.30)

Consider a cylinder in the direction of the absolute
vorticity vector and bounded by 8 and §-A#8. Neglect-
ing non-Boussinesq effects, from (3.30), conservation
of potential vorticity says that the horizontal absolute
circulation about this cylinder is proportional to the
vertical height of the cylinder. Using (3.26), (3.30) may
be written as .

rg=f(80/0Z)[1—(1/f)av'/oX .

In the initial state, if we denote a particle’s position
by (x0,20), then, since 2’ is negligible, we have

7(z0)q = 88/ 3z

But since zp is not physical height, we may define a
pseudo Brunt-Viisild frequency

N?=(g/ f00)r(z0)g = (g/80) 36/ 3zo.

If at z0=0 the potential temperature is 6(x,), then,
integrating (3.32), we have

(3.31)

(3.32)

1 20
0(xo,20)=01(xo)+} / 7(20)q(x0,20 ) dzo’. (3.33)
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We may thus consider ¢, N2 and 2, as functions of
%o and 6 provided ¢ is non-zero everywhere. As a
material particle moves, X =xee#® and 6 is conserved.
Since ¢ is also conserved, at any subsequent time g,
N? and z, may be considered as known functions of
X and 6. Also, the potential temperature at any hori-
zontal boundary is a known function of X only.
Thus, using (3.28) we may rewrite (3.31):

1 92 fo 1 P
— f —=1. (3.39)
29X g 7(2)g(X,08/9Z) 022
The boundary conditions are:
3P/0X —>0 as X —x, (3.35)

and, assuming 986/8z is everywhere finite in the initial
state,

0%/30Z=(g/05)0:(X) on Z=z,.

From (3.33), we must have

(3.37)

1 Za
02(X) =01(X) +-}/ 7(Zo)q(xo,20)(lzl) (338)

This problem may be conveniently restated in terms
of the potential temperature 6 by taking the Z de-
rivative of (3.34):

1% arfee 1 90
AR e —]=0, (3.39)
2ax: 3zl g r(2)q(X,0) 0Z
with
3/0X -0 as X — £, (3.40)
0=0,(X) on Z=0, (3.41)
0=0:(X) on Z=z,. (3.42)

Introducing N? and u(X,Z,0)=r(z0)/r(Z), (3.39) has
the alternative form

%0 9

_+—"[”(X)Z,0)
X2 9z

2 9
Vi) 32]_0. (3.43)

Given the solution to the problem for 6, » may be
determined by integration along geostrophic coordi-
nate lines (X =constant) of the thermal wind relation
(3.27), using (3.12) to determine the constant of in-
tegration. The position of each fluid particle is then

(%,2) =[X—f'(X,2),Z]. (3.44)

The deformation problem has thus been reduced to
a simple form in which time occurs only indirectly. It
determines the total geostrophic deformation e#® which
provides the scale of the functions ¢, 6; and 8, The
only non-linearities are the dependence of ¢ on 6 in
(3.39), and the transformation back to physical space
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which is, however, easily performed graphically. The
time-dependent problem for v* and 6, as it is formulated
above, has completely separated from that for the
velocity in the x, z plane. One method for looking at
motions in this plane is to solve the problem at two
times and relate the positions of a fluid particle in the
two solutions. Alternatively, we may return to the
equations of motion and obtain an equation for the
pseudo streamfunction ¢ of the flow in the x, z plane
(such that ru’=0dy/dz, rw=—adyY/dx) as was done by
Sawyer (1956) and Eliassen (1962) in terms of the
instantaneous distributions of ¢’ and §. In the Ap-
pendix, the equations for a model which includes the
deformation model are transformed using the geo-
strophic coordinate. The equations obtained above and
the equation for the x, z pseudo streamfunction are
found. This latter equation is [from Egs. (A25) and

(A34)]
0 /g Y d /f%1 3y a0
o) oA s o) e
0X\foX/ 0Z\ g r dZ X
As stated in the Appendix, integration over a surface
S bounded by a closed streamline shows that round
this streamline the circulation is counterclockwise,
viewed from the negative y axis, when a /" (36/0X)dS
is positive. In a deformation model (¢>0), we thus
expect a tendency for a thermodynamically direct cir-
culation, with warm air rising and cold air subsiding.
In X, Z space, {/f increases to » and the associated
approach to discontinuities in velocity and temperature
corresponds merely to 36/8Z decreasing to 0. Also, since
fX is a streamfunction of the absolute vorticity, X
coordinate lines will be crowded together in a region of
high vorticity, i.e., X is a boundary-layer type coordi-
nate for fronts. Therefore, accurate solutions exhibiting

frontogenesis should be obtainable, however strong the
front.

e. Uniform potential vorticity model

The simplest model is NV%(X,) =constant=N?, say.
This implies that in the initial state, 6 is a linear func-
tion of z. From (2.2), this corresponds to 6« (physical
height)!. In this section we shall make the Boussinesq-
type approximation

/‘(XaZ’e) =?‘(Zo)/7’(Z)E 1. (346)

If we had used the Boussinesq equations from the
beginning, we would have derived (3.43) with condition
(3.46). The approximation should be valid provided
particles do not move a vertical distance comparable to
H,. Since we have a problem in which there are no dis-
continuities in ¢ or any of its derivatives, we can expect
to form strong fronts only at the lower and upper
boundaries. We are interested only in front formation at
the lower boundary as any similar phenomenon at the
upper boundary is a product of the unrealistic condition
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that 86/dz=constant up to the top, and is not physi-
cally interesting. Because of our interest only in the
development near the surface, we impose a “rigid” lid
at z=H below that otherwise implied at z=z,. The
approximations made in this model will all be recon-
sidered in later sections.

The equation for § may be stated as

%  f* 9%

—F——=0. (3.47)

0X% Ny*9Z%
It is convenient to nondimensionalize using the height

H and the pseudo Brunt-Viisild frequency M,. Denot-
ing dimensionless quantities by tildes, we set

X=(NoH/f)X, Z=HZ, 0=(0,/g)N:HE, o' =N Hj.

The equation and the boundary conditions (3.40)-
(3.42), with the condition (3.38) that the system de-
veloped from an initial state of zero v, may be con-
veniently restated as

820/ 0.X >+ 0%/ 922=0,
6(X,1)=1+9(X/L)
_6(X,0)=§(X/L) } (3.49)
§—Z2+5(x») as X—+w

(3.48)

The time-dependence occurs only in determining the
length scale L of the basic horizontal temperature
distribution.
We now set A
§=Z+9(X/L)+6*.

A general temperature distribution §(x) is the sum
of an even function of x and an odd function of z,
say g1(x) and §a(x), respectively. To find 6,*, the even
part of 6* forced by g1, we introduce the Fourier sine
transform of the odd function 83,/dx:

AN sl
Fl(k)=(——> / & (x) sinkxd,
w/ Jo

and use the Fourler cosine transformation of &*.
Similarly, to determine 6%, the odd part of 6* forced
by &, we denote the Fourier cosine transform of
39s/0x by Fi(k) and use the sine transform of 6,*.
Combining the solutions we find that

(3.50)

§X,Z2,L)=2+50.X/L)+d/L)
Nt o coshk(Z—1%)
+<1_r> fo I:l_ coshk/2 :I

Fi(kL) coskX —Fy(kL) sinkX
X 0 dk. (3.51)

Using the thermal wind relation and the potential
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vorticity equation (3.31), it is easily seen that
. (2)% © sinhk(Z —3%)
7=~
m /0 coshk/2
Fi(kL) sinkX +Fy(kL) coskX
X
k

dk. (3.52)

Since the dimensionless coordinate % is simply X —#,
the frontogenetic problem for this model has been
solved.

Under the Boussinesq approximation, y*=y/7 is the
proper streamfunction for the x, z motion, and its
equation when non-dimensionalized by y*=(aVH?/ f)
Jis
8%/ dX 2+ 0%/ 922 = —206+/0X with =0

on Z=0,1. (3.53)

The solutions corresponding to the odd and even forc-
ing may easily be found by using transforms as above.
The result is

-~ 2 %
0
/“" (Z—1) sinhk(Z —1) —1% tanhk/2 coshk(Z —3)
0

k coshk/2
X[F1(kL) sinkX +Fy(kL) coskX Jdk. (3.54)

The solutions for particular initial potential tempera-
ture distributions and geostrophic deformations may
be obtained by numerical quadrature. We evaluate the
two integrals for 86/0.X and 86/9Z for a 31X 17 grid,
0SX<54L, 0<Z<4, using a 96 point Gaussian
method routine, truncating the integrals at £=48. The
derivative quantities ¢/f, 36/9%, 98/0%, Ri[ =(06/92)
X (88/9%)~*] may then be evaluated directly. We know
6 on Z=0 and clearly from (3.52) #'=0 on Z=%. Then
6 and 9 are determined in 0 Z<$ by numerical in-
tegration of 86/0Z and 09"/0Z=0§/0X using the
trapezium rule. Since 86/0Z, 36/9X, 8 and 9’ all have
obvious symmetry properties about X=0 and Z=%,
we obtain the solution for a region —4.5LLX<4.5L
of the fluid (0<Z<1).

Finally, we obtain ¥=2X —#' for each grid point: The
transformation to physical space may be done graphi-
cally by drawing the lines X =constant in physical
space, and drawing contours of quantities noting that
their values are known at the intersection of these
geostrophic coordinate grid lines with ‘the grid lines
Z=F=constant. The drawing of contours in frontal
areas with their large gradients is simplified as the X
grid lines are close together in these regions of large
vorticity.
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Solutions for particular odd and even temperature
distributions have been given in H. There the forma-
tion of sloping frontal regions with maximum gradients
in velocity and temperature at the surface is described
in detail. For these surface fronts, and quite generally
we expect, as L decreases 80/3Z tends to zero some-
where. This implies that {/f increases to <« there.
Hence, given any two-dimensional initial temperature
distribution acted on by a large-scale horizontal defor-
mation field, we expect that there will be a tendency to
form frontal discontinuities in a finite time.

J. Comparison with quasi-geostrophic theory

If we had used quasi-geostrophic theory to attack
this problem (e.g., Williams and Plotkin, 1968) the
mathematical problem could have been stated as

0%’/ 0x*+(f*/No?) 9%’/ 9z°= f*
9¢’/dx— 0 as x— kwx

¢’/ 9z=(g/00)61(x/L) on z=0
¢’/ 9z=1(g/0,)0:(x/L) on z=H

We recall that the geostrophic relations are
(8/60)0=0¢"/0z, fv'=0¢'/dx.

Without making the restrictive assumptions of quasi-
geostrophic theory, we have obtained equations which
are identical to these with ¢’, x, z replaced by ®, X, Z.
Thus, our balanced model must give the same values of
v and @ as quasi-geostrophic theory, but these values
are predicted at (X —v'/f, z) rather than at (X,2). Thus,
our theory only predicts a distortion of the quasi-
geostrophic solution, but this distortion is vital in the
description of frontogenesis. In particular, the vertical
component of absolute vorticity is

(3.55)

¢{=J[1—f-19v'/3X T in the balanced model
¢=f[1+f"'0v'/dx] in quasi-geostrophic theory ’

Therefore, where quasi-geostrophic theory predicts
¢{=2f, the balance theory predicts that the vorticity
has become infinite. Also, if quasi-geostrophic theory
gives { =0, the balance theory gives {= f/2.

This overestimate of the development of negative
relative vorticity and underestimate of that of positive
relative vorticity by quasi-geostrophic theory may be
understood by referring to the vertical vorticity equa-
tion at the ground. For simplicity, we make the
“Boussinesq” and x geostrophic balance approxima-
tions. The vorticity equation is

(D/Dr)dv/ dx=(f+dv/9x) dw/ dz.

In the quasi-geostrophic approximation, 9uv/dx is
ignored compared with f on the right-hand side.
Clearly this is not valid in a model of frontogenesis,
and also its effect must be as described above.
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g. Refinements of the model
1) NoN-BoUSSINESQ

If we do not make the Boussinesq-type approxima-
tion (3.46), the nondimensional N2=constant problem
for § becomes

920/ %2+ (3/9%) (ud8/ 93) =0, (3.56)

with boundary conditions (3.49). Since the original
height of a fluid particle is zo=H[6(X,Z)—8(X,0)],
u=r(z,)/r(HZ) is a function of §, and this problem
is nonlinear. However, it is clearly solvable numerically
by relaxation. We replace the boundary condition at
infinity by one at X ==41.5 to obtain

6(=1.5Z,)=Z+0(x1.5/L). (3.57)

As a control experiment we use this numerical
method to solve the Boussinesq problem with 6(X/L)
=71 tan"'%/0.185. The solution is almost identical to
that analytic one exhibited in H. Numerical solution of
the non-Boussinesq problem shows little difference: u
varies from 1.12 on the warm side to 0.90 on the cold
side; the patterns of 7’ and § are very similar but fronto-
genesis proceeds rather slower at the ground and more
quickly at the lid; and the maximum vertical com-
ponent of absolute vorticity averaged over the lowest
level is 2.8 and over the highest level 3.8 as compared
with 3.2f in the control. [This is consistent with the
vorticity equation derived from (2.6)-(2.9).] It may
be easily seen that the non-Boussinesq term causes a
decrease in vorticity in rising air and an increase in
descending air. Thus, near a lower boundary where
vorticity is decreased by descending air and increased
by ascending air, we expect that the vorticity is more
uniform than predicted by Boussinesq theory. The
reverse is true at the lid.

2) NON-UNIFORM POTENTIAL VORTICITY.

The Boussinesq equation for a general smooth dis-
tribution of potential vorticity, when nondimension-
alized as above, is

8%/ 9X2+(3/32)(»288/02) =0, (3.58)

where »?=N?/N¢? is a known function of X, §. As
above, this may be solved by relaxation. An integration
with »? varying from 1 at the surface to 6 at the lid
shows, as expected, frontogenesis at the surface slightly
decreased and that at the lid greatly decreased.

3) LATENT HEAT.

In this work we consider that latent heat release is
not crucial in frontogenesis. However, it is clear that it
must have an important modifying effect. Numerical
models with a general circulation model by Manabe
et al. (1970) have clearly indicated that, in a moist
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model, there are stronger upward motions and in-
creased gradients at fronts.

To crudely model latent heat release, following
Eliassen (1959), we consider it as a heat source in an
otherwise dry adiabatic atmosphere, i.e.,

D6/Di=E. (3.59)

In the Appendix it is shown that the geostrophic co-
ordinate may be introduced and the previous equations
obtained except that now ‘

Dg/Dt=¢3E/dZ. (3.60)

If we assume that the solution is little altered by the
inclusion of this heating, we may estimate the increase
in ¢, postulate a new distribution of potential vorticity,
and resolve the problem. Use of this method confirms
that latent heat release produces larger upward motions
and increased frontogenesis.

Approaching the problem rather differently, one of
the observed effects of the cloud and rain associated
with fronts is that there is little stability for motion
along vortex lines. The potential vorticity based on the
wet bulb potential temperature is approximately zero.
Hence, the zero potential vorticity model described
earlier has some relevance in this case. The solution
exhibited (Fig. 7) was very similar to those of the
constant V2 model (see H), but the total deformation
required to achieve a given maximum vorticity is less.
Thus, again, the enhancing effect on frontogenesis is
demonstrated.

4) SURFACE FRICTION.

We again consider this as a perturbation on our
previous control model. We model the effect of a sur-
face boundary layer by imposing at =0 the Ekman
layer suction

w=(8/2)§—f). (3.61)

The height risen between Z=0.25 and L=0.185 by a
fluid particle at the lower boundary may then be esti-
mated from the solutions at these times. Rather than
solve with § known on this boundary, it is more con-
venient to interpolate to Z=0 using the values of
86/3Z in the lowest grid of the control experiment.

Taking a=2.10"55"1, §=150 m, the numerical solu-
tion of the problem produces a similar distribution of
7, 8, but the frontogenesis is reduced. The maximum
value of y is reduced from 3.2f to 2.4f. In the surface
boundary layer at a front there is increased conver-
gence but above there is a compensating divergence
whose effect is frontolytic.

4. A discontinuous potential vorticity model and
upper tropospheric fronts

In 1955, Reed published his observational study of a
remarkable upper tropospheric front. Before this there
had been classical studies of the polar jet front by
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Bjerknes and Palmén (1937) and Bergeron (1937). The
latter, noting the subsidence at the front, introduced the
terminology ‘“‘katafront.” The first theory of the jet
stream formation was that of Rossby [University of
Chicago (1947)] who evoked large-scale mixing. The
confluence theory of jet stream intensification was pro-
posed by Namias and Clapp (1949). Many investigators
commented on the vertical motion in the vicinity of a jet
stream. However, Reed’s use of potential vorticity as a
tracer enabled him to produce, for the first time, a very
complete picture of frontogenesis in the upper tropo-
sphere. He showed that the tropopause, with strato-
spheric air of large potential vorticity on one side and
tropospheric air on the other, folded back on itself. A
thin layer of stratospheric air penetrated deep down
into the troposphere taking on the form of a frontal
region. During this process, the jet stream intensified
somewhat. Although this was a remarkable case, it
has since become clear that most of the phenom-
ena Reed observed are characteristic of upper tropo-
spheric fronts. A detailed study of five similar cases
has been made by Reed and Danielsen (1959), and
Danielsen (1968) has produced more evidence of the
folding of the tropopause. In the 1960’s there has been
some interest in the vertical motion near jet streams
as this plays an important part in tropospheric-strato-
spheric exchange (e.g., Newell, 1963).

The general deformation model, which we reduced
to a simple form in Section 3, was used there only in a
uniform potential vorticity model. The solutions ex-
hibited phenomena similar to surface fronts. The simi-
lar “frontal” formation at the lid was found not to
affect the dynamics near the surface. However, in this
section we are interested in modeling the formation of
fronts away from the surface. Because of the large
static stability of the stratospheric air above, the tropo-
pause often acts almost as a rigid lid for tropospheric
motions. Clearly, this cannot be considered an explana-
tion of upper tropospheric frontogenesis, but it en-
courages us to extend our model. We shall consider a
large-scale deformation field acting on a system com-
posed of fluid of one potential vorticity (the tropo-
sphere) under fluid of a larger potential vorticity (the
stratosphere). We recall from Section 2c that at a
discontinuity in potential vorticity we expect the possi-
bility of forming large gradients.

To keep the model simple, we shall make the Bous-
sinesq approximation. By doing this we shall tend to
overestimate vorticity formed by upward motion and
underestimate that formed by downward motion. Thus,
if we succeed in producing any phenomena similar to
the upper tropospheric fronts observed, we shall have
underestimated the amount of frontogenesis there.

a. The equations

We denote the upper and lower regions by the sub-
scripts 2 and 1, respectively. Using the geostrophic co-
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ordinate X, the equations are
920,/ 0X 2+ (f2/N22) 926,/ 922 =0
920,/ X2+ (f2/N12)8%0,/ 922 =0)

We demand that 96,/6X and 66:/6X —> 0 as | X| —w.
We take the lowest boundary as Z=0, the highest
boundary Z=H, and the internal boundary (tropo-
pause) as Z=h(X). Since the X coordinate of fluid
particles changes with the geostrophic deformation
rate, if the tropopause is initially a single-valued func-
tion of X, it remains so. We note that this does not
imply that it must remain a single-valued function of
x. We may write the potential temperatures on Z=0,
h, H as 8:(X/L), 9(X/L), 92(X/L). As before, time
only appears indirectly. It determines the total geo-
strophic deformation and hence the length L. This
problem is shown in Fig. 8a. Let (X /L) be the initial
height of the tropopause, now with geostrophic co-
ordinate X. Since we consider the initial state to be one
of negligible v/, we must have

l9t=l91+N12(00/g)h0

4.1)
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Thus, only two of the functions %, &1, Js, &, may be
specified arbitrarily.

To specify the problem uniquely we require a match-
ing condition across the tropopause. Integration of Egs.
(4.1) over the area bounded by the circuit ABCD in
Fig. 8a gives

0=[06/0X1,2dZ+[(f*/N*06/dZ]?dX. (4.3)

Here [ F,>=F»—F1. But the continuity of § implied by
6,=3,(X/L) =0, at the tropopause gives

0=[06/9X 12dX+[06/0Z]%dZ. (4.4)
Combining (4.3) and (4.4), we have
90:/9Z _ N[1+(Nv/ f)(dh/dX)?] @s)

36,/0Z N2[1-+(No/ f2)(dh/dX)?]

where di/dX is the slope of the tropopause in the X, Z
plane.
From the work in Section 3 we have

N2=[¢g/(f8:)]506/9Z, (4.6)
and thus
'/ 0X = f—(gf/6,)N—236/93Z. 4.7
B
5 Mo X/ T
2-N|
%, #8, %6,
@ =tz
aX 27, 5 Npo o
X
54X /0)
'Z! = '; (';)
Z) %6, 0%
®© ~aI + ~—2I =0
| RS-V X
X
‘i;=0

35,0

F16. 8. Discontinuous potential vorticity deformation model: The problem. A, dimensional; B, nondimensional.
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Also
'/ 0Z=[g/(f8,)]06/0X. (4.8)

We see that (4.3), and hence (4.5), are merely condi-
tions for continuity in v across the tropopause. From
(4.6), (4.5) may be written as

s‘_l_1-!—(Z\flz/fz)(diz/alX)2 4.9)
tr 14V f2)(dh/dX?) '

When the tropopause has zero slope, (36,/3Z)(96:/9Z)!
=N2N,"% and {1={.. However, since N2> N;, when
the slope is non-zero, (865/0Z2)(96:/3Z) 1<N32Ni72,
and {»> 1. The vertical component of absolute vortic-
ity is larger on the stratospheric side of the tropopause
than on the tropospheric side. This effect should be
important when dk/dX = f/N.,.

The mathematical problem posed has certain unusual
features. We have essentially Laplace’s equation for 6
in the two regions, with  known around the boundaries
of both regions. However, the position of the common
boundary is unknown. The matching condition (4.5)
across this boundary is a function of its slope. For con-
venience, we now nondimensionalize the equations in
such a manner that the governing equations in both
regions is Laplace’s equation. We set

0=(60/g)N:2HO, o =NHo, X=(N.H/HX .10)
Z=HZ,in(1), and Z=F/MZ,in @) '

where v=~N,/N1. The nondimensional model is shown
in Fig. 8b.

To keep our model simple we require that there
should be no potential temperature gradient on the lid.
In nondimensional terms this implies

dd,/8X = (v2—1)dho/9hX.

b. The method of solution

Since the mathematical problem is not a standard one,
various techniques for numerical solution were tried.
The one described here was successful in giving solutions
to the particular problems displayed in H and to others.

As was done in the numerical work described in the
previous section, we replace the boundary condition at
infinity by one at X =241.5:

6.(£1.5, Z) =0(x£1.5/L)+2Z, } @i
Ou(1.5, 2) =9o(£1.5/L)—v(v—22) )

We also impose that the values of % at X==£1.5 are
fixed at the initial values relevant to those fluid lines:

7(+£1.5)=ho(x1.5/L). (4.12)

Solutions. obtained using this boundary condition will
tend to have less tropopause movement than those us-
ing the exact condition.
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The method of attack is to fix the tropopause and
relax toward the solutions of Laplace’s equation in
both fluids with the correct boundary conditions except
at the tropopause. There we impose (4.5) but we de-
mand only that §;=8§,. We do not specify §;=3§,=0..
After a certain number of steps we move the tropopause
to a new position such that the values of the potential
temperature on the tropopause are likely to be nearer
the correct ones. We then repeat the process. If this
double relaxation procedure converges, then it con-
verges to the solution of the problem, subject to round-
off error.

The details of the numerical scheme are given in
Hoskins (1970).

¢. Some solutions

The solutions of Experiments 1, 2 and 3, as described
in H, all exhibit upper air fronts, jet streams, and the
various stages in the formation of a tongue of strato-
spheric air descending into the troposphere. However,
the ageostrophic convergence at the upper air front
does not suggest a tendency to form infinite vorticity
as exists at surface fronts. We now consider under what
conditions such a tendency may exist. Since the
vorticity is always larger on the stratospheric side of
the tropopause, we need only consider the stratosphere.
Suppose that we know the tropopause height in the
X, Z, plane. If there is a tongue of stratospheric air,
the position must be much as in the schematic diagram
of Fig. 9a. The governing equation is Laplace’s equa-
tion and we may assume that . is known on the
boundaries. Experiments 1, 2 and 3 all have potential
temperature increasing monotonically along the. tropo-

A

85 constant

92 known

I§2 known

temperature
minimum

F1G. 9. Stratospheric descent: A, the mathematical problem;
B, tropopause potential temperature monotonically increasing;
C, potential temperature minimum on the tropopause.
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pause. For any such problem, the potential temperature
distribution must be similar to that in Fig. 9b. Since
f~%=v(86,/3Z,)", the vorticity is clearly large in the
tongue and hence when transformed into physical space
it must be narrow. We should expect that the vorticity
is approximately proportional to » and to the depth
of the tongue. However, since the tropopause must
always have finite slope, in the X, Z, plane we can
never obtain 8fy/9Z,—0, i.e., {/f—.

Now suppose that the potential temperature has a
minimum on the tropopause on the “cold” side of the
tongue. The potential temperature distribution in the
X, Z, plane is shown schematically in Fig. 9c. Tt is seen
that 8./3Z,—0 is then possible. In fact, a minimum or
maximum anywhere on the tongue, apart from a mini-
mum at the base of the tongue, introduces the possibility
of a tendency to infinite vorticity.

Reed (1955) noted a mass of extremely cold air on the
cold side of the temperature transition in the upper
troposphere and his diagrams show a potential tempera-
ture minimum on the tropopause toward the cold side of
the tongue. If the air on the cold side of the tongue is to
have very small baroclinicity, there must be such a
minimum on the cold side of the tongue. Therefore, this
is the physically interesting case. However, experiments
in which the tropopause potential temperature has this
minimum indicate that a minimum in tropopause height
tends to occur there. Thus, we have found no tendency
to form infinite vorticity at upper air fronts.

5. A horizontal shear model

In this section we describe an analytic study of a
model which was investigated numerically by Williams
(1967). He considered a Boussinesq fluid with uniform
static stability, bounded by two rigid horizontal planes.
The fluid had a uniform temperature gradient in the un-
bounded y direction and a corresponding geostrophic x
wind linearly increasing with height. This is the basic
state for the simplest example of the classical pheno-
menon of baroclinic instability. According to quasi-
geostrophic theory, a perturbation in the form of an
infinitesimal Eady wave should grow indefinitely, pre-
serving its shape, and drawing on the infinite source of
available potential energy associated with the infinite
temperature contrast in the y direction. Williams posed,
as Initial conditions for his model, the basic state per-
turbed by the most unstable Eady wave. His integra-
tions showed that horizontal shears develop much as
quasi-geostrophic theory suggests. The warm southerly
winds and cold northerly winds form temperature
gradients in the x direction (east). However, when the
perturbation has grown to finite amplitude, ageostrophic
motions cause a distortion of the dynamical picture in
which a realistic surface front is formed. The basic y-
temperature gradient is much smaller than those pro-
duced in the x direction. He found that there is a ten-
dency to produce frontal discontinuities in a finite time.

HOSKINS AND F. P.
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In Sections 5a, b we attack a more general problem
and then restrict ourselves to Williams’s problem. The
solution of this model shows that the formation of a
realistic surface front may be initiated by the horizontal
shear mechanism though rather extreme velocities seem
to be required.

a. The basic model

We shall study a model in which
f=—0og's2y+0'(x,2,0)

, (5.1)
o= —Szy(z —h> +¢, (x,Z,t)

and all other dependent variables are independent of y.
Here s=(—g8,"'06/9y)* has the dimensions of a fre-
quency and is a constant along with 4. Then

u,=s2f"1(z—h).

The zonal (x direction) geostrophic wind increases
linearly with height.

We make the approximation of geostrophic balance
in the x direction. Insertion of (5.1) into Egs. (2.17)-
(2.22) shows that the y dependence posed is consistent.
As in the deformation model, we may refer to motion
in the «, 2 plane and lines in this plane.

b. Lagrangion study and the transformation

The potential temperature is conserved following a
fluid particle. We also apply Kelvin’s circulation theo-
rem (2.24) as before (Fig. 5).

This time there is no extension in the long-front direc-
tion, i.e.,

DL
—=0. (5.2)
Dt
The theorem gives
D D
[—M~szz] = {—M—-s?z} (5.3)
Dt 1 Dt 2

The generation term s% arises because the values of
g0/8y at corresponding point on A;A,, BB, differ by
s2L. At large distances we have the boundary condition

s2

u——(z—h), v—0 asx—wo.
2

(5.4)

Changing the value of the constant % in this expression
would merely involve adding a uniform geostrophic
velocity to our solution. From (5.3), (5.4) we have, for
all particles,

D
—M=5*(z—Fh). (5.5)
Dt

Thus, the change in M following a fluid particle is de-
termined purely by the height of the particle. As in the
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deformation model, this equation could have been de-
rived directly from the equations of motion. Again, M
is a streamfunction for the absolute vorticity in the #, 2
plane.’

The direct application of mass conservation to this
problem is not trivial, and so we prefer to use the con-
servation of potential vorticity [(2.25), (2.26)], which
may be written as

Dq o(M.6")
—=0, where rg= .
D¢ d(x,2)

(5.6)

For comparison with (3.15) for the deformation
model, we restate our equations using D to denote the
derivative moving with a particle in the x, z plane;
thus, we have

D8 = (0o/g)s%
Dg=0

where rg=09(M,0')/9(x,2), fOM/dz= (g/6,)06/9x.
As before, we introduce X such that M= fX. Then

X =x+v/f. (5.8)

In an initial state with negligible », we have X=x.
Changes in X are given by

DX/Di=s2f"1(z—h). (5.9)

Since this is the geostrophic x velocity, if a particle
moved from the initial state with only the geostrophic
velocity, its x coordinate would be X. We again call
X the geostrophic coordinate.

We now transform our independent variables to X
and Z(=z). The process is entirely analogous to the
transformation for the deformation model. We have

DM =s*(z—h)
}, (5.7)

8/dx=(/1)d/dX, (5.10)
9/0z=(g/ f80) ¢/ f)(80'/0X)8/0X+d/0Z, (5.11)
where
= f+40v/dx=f[1—(1/f)dv/0X . (5.12)
Also, if
&' =¢'+1vq/2, (5.13)
then
fo=0%"/9X, (g/60)0=0d"/dZ. (5.14)

Again the Jacobian of the transformation is {/f and

$o it is mathematically valid as long as the vertical

component of absolute vorticity is positive and finite.
Also,

rg=200'/0Z. (5.15)

As in Section 3, we measure potential vorticity by a

pseudo Brunt-Viisild frequency in an initial state of

negligible v, i.e.,
N2=(g/00)06/0z9=g(f05)~'r (20)g.

Here 2, is the vertical coordinate of a fluid particle in

(5.16)
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the initial state. Using u=r(z,)/7(Z), we find that
Ni=p (82’0201~ f20%'/3X2 L, (5.17)

is conserved following a fluid particle. On a ‘‘horizontal”
boundary, since w=0 there, and using (5.19), we have

D=09/0T+s2f1(Z—h)d/dX. (5.18)

Here we have used 7'=1 as the time variable when X
is our horizontal coordinate. Therefore, on a horizontal
boundary the thermodynamic equation gives

[8/0T+s2f1(Z~h)d/9X J9%' /97 :
=s2f198'/9X. (5.19)

¢. The Boussinesq, uniform N model

The motion of particles in the X, Z plane is the geo-
strophic x velocity plus the vertical velocity. Thus, in
general, the value of N? as a function of position, at
any time, is not known. However, we now restrict our-
selves to the problem of Williams. We make the Bous-
sinesq approximation p=1 and consider a fluid with
N uniform initially, and hence for all time, bounded by
horizontal boundaries at 2=0, H. For convenience we
choose #=H/2. From (5.17) and (5.19), the problem
takes the closed form

PP /9X2+ (f2/ N2 o' /922 = f2, (5.20)

with

[9/0T+s2f(Z~H/2)3/0X Jod' /o2
=s2f-198'/0X on Z=0, H.

The transformation to physical space is given by

(wof)= (X— [208//0X, Z, T).  (5.21)

The equations governing this nonlinear flow have thus
been made linear. The nonlinearity now occurs only in
the transformation to physical space. This is, however,
easily accomplished graphically.

From the similarity of the approach to this model
and the deformation model, it is clear that an attack
should be made on a model including them both. This
is done in the Appendix by transforming the equations
of motion. There, for this model, it is shown that the
x, % streamfunction such that

u=s2f-1(z—H/2)-+y*/03,
satisfies

N20%*/dX 2+ f200* /922 = — 2529v/ X

w=—dy*/dx

(5.22)

On Z=0, H we demand y*==constant. A closed stream-
line around an area of positive relative vorticity must
have anticlockwise circulation around it. We note that
the frontogenetic problem of determining v and 6, and
the circulation problem have again separated. The
streamfunction ¥* need not be calculated to determine
the solution of the frontogenetic problem. If the Bous-
sinesq approximation had been made in the original
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equations and uniform N? assumed, the above equa-
tions would have been obtained directly.

Quasi-geostrophic theory when applied to this model
gives the same equation and boundary condition (5. 20)
but with &, X, Z, T replaced by ¢, «, 3, {. As was true
in the one- ﬂuid deformation model, our balanced model
must give the same values of v and 6’ as quasi-geostro-
phic theory, but these values are predicted at (X —v/f,
Z). This distortion again implies {/f=2, 0, while on
quasi-geostrophic theory we have {/f=e, 3. Our
solution to the baroclinic instability problem and the
growth of the Eady wave is
&' =N222/2+exp(s?eT/N)(a coshBZ cosBX

48 sinhgZ singX), (5.23)

where

Z=(Z—-H')/H', X=fX/(NH'), H'=H/2

a b
az=1—3 coth8, o—=@tanhg—1
a

For an infinitesimal wave, X =« and the form is identi-

cal to the quasi-geostrophic Eady wave. The associated

streamfunction is

Y*=Bs2fIN-2exp (s’ T/N)[a(Z sinhBZ —tanhB coshpZ)
X cosBX 4b(Z coshBZ —coth BsinhgZ)

XsingX ). (5.24)

d. Comparison with numerical inlegrations

To test our solution we compare it with the results
of numerical integrations of this model for the most

;m\\
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x (km) -
-2000 -I500 —IOOO -500 0 ISOO
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F1c. 10. The numerical solution for the finite-amplitude Eady
wave: A, long-front velocity (contours every 15.2 m sec™);
B, potentxal temperature (contours every 10.3K).
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F16. 11. The analytic solution for the finite-amplitude Eady wave:
A and B as in Fig. 12; C, cross-front streamfunction.

unstable Eady wave as described by Williams. The
numerical solution at approximately the time at which
our analytic theory suggests that the maximum ab-
solute vorticity at the surface and the lid is 51 is shown
in Fig. 10. Because of periodicity and the symmetry
about z=H/2, we show only the lower half domain
for one period. The corresponding analytic solution is
exhibited in Fig. 11. The agreement between the two
is extremely good. The largest gradients in the numerical
solution are a little smaller than predicted. However,
this may easily be explained by the round-off errors
inherent in numerical integrations with a finite grid
(20 grid points per wavelength), particularly when the
differences in the values of quantities stored at neighbor-
ing grid points are so large.

For interest we exhibit in Fig. 13c the total cross-
front streamfunction, y*-s2(2f)~'z(z— H’). Since it is
found that the position of maximum vorticity scarcely
moves at this time, we may consider this as representing
the flow relative to the front.

Our analysis suggests that the frontal model of
Williams should have produced discontinuities in just
over 5 days. This is consistent with the tendency to
discontinuity which he found. This was halted only by
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lack of definition due to a finite grid. The “‘collapse’”
mechanism occurs at such a rate that infinite vorticity
is predicted only 7 hr after the pictures shown.

Study of the consistency of the geostrophic balance
approximation in this model shows that we must have

¢/ L (21 N1a)22 120,

Of much more concern is the behavior of the Richardson
number. By the time { =35, the minimum value at the
surface front is 0.26. For { larger, from (2.31), we
expect that Ri= f/¢. Thus, before the balance approxi-
mation breaks down we again expect that mixing must
be important. However, we may say that in this model
exhibiting the horizontal shear effect, there is a ten-
dency to form discontinuities in a finite time.

6. The formation of frontal discontinuities

We have produced models in which the initial tem-
perature gradients in the x direction are produced by a
large-scale deformation field and by a large-scale hori-
zontal shearing motion. Associated with these tempera-
ture gradients, velocities in the y direction are formed
in accordance with the thermal wind relation. If V is a
characteristic velocity in the y direction and / a length
scale in the x direction, when V/(fl) is no longer
negligible, the ageostrophic motion in x, z planes be-
comes important. It produces a distortion of the solu-
tion predicted by quasi-geostrophic theory. In particu-
lar, positive relative vorticity is increased and sloping
frontal regions form. When the vorticity at a surface
front is large compared with f, the ageostrophic motions
dominate there and produce a tendency to form dis-
continuities in a finite time. It is clearly of interest to
consider what approximations may be made in a strong
frontal region, and to study the dynamics of this
catastrophic tightening process.

In this section we study a general frontal region in
which there are very large gradients in long-front
velocity v and potential temperature §. The dynamical
model of this region was inspired by the frontal models
exhibited in previous sections. However, it should be
quite generally valid.

a. The equations

As in Section 2b, we take coordinate axes x in the
cross-front direction pointing toward warmer air, y in
the long-front direction, and z upward. Assuming that
the curvature of the front may be neglected and making
the assumption of geostrophic balance in the x direc-
tion, we have Egs. (2.17)-(2.22) which may be re-
written as

Dv=— fu—9¢/dy—vdu/dy, (6.1)
d(ru)/dx+0(rw)/9z=—9(rv)dy, (6.2)
Db=—v30/3y, (6.3)
fov/9z— (g/00)96/0x=0, (6.4)
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where D=43/0i+u9/9x+wd/dz is the derivative mov-
ing with the particle velocity in the planes y=constant.

Since gradients in the cross-front direction are so
much larger than those in long-front direction we may,
to a good approximation, neglect the y dependence of
u, v, w and . We may consider the motion as that of vy
lines, and D as the derivative following these lines.
Also, we may neglect the right-hand side of Eq. (6.2).

The final approximation is a rather novel one inspired
by our frontal solutions. In these, and quite generally
we expect, in the final stages of collapse to a discon-
tinuity, the time scale is so small that the right-hand
sides of Egs. (6.1) and (6.3) may be neglected. They
then state that v and 8 are conserved moving with the
y lines. For convenience, we restate the equations
governing our model :

D=0, (6.5)

Di=0, (6.6)

9 (ru)/dx+08(rw)/dz=0, 6.7)
fv/dz=(g/6,)98/dx, (6.8)

where
D=03/8t+ud/dx+wd/dz.

We may now define the “vorticity” { = (—4av/9z,
0, dv/9x). The vorticity equation is then

D /M)=L/r)-V]v. (6.9)
The form taken by Ertel’s potential vorticity is
g=y-Va/r. (6.10)

b. Analysis of a strong frontal region

1) When gradients are very large we expect that the
earth’s rotation will be negligible compared with the
relative vorticity. Thus, ¢’ is a consistent approximation
to {=(—av/9z, 0, f+9v/dx). Since v is independent
of the long-front coordinate, the surfaces on which »
is constant are perpendicular to a cross-front section.
From the form of ¢, the vortex lines must all lie in
these v surfaces.

2) Ertel’s potential vorticity ¢ is conserved moving
with a fluid particle and is thus bounded everywhere.
In our limit ¢’ is a consistent approximation to ¢. Thus,
in our limit of indefinitely large gradients, we must

V_2,92 R

v|,9| Q

Fic. 12. Two neighboring », 8 surfaces.
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have V@ perpendicular to ¢’. Therefore, 6 surfaces and
v surfaces coincide.

3) Consider two neighboring v surfaces (Fig. 12)
BQ on which v=1v;, §=6, and ACPR on which v=u,,
6=0,. The balance condition [ Eq. (6.8)] implies

v9—v; g O—01 vy—v1 g 6—6

CB  f6, AB’

RQ f8 PQ

Then the slope of AC=-—CB/AB=—(f0/g)
X (v2—v1)/(62—6;) and the slope of PR=—RQ/PQ
= —(f00/g) (v2—21)/ (62—061).

Therefore, the v surfaces are planes of slope

— f(8o/g)9v/ 8.

4) Since v and 6 are conserved moving with y lines,
they are conserved moving with these v planes. Thus,
we may write v=F(¢) for some, as yet undetermined,
function F. From (6.11), therefore, the slopes of the
v planes are — (f8,/g)F’(f), and are thus constant in
time.

5) Discontinuities may be formed only by the meeting
of two v planes. Our model can predict the formation
of discontinuities only on a boundary. To prove this,
suppose on the contrary that one is to form at an in-
terior point P (Fig. 13). A short time prior to this
collapse, in some neighborhood of P, the v surfaces
and 6 surfaces are identical and plane. Contrary to
hypothesis, discontinuities must occur at Q before they
occur at P. Thus, the original statement is proved.
This is consistent with our study in Section 2c of the
Monge-Ampere equation satisfied by ¢.

6) The v planes fan out from the boundary as, other-
wise, discontinuities will have occurred at an interior
point.

7) Our axes have been chosen so that 96/dx is posi-
tive. Since this is necessarily positive for a stable situa-
tion, the slope of the # planes and thus of » planes is
negative. But fdv/9z=(g/0,)36/9x is positive, and thus
the relative vorticity dv/dx is positive.

Fig. 14 is a drawing of our strong frontal region. The
similarity with the strong frontal regions exhibited here
and in H is clear.

(6.11)

Q

Fre. 13. v surfaces in the neighborhood of an interior point P.
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F16. 14. Planes v=constant, §=constant in a strong frontal region.

¢. Analysis of the motion

The possible fluid motions in the region are those and
only those that conserve the slopes of the v planes.
These may be divided into two types: 1) motion in v
planes, and 2) motion of v planes parallel to themselves.
Clearly these motions do not change the slopes of v
planes and, conversely, any motion that satisfies this
criterion can be formed from them. Motion of type 2)
must, by continuity, be associated with motion of type
1).

Mathematically, using a subscript v to denote a de-
rivative holding v constant, we have

(3x/80)y=VF (o) V 1/ T), (6.12)

where F is a dimensionless function with characteristic
velocity scale V and time scale T, and is arbitrary as
far as our strong frontal region is concerned. It is evi-
dent from our solutions that it is determined from the
interior region where the more general equations of
motion are relevant. In particular, it has the time scale
(T) of the interior. Therefore, in the time scale of col-
lapse to a discontinuity, we may consider F as inde-
pendent of time and rewrite Eq. (6.12) as

(0x/0t),=VF(v/V). (6.13)

The v planes are decoupled, each moving with a con-
stant velocity. If F'<0 anywhere, then v planes move
toward one another with constant speed and the for-
mation of a discontinuity is inevitable (see Fig. 15).
The remainder of this section expresses this more
exactly.

X

Vs

vq

b
|
V3 1
i
]
|
]
|

v2

M|

Frc. 15. The position (x) of » planes at the boundary as a
function of time (¢). Each moves with a constant velocity. Here
discontinuities form at time /,.
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Since w=0 at the ground, there can be no type (i)
motion there. The cross-front velocity must be
u=VF(v/V). Therefore,

du/dx=F’'9v/dx. (6.14)

The convergence required to form large gradients
implies that F'<0 in the region.
Since (dx/9t),=— (dv/3t)(dv/dx)t, (6.13) may be
rewritten as
dv/0t+VFav/dx=0. (6.15)

Differentiating with respect to x, we obtain the vertical
vorticity equation

(8/8t+VF9/0x)0v/0x= —F’ (3v/9z)2,
or

(8/31+VFd/3x)(dv/dx)t=F". (6.16)

We fix our attention on a fluid particle at the ground.
For this particle, F’ is constant. Integrating (6.16) from
some initial time {=0, say, we have

9o/ du= (F')"[t—1,(0) ], (6.17)

where
te(v) = —[F’'(3v/0x)o ] = —[(du/dx)o .

Therefore, discontinuities occur first at the ground at
=1, at which — (9u/0x), takes its largest value ¢,
and happens after a time .

Within a certain range of the v, plane, we may
approximate F by

F(v/V)=A+Bv/V,

(6.18)

(6.19)

where A and B are nondimensional constants, with 4
corresponding to mere advection of the frontal region.
The collapse to a discontinuity is controlled by the
dimensionless, negative (since F’<0) number B, which
is determined by the interior. Rewriting Eqs. (6.17) and
(6.18) at the ground, we have

dv/dx =B t—1t.(v) ],

te(v) = —[B(9v/dx)o .

d. The dimensionless number B

(6.20)
where
(6.21)

It has been shown that the only effect of the interior
on the “collapse” region is the rather subtle one of
providing a negative dimensionless number B which
controls the rate at which the collapse to a discontinuity
proceeds. We now consider this number B.

From (6.14) we see that

deformation

B=(du/0x)(9v/0x) 1= — (6.22)

vertical vorticity

at the ground. It should be noted that since the ageo-
strophic deformation is dominant, a value for B may
not be deduced from surface pressure charts. It can be
estimated if surface wind data is available.
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If the deformation model with zero potential vorticity
it may be seen from (3.23) that B= —2a/f. If we make
the Boussinesq approximation, which should certainly
be valid in a limited region near a rigid horizontal
boundary, introduce a cross-front streamfunction, and
use the geostrophic coordinate X, then, at the ground

aw
du/ dx=0%*/ dndz=(0%*/ ava)(1+ f—l—_),
ax
Therefore,

B=flo%*/dXdZ. (6.23)

In frontal collapse in the general deformation model
we see that B=0(a/f). For the collapse in the Eady
wave, it may be verified from (5.26) that B=—q/f
where o is the growth rate of the wave. Thus, in our
solutions, B is a measure of the ageostrophy of the
interior motion. Using the values of parameters quoted
earlier, we have B=—0.2, B~0(0.1), B~ —0.09. Quite
generally, we expect B to be an order of magnitude
smaller than unity.

e. Discussion

It was implicitly assumed in Section 6c¢ that the
collapse region is at a boundary z=constant. Now
consider a general boundary to the fluid in the x, z
plane. If large gradients are present near this boundary,
then the above arguments show that there is a tendency
for v and 6 surfaces to be coincident and plane and to
move together at a constant speed. There must be a
tendency to form a discontinuity in a finite time unless
the boundary is ‘“flexible” enough to be sucked into
the interior at a rate nullifying the moving together
of the surfaces. The pressure at the boundary determines
its z coordinate. Since the surface pressure on the earth
is an integral quantity over the whole depth of the
atmosphere and varies only within 4259, the flexibility
of the earth’s surface when viewed in our coordinates
must be insufficient to halt the collapse process. Thus,
We may expect a pressure trough at a surface front but
not of sufficient magnitude to stop the tendency to form
discontinuities there. However, as may be seen from the
solutions in H, the tropopause when considered as a
boundary for the troposphere does have this flexibility.
It descends at such a rapid rate that there is no ten-
dency to form discontinuities there. This is shown
schematically in Fig. 16. In descending, it takes the
form of an upper air front.

It is clear that the model of a strong frontal region
introduced in this section depends on gradients being
large enough that the potential vorticity, g= f86/9z,,
may be neglected compared with the term {d6/9z. This
1s never true in the stratospheric region of the solutions
of the two-region model, and we do not expect our
model to be applicable there. The decoupling of v planes
and their motion with constant speed is dependent on
the ability of particles to move up v, 8 planes without
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F16. 16. Schematic description of the “non-collapse’” process
under the tropopause: A, large gradients form; B, collapse is
prevented by the subsidence of the tropopause.

resistance from buoyancy forces. The similarity of the
solution of our zero potential vorticity model to the
far more realistic models introduced later is a clear
indication that it does, indeed, include the essential
mechanisms relevant in the collapse tendency of sur-
face fronts.

f. The breakdown of our models

Although the original frontal model was a surface
of discontinuity, discontinuities do not form in the
atmosphere. We have made an assumption of cross-
front geostrophic balance in all our work. It is certainly
valid when the motion is quasi-geostrophic and the
integrations of Williams (1967) suggest that it is valid
in his model until the vorticity becomes large. We now
investigate the approximation in our frontal coliapse
model.

Taking the boundary as z=0 and making the Bous-
sinesq approximation, the cross-front streamfunction is

Y¥*=3VF(v/V)=AzV+BzV. (6.24)

This gives
u=AV+Bv+ Bzdv/ 9z, (6.25)
w=— Bzdv/dx. (6.26)

The motion consists of motion of » planes (4V+Bp,
0, 0) and motion in v planes (Bzdv/dz, v, —Bzdv/dx).
From Egs. (6.25) and (6.26), the balance approxi-

mation is consistent if and only if
J710v/dxL B2 (6.27)

Recalling the order of magnitude of B, we see that this
is a very weak condition, typically demanding {<<100f.
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The real breakdown of our models is that when gra-
dients become large, we must have [Eq. (2.31)]
Ri=f/¢. Before {=10f, Ri=0.1, Kelvin-Helmholtz
instability must be expected, and neglected mixing
effects must be important.

The efiect of mixing on our models is unclear. It will
tend to stop gradients becoming larger at the surface
front. Away from the surface, however, » planes may
continue to move together. In this way a front with
large gradients over a more substantial part of the
troposphere could be formed.

7. Conclusion

In this paper we distinguish between large-scale
geostrophic processes which intensify horizontal tem-
perature gradients, and smaller scale ageostrophic
motions embedded in the baroclinic flow which lead
to the rapid formation of a near discontinuity. Two
such geostrophic mechanisms are isolated: the classical
horizontal deformation field, and the growing baro-
clinic wave investigated by Williams. In each case, when
the relative vorticity predicted by the quasi-geostrophic
theory approaches the value of the Coriolis parameter,
small-scale ageostrophic circulations which were
hitherto negligible become dominant and a near dis-
continuity forms abruptly on a rigid boundary such as
the earth’s surface. Imposed in these models is uni-
formity of conditions along the incipient front. A scale
analysis suggests that cross-front geostrophic balance
is a good first approximation throughout this process
and the consistency of this assumption is verified a
posteriori. The breakdown of the analysis in the final
stages of this collapse to a near discontinuity occurs
first because the Richardson number falls to such low
values that small-scale instability and a breakdown to
clear air turbulence are to be expected. If this insta-
bility did not occur, the geostrophic balance would fail
locally at a later stage.

This study confirms that the potential for forming
sharp fronts is implicit in the inviscid, adiabatic primi-
tive equations of motion alone. This conclusion had
previously been suggested by the numerical integra-
tions of Edelmann and Williams. An examination of the
dominant terms in the equations of motion during the
final stages of the collapse process reveals that, locally,
surfaces of constant potential temperature and con-
stant long-front velocity are plane and coincident, and
these planes converge at a constant rate, moving with-
out change of slope. This process which implies the for-
mation of a discontinuity in a finite time is quite general
and proceeds inexorably once the relative vorticity has
become large. From our work it may be inferred that
sharp surface fronts will form whenever quasi-geo-
strophic theory predicts a band of relative vorticity
at the earth’s surface of magnitude comparable to the
Coriolis parameter.
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A sequence of models of increasing complexity yield
realistic cross sections of surface fronts. However, the
simplest model in which the potential vorticity vanishes
shows qualitatively all the significant features to a
remarkable degree. The effects of the Boussinesq ap-
proximation and imposing a “rigid” lid are examined
and found to be small. The extent to which these
models reproduce the observed features of fronts in the
real atmosphere suggests that latent heat release and
surface friction are secondary to the process of front
formation, although they certainly modify substanti-
ally the details. Rather crude estimates of these
effects in the models support this idea. Latent heat
release enhances frontogenesis whereas surface friction
is frontolytic. The inviscid, adiabatic dynamics makes
no distinction between cold and warm fronts and, in
this respect, the picture presented is incomplete. In
particular, were extensive cumulonimbus convection to
set in, our models might have little relevance.

A deformation field intensifying horizontal tempera-
ture gradients in a system with a large potential vortic-
ity contrast between the troposphere and the strato-
sphere induces upper tropospheric fronts. The
dynamical balance is very similar to that described
above for surface fronts except that the tropopause
does not behave quite like a rigid boundary. Our
models exhibit descent of a tongue of stratospheric air
through a substantial distance. These solutions closely
resemble the cross sections published by Reed and
Sanders in their study from the synoptic data of an
intense upper air front. However, the Richardson num-
ber at the base of the tongue falls below unity after a
descent of 118 mb, which is not as far as the ultimate
penetration of stratospheric air shown in many studies.
We infer that clear air turbulence is likely to be of
importance in the later stages of the process. It should
be noted that the development in the upper troposphere
appears to be rather insensitive to the details of the
surface flow pattern.

The vertical coordinate used in this study is a certain
function of the pressure rather than the pressure itself.
This has the advantage of simplifying the thermal wind
equation and exhibiting clearly the relation between the
Boussinesq approximation and the fully compressible
equations.

A transformation of coordinates proves fruitful in
which the cross-front position of a particle is described
by the position it would have had if it had always
moved with the local geostrophic velocity. The signifi-
cance of this geostrophic coordinate is suggested by
Kelvin’s circulation theorem. The constancy of po-
tential temperature and potential vorticity following
a material particle taken in conjunction with the ther-
mal wind relation then provide a description of the
instantaneous geopotential field which satisfied an
elliptic partial differential equation (3.34). By a des-
cription in terms of conserved quantities we thus pro-
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duce a great mathematical and conceptual simplifica-
tion. The system proceeds through a sequence of states,
each of which can be considered separately from the
intermediate history and can be linked directly to the
initial conditions. This illustrates the limitations as
well as the advantages of the method. After the solution
for the geopotential, the cross-front circulation may be
found in a diagnostic manner.

The finite-amplitude baroclinic instability model,
which Williams investigated numerically, is found to
be capable of exact analytic solution, subject to cross-
front geostrophic balance. This model assumes the
Boussinesq approximation, uniform Brunt-Viisild fre-
quency, a uniform meridional temperature gradient,
and no lateral boundaries. Under such conditions there
is an infinite source of available potential energy which
feeds the unstable baroclinic disturbance within which
a sharp front develops. However, this frontogenesis
occurs only after the wave has grown to unreasonably
large amplitude. For this model, the balanced solution
is formally identical to that of the quasi-geostrophic
equations, but the interpretation of the horizontal in-
dependent variable is different. Thus, our theory only
predicts a distortion of the quasi-geostrophic solution,
but this distortion is vital in the description of the
frontogenesis. In particular, where the quasi-geo-
strophic theory predicts the relative vorticity is equal
to f, the balanced theory predicts that it has become
infinite. A similar correspondence also occurs in the
deformation model when the potential vorticity is uni-
form and the Boussinesq approximation is made.
However, this exact correspondence does not appear to
be general.
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APPENDIX
A General Model

a. Transformations of the equations

In this appendix we study the equations for a quite
general model which includes the horizontal deforma-
tion and horizontal shear models. We use the general
equations of motion (2.6)—(2.9) with a diabatic heating
term. The basis of the study is an approximation of
balance in the x direction and a transformation of
variables.
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Without loss of generality, we may set

u=—ax+u
v=ay-+7v’
w=1w'
= foaxy— (&®+da/dt)y?/2|(’ (A1)
— (@ —da/d)x*/2+¢’
=0'=(60/g)9¢'/ 0z

where a=«/(¢), and all primed variables are, in general,

functions of #, v, 2, {. Then the equations may be
written as

Dv'/Di—an' — fv' 43¢’ /dx=0, (A2)
Dv'/Dt+av'+ fu'+0¢'/dy=0, (A3)
d(ru’)/dx+3(rv')/dv+0 (rw’)/92=0, (A4)
D8 /Di=E (A5)

Scale analysis (as in Section 2b) and observation sug-
gest that the first two terms in (A2) may be neglected
even when there are large frontal gradients in the x
direction. This is the only approximation that we make.
We note that if we now set

¢ = faxy— (®+da/dt)y*/2+¢' =+ (a2 —da/dl)x?/2,

we obtain the equations with ‘“‘geostrophic balance in
the « direction” [Egs. (2.17)-(2.22)] except that ¢’
differs from the geopotential by a negligible correction
term.

We define

wy =—f"19¢'/dy, v,/=
Then (A2)-(A4) give
Dv,'/Di+av,+ fu., =0
I(rugy)/ dx~+0(rw’)/9z=0 '

J1a¢’/ ox,

Yoy =4 —u, .

(A6)

The latter equation implies that we may define a
pseudo streamfunction ¢ such that

ritg =/0z, 1w =—y/dx. (A7)
We now use as independent variables
X,Y,Z2,T)=[x+v,"/ (f,50)]. (A8)
Formally, we have
8/9x=(¢/f)o/9X, (A9)
and so
¢=fI1—f"9v,//9X T, (A10)
o 1dv, 9 @ 1¢ du,
DS MV S B ST
dy f dy X Y  f[aX X aY
o 1o, d o g a8 o 8
—=- —f—=————f— (Al2)

3 [ 3z X OZ [, foX 0X oZ
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Then
Ou,’ /dx=—dv,'/dy — du, /0X =—0av,//0Y,  (Al3)
fov,'/0z="(g/6,)06'/9x— fdv, /95
= (¢/0000'/0X, (A14)
fou,'/dz=— (g/8,)00' /0y — foug'/dZ
=—(g/60)08'/0V. (A15)

Hence the transformation preserves the geostrophic
relations. This may be restated : There exists a function
& such that

fu, =—0/3Y, fo,/=08/0x, (g/60)0'=0%/0Z. (A16)

It may be verified that ®=¢'+-v,'?/2.
Using (A6), we then have

DX/Di=u+f'Dv,/Di=—aX-+u,. (A17)

As before, X may be termed a geostrophic coordinate
since if a fluid particle moves with u,,’=0, its x co-
ordinate is X. Using (A7) and transforming, the equa-
tions of motion may be written as

r(O4a)v,/+ foy/3Z=0, (A18)
— flqdy/dX =E, (A19)
where
D=3/0T+ (—aX+u,)3/0X+(aV+v,)8/0Y, (A20)
rq={90'/0Z. (A21)
From (A18) we obtain the vorticity equation
rOI /OX + for/9X9Z =0, (A22)
and from (A19)
DY /9Z—(3/0Z) (qf 0W/IX)=dE/dZ. (A23)

From (A10), (A21), (A22), and (A23) it is easily found

that
1¢ oy o ¢a
(SD——S—IP———)Q———— (A24)
r foX oZ r dZ
But
1 g‘ IfX, 0’) 1 a(fx,8")
rf X, Z) r 9I(x3) .
1 du,/\08' v, 8¢
=—[(f+—~>—-—— —} (A24)
7 ox/ 9z 09z Ix
and rw=—({/f)dy/0X. Therefore, (A24) is Ertel’s

potential vorticity equation.
To investigate the vertical circulation we subtract

(g/00)0/9X of (A19) from f3/8Z of (A18) to give
A1\ g 9/ N
| - — J—— ¢— )=—0, A25
4 6Z<r 8Z>+f00 6X(q6X> ¢ (425)
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where
0=(g/00)E/IX
+219(v,, —aX+u,)/9(X,Z)
=(g/00)0E/0X
+2fd(ay+v,, —ax+tu,)/(X,2)

(A26)

This is equivalent to the circulation equation of Eliassen
(1962). The equation predicts anticlockwise circula-
tion (viewed form the negative y axis) about a stream-
line closed around an area over which /S QdXdZ is
positive.

We now consider the case of zero diabatic heating.
Using (A19) and (A24), it is seen that conservation of
potential temperature and potential vorticity give

(8¢/0Z) ' Dg=(06'/0Z)"'DE'. (A27)
From (A21), using (A16),
12020/ 0X2+[ 00/ (grq) 10°®/022=1.  (A28)
On horizontal boundaries we must have
06’ =0. (A29)

In these equations,
D=08/3T4+ (—aX+u,)3/0X+ (@¥+v,)0/dV (A30)
and
fu, =—08/3Y, fv,=0d/0X,
(g/00)0' =02/37Z. (A31)

The transformation to physical space is (x,9,2,)
=(X—f20%/0X,V,Z,T). Thus, the frontogenetic prob-
lem for ® and hence v,” and 6’ has split off from the
problem for the circulation.

b. The deformation model

We look for a solution with o non-zero and ® inde-
pendent of V. Then (A27) may be integrated to give

g(X,0',T) =q{X eXpI: /0 ’ a(t)dt}e',o}. (A32)

The boundary condition (A29) also integrates to give

T

6 (X ,bdry,T) =0"X exp[ / a(t)dt:l,bdry,O}. (A33)

0

Thus, with (A28) and (A31), we have the equations
derived in Section 3.
Tn this model, the circulation equation is (A25) with

O=2afdv,/0Z=2a(g/00)30'/0X.  (A34)

Thus, we must have anticlockwise flow around closed
streamlines inside which /° /" (86'/0X)dXdZ is positive.
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In particular, we expect a tendency for a thermo-
dynamically direct circulation to occur, i.e., warm air
rising, cold air subsiding.

¢. The Boussinesq approximation and 986/dz uniform
nilially

Suppose that in an initial state of zero x and z
gradients in v, 0/9z is uniform. If a particle is initially
at zg, then

80/ dz0= [~ (20)g,

and conservation of ¢ implies that ¢*=r(z)g remains
uniform. Supposing that particles do not move a ver-
tical distance comparable with the scale height, we
make the Boussinesq type approximation, #(20)/7(2)
=1, and set N2=(g/8,)(¢*/f). Then (A28) becomes

[20%®/dX +N"20°®/92%=1. (A35)
On horizontal boundaries,
[9/0T— (a X+ f109/3Y)0/0X
+(@V+f102/0X)d/dY Jo®/aZ=0. (A36)

The mathematical form of this system is the same as
would be obtained on quasi-geostrophic theory provided
| 0u/dy| << f. This theory predicts only a distortion of
the quasi-geostrophic solution for » and 6.

One example of this model is the one-layer deforma-
tion model in Section 3. There, a70, ®=%(X,Z,T),
and there are horizontal boundaries at z=0 and H.
Horizontal gradients in ® are zero everywhere initially
and at infinity for all time.

Another example is the shear model of Section 4.
Here a=0, &=—sVZ+9'(X,Z,T), and flow is be-
tween horizontal boundaries at Z=0, H. Under the
Boussinesq approximation, ¢*=y/r is the usual stream-
function for the x, z circulation. Using the same
approximation in the circulation equation we have

F2ON* 922 NP /0X 2= — 25290,/ /0X.  (A3T)

Thus, we expect anticlockwise circulation where the
vorticity is positive.
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