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ABSTRACT4

Annular patterns with a high degree of zonal symmetry play a prominent role in the5

natural variability of the atmospheric circulation and its response to external forcing. But6

despite their apparent importance for understanding climate variability, the processes that7

give rise to their marked zonally symmetric components remain largely unclear.8

Here the authors use simple stochastic models in conjunction with atmospheric model9

and observational analyses to explore the conditions under which annular patterns arise10

from Empirical Orthogonal Function (EOF) analysis of the flow. The results indicate that11

annular patterns arise not only from zonally coherent fluctuations in the circulation, i.e.,12

“dynamical annularity”, but also from zonally symmetric statistics of the circulation in the13

absence of zonally coherent fluctuations, i.e., “statistical annularity”. It is argued that the14

distinction between dynamical and statistical annular patterns derived from EOF analysis15

can be inferred from the associated variance spectrum: larger differences in the variance16

explained by an annular EOF and successive EOFs generally indicate underlying dynamical17

annularity.18

The authors provide a simple recipe for assessing the conditions that give rise to annular19

EOFs of the circulation. When applied to numerical models, the recipe indicates dynam-20

ical annularity in parameter regimes with strong feedbacks between the eddies and mean21

flow. When applied to observations, the recipe indicates that annular EOFs generally derive22

from statistical annularity of the flow in the middle latitude troposphere, but from dynam-23

ical annularity in both the stratosphere and the mid-high latitude Southern Hemisphere24

troposphere.25
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1. Introduction26

“Annular” patterns of variability are structures dominated by their zonally symmet-27

ric components. They emerge as the leading empirical orthogonal functions (EOFs) of the28

Northern Hemisphere sea-level pressure field (Lorenz 1951; Kutzbach 1970; Wallace and Gut-29

zler 1981; Trenberth and Paolino 1981; Thompson and Wallace 1998, 2000), the Southern30

Hemisphere zonal-wind and geopotential height fields (Kidson 1988; Karoly 1990; Hartmann31

and Lo 1998; Thompson and Wallace 2000; Lorenz and Hartmann 2001), the Southern Hemi-32

sphere eddy-kinetic field (Thompson and Woodworth 2014), the extratropical circulation in33

a hierarchy of numerical simulations of the atmospheric circulation (e.g., Robinson 1991;34

Yu and Hartmann 1993; Lee and Feldstein 1996; Shindell et al. 1999; Gerber and Vallis35

2007), and aquaplanet simulations of the ocean circulation (Marshall et al. 2007). They are36

seemingly ubiquitous features in a range of geophysical flows.37

Despite their ubiquity in the climate system, one key aspect of annular structures remains38

open to debate: What gives rise to their marked zonally symmetric components? Does the39

zonal symmetry of annular structures reflect coherent variations in climate across a range40

of longitudes? Or does it largely reflect the constraints of EOF analysis (e.g., Dommenget41

and Latif 2002; Gerber and Vallis 2005)? Consider a long-standing example: the so-called42

northern annular mode (NAM) emerges as the leading EOF of the NH sea-level pressure43

field (e.g., Thompson and Wallace 2000). It exhibits a high degree of zonal symmetry and44

its structure implies in-phase variability in climate between the North Atlantic and North45

Pacific sectors of the hemisphere. But as discussed extensively in earlier papers (e.g., Deser46

2000; Ambaum et al. 2001), the two midlatitude centers of action of the NAM do not exhibit47

robust correlations on month-to-month timescales. Does the annularity of the NAM arise48

from dynamic connections between widely separated longitudes that are simply masked by49

other forms of variability (e.g., Wallace and Thompson 2002)? Or does the annularity arise50

from the constraints of the EOF analysis (e.g., Dommenget and Latif 2002; Gerber and Vallis51

2005; Monahan et al. 2009)?52
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The purpose of this paper is to revisit the conditions that give rise to annular structures53

in the leading patterns of variability of the circulation. We will demonstrate that annular54

patterns can arise from two distinct characteristics of the flow: (i) “dynamical annularity”,55

where variability in the circulation about its mean state exhibits in-phase correlations at all56

longitudes, and (ii) “statistical annularity”, where the statistics of the flow (e.g., the variance,57

autocorrelation and spatial decorrelation scale) are similar at all longitudes. Both conditions58

can give rise to annular-like EOFs that make important contributions to the variability in59

the circulation. But only the former corresponds to coherent annular motions in the flow.60

Section 2 explores the impacts of “dynamical annularity” vs. “statistical annularity” on61

EOF analysis of output from two simple stochastic models. Section 3 provides theoretical62

context for interpreting the results of the simple models. Section 4 applies the insights63

gained from the simple models to the circulation of an idealized general circulation model64

and observations. Conclusions are provided in Section 5.65

2. A Tale of Two Annular Modes66

In the following, we define dynamical annularity as the case where there are positive67

covariances between all longitudes around the globe, i.e.,68

covX(λ1, λ2) =

∑N
n=1X(λ1, tn)X(λ2, tn)

N
> 0 (1)

for all longitudes λ1 and λ2. With this notation, we take X to be a generic variable of interest69

(e.g., geopotential height or eddy kinetic energy), given as an anomaly from its climatological70

mean. If (1) is satisfied, there are coherent underlying motions which cause the circulation71

to vary in concert at all longitudes, and the integrated covariance around the latitude circle72

provides a quantitative measure of the importance of the dynamical annularity.73

We define statistical annularity as the case where the statistics of the flow do not vary74
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as a function of longitude, i.e.,75

covX(λ1, λ2) = f(∆λ). (2)

where ∆λ = |λ1 − λ2| is the absolute distance between the two points. This definition76

implies that the variance of the flow is uniform, i.e. f(0), and the covariance between any77

two longitudes depends only on the distance between them, but not where the two points lie78

relative to the origin (prime meridian). The criteria for dynamical and statistical annularity79

are not mutually exclusive, and a flow could satisfy both at once. One would only expect80

(2) to hold approximately in the presence of realistic boundary conditions, but in Section 481

we show the statistics of the observed atmosphere are remarkably annular, particularly in82

the Southern Hemisphere.83

Here we illustrate how statistical annularity can give rise to an annular EOF, even in84

the case where there is no underlying dynamical annularity in the circulation (that is, the85

motions are explicitly local). We consider two 1-dimensional stochastic models, X1(λ, j)86

and X2(λ, j). The details of the models are given in the Appendix, but all the necessary87

statistics of the models are summarized in Fig. 1. In short, both models are random processes88

in longitude, are periodic over 360◦, and have zonally uniform statistics (2). The distinction89

between the models lies in their covariance structures (Fig. 1c). For model X1, there is90

explicitly no global correlation: variability at a given location is only correlated with other91

longitudes over a range of about ±90◦. For model X2 there is a global correlation of 0.1.92

Note that since both models have zonally uniform statistics, the covariance structures93

shown in Fig. 1c are independent of the base longitude used in the calculations. Moreover,94

they contain all the information needed to characterize the EOFs of the two models; recall95

that EOFs correspond to the eigenvectors of the covariance matrix cij = covX(λi, λj). When96

the statistics are uniform, cij is simply a function of the distance between λi and λj, as97

illustrated in Fig. 1c.98

The top three EOFs for the two models are shown in Fig. 2a and b. By construction (see99

discussion in the next section), both models exhibit exactly the same EOFs. The first EOF100
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is perfectly annular, as the analytic formulation of the model allows us to take the limit of101

infinite sampling. As seen in Fig. 2c, the first EOF also explains exactly the same fraction102

of the variance in each model: 20%. The second and third EOFs characterize wavenumber 1103

anomalies: all higher order EOFs come in sinusoidal pairs, increasing in wavenumber. The104

phase is arbitrary, as the two wavenumber 1 modes explain the same fraction of variance. For105

finite sampling, one would see slight mixing between the wavenumbers, but the top modes106

are well established, even for a reasonable number of samples.107

The key result in Fig. 2 is that both models exhibit a robust “annular mode” as their108

leading EOF, and that both annular modes explain the same total fraction of the variance.109

Only one of the apparent “annular modes”, however, reflects dynamical annularity in the110

flow.111

From the perspective of EOFs, one can only distinguish the two models by examining112

their EOF spectra, i.e., the relative variance associated with all modes (Fig. 2c). By design,113

the annular modes (the leading EOFs) in both models explain the same fraction of the total114

variance (20%). The key differences between the EOF spectra from the two models lie in the115

relative variance explained by their higher order EOFs. In the case of model 1, the first EOF116

explains only slightly more variance than the second or third EOFs. In the case of model 2,117

there is a large gap between the first and second EOFs. It is the relative variance explained118

that provides insight into the relative importance of statistical vs. dynamical annularity in119

giving rise to an annular-like leading EOF.120

The stochastic models considered in Figs. 1 and 2 highlight two key aspects of annular121

modes. First the models make clear that identical annular-like patterns can arise from two122

very different configurations of the circulation: (i) cases where the statistics of the flow are123

zonally uniform but the correlations are explicitly local (model 1) and (ii) cases with in-phase124

variability between remote longitudes (model 2). Second, the models make clear that the125

spectra of variance yields insight into the role of dynamical annularity in driving the leading126

EOF.127
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3. Theoretical Insight128

For systems with statistical annularity, as in models X1 and X2, the EOFs can be entirely129

characterized based on the covariance structure f(∆λ). Batchelor (1953) solved the EOF130

problem for cases with zonally uniform statistics in his analysis of homogeneous, isotropic131

turbulence in a triply periodic domain. Our discussion is the 1-D limit of this more compre-132

hensive analysis. If the statistics are zonally uniform (i.e., homogeneous), then EOF analysis133

will yield a pure Fourier decomposition of the flow. All EOFs will come in degenerate pairs134

expressing the same fraction of variance, except for the single wavenumber 0 (annular) mode.135

The ordering of the Fourier coefficients depends on the Fourier decomposition of f . The136

covariance function f(∆λ) is defined for 0 ≤ ∆λ ≤ π, where we express longitude in radians.137

The variance associated with a mode of wavenumber k is then given by138

var(k) =
1

π

∫ π

0

f(λ) cos(kλ) dλ (3)

For all k other than 0, there will be two modes, each characterizing this amount of variance.139

Setting k = 0 in (3) shows that the integral of the covariance function determines the140

variance associated with the annular mode. If we normalize the covariance function by f(0)141

to obtain the correlation, the integral in turn provides the relative variance. For systems with142

zonally uniform statistics, there is thus a nice interpretation of the strength of the annular143

mode: the fraction of the variance expressed by the annular mode is simply the “average”144

of the correlation function between a given base point and all other points. This will hold145

even in cases where the annular mode is not the first EOF.146

Returning to the simple stochastic models in Section 2, we can now see how the two147

models were designed to have the same annular mode. Given that the variance at each grid148

point was set to 1 by construction, the covariance functions are equivalent to the correlation149

functions. The average correlation in Fig. 1c is 0.2 in both cases, so that the “annular mode”150

in each model explains 20% of the total variance. In model X1, the average correlation of151

0.2 derives solely from the strong positive correlation over half a hemisphere. That is, the152
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annular mode is the most important EOF, but it only reflects the annularity of the statistics.153

In model X2, half of the variance associated with the annular mode can be attributed to154

dynamical annularity, as given by the global baseline correlation of 0.1. The other half is155

attributable to the positive correlation on local scales, reflecting the spatial redness of the156

circulation.157

Model X2 shows that even in a system with dynamical annularity, the “strength” of the158

annular model is enhanced by the spatial redness of the flow, which exists independent of159

underlying dynamical annularity. The weaker spatial redness of the flow in model X2 relative160

to X1 is visibly apparent in the structure of its samples (compare Fig. 1a and b), while the161

presence of coherent dynamical annularity leads to the large gap between the fraction of162

variance associated with wavenumber 0 and other waves in the EOF spectrum in Fig. 1c.163

It follows that an annular EOF is more likely to reflect dynamical annularity when there is164

large separation between the variance explained by it and higher order modes. In this case,165

the average correlation over all longitudes arises from far field correlation and not simply166

the local positive correlations associated with the spatial redness of the circulation.167

The models in Section 2 are two examples from a family of stochastic systems with spatial168

correlation structure169

f(λ) = (1− β)e−(λ/α)
2

+ β, (4)

illustrated graphically in Fig. 3a. The parameter α is the spatial decorrelation scale (defined170

as the Gaussian width of the correlations in units of radians) and parameter β is the baseline171

annular correlation of the model. For systems with this spatial decorrelation structure, the172

leading EOF is always annular and the second and third EOFs always have wave 1 structure,173

even if there is no annular correlation (i.e., β = 0). This follows from the fact that a Fourier174

transform of a Gaussian is a Gaussian, such that power is always maximum at zero and175

decays with higher wavenumbers.176

Fig. 3b summarize the variance explained by the leading EOFs of the system considered177

in Fig. 3a as a function of the spatial decorrelation scale (ordinate) and the amplitude of178
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the baseline annular correlation (abscissa). The contours indicate the variance explained179

by the leading (annular) EOF; the shading indicates the ratio of the variance between the180

leading and second (wavenumber one) EOFs. Dark blue shading indicates regions where181

the EOFs are degenerate (explain the same amount of variance). White shading indicates182

regions where the first EOF explains about twice the variance of the second EOF.183

At the origin of the plot (α→ 0 and β = 0), the system approaches the white noise limit,184

and all EOFs become degenerate. Traveling right along the x-axis from the origin (i.e.,185

keeping the spatial decorrelation scale α infinitesimally small and increasing the baseline186

annular correlation with β), we find that the variance associated with the wavenumber 0187

annular mode is simply given by the value of β. Here the spatial decorrelation scale collapses188

to a single longitude, so all higher modes are degenerate, and the strength of the annular189

mode derives entirely from dynamical annularity.190

If one instead travels upward from the origin, allowing α to increase but keeping β = 0, the191

strength of the annular mode increases as well, despite their being no dynamical annularity.192

These are systems where the annular mode only reflects the annularity of the statistics, not193

annularity of the motions. As α gets increasingly large, positive correlations will develop194

at all longitudes by virtue of the fact that the spatial decorrelation scale is longer than a195

latitude circle. At this point, the spatial redness of the atmospheric motions gives rise to a196

baseline annular correlation due to the relatively short length of the latitude circle. When197

the spatial redness of the flow exceeds half of a latitude circle (0.5 on the ordinate axis),198

then the variance of the leading (annular) EOF explains ∼ twice the variance of the second199

(wavenumber one) EOF.200

Model 1 sits in the blue shaded region along the ordinate (see blue circle in Fig. 3b), with201

a spatial decorrelation scale of approximately 0.23 radians. Model 2 (the red square) was202

designed to have baseline annular correlation of 0.1 (i.e., β = 0.1), but with an annular mode203

that express the same fraction of variance, requiring a local correlation α ≈ 0.13 radians.204

The simple models considered in this and the previous section provide insight into the205
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conditions that give rise to annular EOFs, and to the importance of the variance explained206

by the leading EOFs in distinguishing between statistical and dynamical annularity. In the207

following sections we apply these insights to output from a general circulation model and208

observations. In the case of complex geophysical flows with out-of-phase correlations between209

remote longitudes (i.e., teleconnections), one must consider not only the variance explained210

by the leading EOFs, but also the spatial correlation structure f(∆λ).211

4. The annularity of the circulation in models and re-212

analysis213

How does the balance between dynamical vs. statistical annularity play out in general214

circulation models and observations? In this section, we apply the insights gained from the215

simple models to longitudinal variations of the atmospheric circulation at a single latitude,216

e.g., variations in sea level pressure or geopotential height at 50◦S. We focus on a single217

latitude to provide a direct analogue to the simple one-dimensional stochastic models in218

previous sections, albeit a single latitude serves as a stiff test for annular behavior. The219

northern and southern annular mode patterns are based on EOF analysis of two-dimensional220

SLP or geopotential height fields, where spherical geometry naturally connects the circulation221

at all longitudes over the pole.222

a. Annular variability in a dry dynamical core223

We first consider a moisture free, 3-dimensional primitive equation model on the sphere,224

often referred to as a dry dynamical core. The model is run with a flat, uniform lower225

boundary, so that all the forcings are independent of longitude. Hence the circulation is226

statistically annular, making it an ideal starting point to connect with the theory outlined227

in the previous section.228
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The model is a spectral primitive equation model developed by the Geophysical Fluid Dy-229

namics Laboratory (GFDL), run with triangular truncation 42 (T42) spectral resolution and230

20 evenly spaced σ-levels in the vertical. It is forced with Held and Suarez (1994) “physics,”231

a simple recipe for generating a realistic global circulation with minimal parameterization.232

Briefly, all diabatic processes are replaced by Newtonian relaxation of the temperature to-233

ward an analytic profile approximating an atmosphere in radiative-convective equilibrium,234

and interaction with the surface is approximated by Rayleigh friction in the lower atmo-235

sphere. The equilibrium temperature profile is independent of longitude and time, so there236

is no annual cycle.237

A key parameter setting the structure of the equilibrium temperature profile is the tem-238

perature difference between the equator and pole, denoted (∆T )y by Held and Suarez (1994).239

As explored in a number of studies (e.g., Gerber and Vallis 2007; Simpson et al. 2010;240

Garfinkel et al. 2013), the strength of coupling between the zonal mean jet and baroclinic241

eddies is sensitive to the meridional structure of the equilibrium temperature profile. A242

weaker temperature gradient leads to stronger zonal coherence of the circulation and en-243

hanced persistence of the annular mode. We use this sensitivity to contrast integrations244

with varying degrees of dynamical annularity.245

The temperature difference (∆T )y strongly influences the climatology of the model, as246

illustrated by the near surface winds (blue curves) in Fig. 4, and can be compared with247

similar results based on ERA-Interim reanalysis in Fig. 6. The results are based on 10,000248

day integrations, exclusive of a 500 day spin up. The default setting for (∆T )y is 60◦ C, and249

drives a fairly realistic equinoctial climatology with jets at 46◦ latitude in both hemispheres.250

With a weaker temperature gradient, (∆T )y = 40◦ C, the jets weaken and shifts equatorward251

to approximately 38◦.252

The annular modes – defined as the first EOFs of daily zonal mean SLP – are illustrated253

by the red curves in in Fig. 4 (the output is normalized by the square root cosine of latitude254

before computing the EOFs, following Gerber et al. 2008; Baldwin and Thompson 2009).255
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By definition, the positive phase of the annular mode is defined as low SLP over the polar256

region and thus a poleward shift of the model jet. We use the leading EOFs of SLP to257

define the annular modes since SLP captures the barotropic component of the flow and is258

frequently used in previous studies of annular variability (e.g., Thompson and Wallace 2000).259

In practice, analyses of the near surface zonal wind field (not shown) yield the same patterns260

of variability: the first principal component time series associated with the leadings EOFs261

of zonal mean SLP and 850 hPa zonal wind are strongly correlated, R2 = 0.92 and 0.88 for262

(∆T )y = 40 and 60◦ C, respectively. The centers of action of the annular modes in sea level263

pressure vary between the two simulations, and are indicated by vertical black lines. In the264

following, we focus our analyses on latitudes corresponding to the centers of action of the265

annular modes, contrasting it with similar analysis at their nodes.266

The top row in Fig. 5 compares the spatial decorrelation structure of sea level pressure267

anomalies as a function of longitude at these three key latitudes. Results for the integration268

with weak and standard HS temperature gradients are indicated by blue and red colors,269

respectively. The bottom row shows the variances explained by the leading EOFs of SLP270

calculated along the same latitude bands (i.e., the EOFs are calculated as a function of271

longitude and time along the indicated latitude bands). We applied a 10 day low pass Lanczos272

filter (Duchon 1979) to the data before our analysis to reduce the influence of synoptic273

scale variability, but the results are qualitatively similar when based on daily or monthly274

mean data. To further reduce the sampling uncertainty, the autocorrelation functions were275

averaged over all longitudes and the EOF spectra were computed directly with equation276

(3). This has the effect of imposing zonally symmetric statistics, which would be the case277

with infinite sampling, and the results are virtually identical if we use the full fields for the278

calculations.279

We focus first on the equatorward center of action of the annular mode (left column).280

Variations in sea level pressure in this region are tightly linked with shifts in the midlatitude281

jet, as evidenced by the high correlation between zonal mean SLP at this single latitude and282
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the first principal component of zonal mean zonal wind: R2 = 0.95 and 0.94 for (∆T )y = 40283

and 60◦ C, respectively. The spatial decorrelation scale of SLP anomalies is approximately284

60◦ longitude in both integrations (Fig. 5a). The east-west structure of the correlations285

reflects the scale of synoptic disturbances and wave trains emanating in both directions.286

The similarities between the spatial decorrelation scales reflects the fact that the deformation287

radius is similar in both runs. The most striking difference between the two runs lies in their288

baseline annular correlations. In the case of (∆T )y = 40 the east-west structure of the289

correlations rides on top of a zonally uniform correlation of approximately 0.3. In the case290

of the model with (∆T )y = 60, there is a weaker baseline correlation of approximately 0.1.291

The difference in the underlying annularity of the flow explains the differences in the292

variance spectra shown in Fig. 5d. In both model configurations, the leading EOFs are293

annular; higher order modes generally increase monotonically in wavenumber with the ex-294

ception of waves 5 and 6 , which explain larger fractions of the variance that waves 3 and 4,295

consistent with the synoptic structure of the correlation functions. The distinction between296

the EOFs between the two model configurations lies in their variance spectra. In the case297

of (∆T )y = 40, the annular mode explains more than four times the variance of the second298

EOF. In the case of (∆T )y = 60, the annular mode explains about two times the variance299

of the second EOF.300

The differences in the variance spectra for the two model configurations are consistent301

with the theoretical arguments outlined in the previous section. Both model configurations302

exhibit dynamical annularity, as evidenced by the fact the spatial correlations are > 0 at all303

longitudes. However, the dynamical annularity is much more pronounced for the (∆T )y = 40304

configuration, consistent with the larger ratio in variance explained between the first and305

second EOFs. The (∆T )y = 60 configuration is reminiscent of the simple stochastic model306

X2, where the leading EOF explains approximately 20% of the variance in the flow: half due307

to the dynamical annularity; half due to the spatial redness of the flow.308

The annularity of flow is notably different along the node of the annular mode, which is309
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strongly linked with variations in the strength of the jet stream. Zonal mean sea level pressure310

here is highly correlated with the second EOF of zonal mean zonal wind, which characterizes311

fluctuations in the strength and width of the jet (e.g., Vallis et al. 2004): R2 = 0.88 and312

0.83 for (∆T )y = 40 and 60◦ C, respectively. The leading EOFs of SLP along the nodes313

of the annular modes are again annular, as is the case at the equatorward centers of action314

(not shown). But along this latitude, there is no apparent baseline annular correlation in315

either model configuration (Fig. 5b). Accordingly, the EOF variance spectra exhibit little316

distinction between the variance explained by the first and second EOFs. The enhanced317

dynamical annularity in the (∆T )y = 40 case is thus associated chiefly with vacillations318

of the jet stream’s position, not fluctuations in its strength, which would be reflected by319

dynamical annularity in SLP at this latitude.320

At the minimum of the annular mode pattern on the poleward flank of the jet stream,321

Fig. 5c and f, the relatively small size of the latitude circle leads to a strong baseline annular322

correlation and thus clear dominance of the annular mode in the variance spectra. The323

spherical effect is more pronounced for the (∆T )y = 60 case since the minimum in the324

EOF pattern is located very close to the pole (Fig. 4). As the length of the latitude circle325

approaches the scale of the deformation radius, a single synoptic scale disturbance connects326

all longitudes, enforcing zonally uniform statistics. While the result appears trivial in this327

light, this geometric effect may play a significant role in helping the annular mode rise above328

other modes in two-dimensional EOF analysis. The flow is naturally zonally coherent near329

the pole, and the tendency for anticorrelation between pressures at polar and middle latitudes330

may play a role in generating annular-scale motions at lower latitudes (e.g., Ambaum et al.331

2001; Gerber and Vallis 2005).332

It’s important to note that the circulation is more realistic with the default Held and333

Suarez (1994) setting of (∆T )y = 60, where the flow exhibits relatively modest zonal coher-334

ence at the midlatitude center of action (Fig. 5a). The stronger dynamical annularity in the335

(∆T )y = 40 configuration is due to the weak baroclinicity of the jet and the zonally uniform336
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boundary conditions. When zonal asymmetries are introduced to the model, the uniform337

motions are much reduced, even with weak temperature forcing (Gerber and Vallis 2007).338

Zonal asymmetries on Earth will thus likely both reduce the strength of globally coherent339

motions in the sense of equation (1), and break the assumption of uniform statistics in the340

sense of equation (2). We find, however, that both dynamical and statistical annularity are341

highly relevant to flow in reanalysis, at least in the Southern Hemisphere.342

b. Annular variability in reanalysis343

The data used in this section are derived from the European Center for Medium Range344

Weather Forecasting (ECMWF) Interim Reanalysis (ERA-I; Dee and coauthors 2011) over345

the period 1979 to 2013. All results are based on anomalies, where the annual cycle is defined346

as the long-term mean over the entire 35 year period. As done for the dynamical core, a 10347

day low pass filter is applied to all data before computing correlations and performing the348

EOF analyses. Note that qualitatively similar results are derived from daily and monthly-349

mean data.350

Fig. 6 shows the meridional structures of (i) the climatological zonal mean zonal wind at351

850 hPa and (ii) the southern and northern annular modes. The annular mode time series352

are defined as the standardized leading PCs of zonal mean 850 hPa geopotential height,353

Z850, between 20-90 degrees latitude. Since the time series are standardized, the regression354

patterns shown in Fig. 6 reveal the characteristic amplitude of a one standard deviation355

anomaly in the annular modes. While the long-term mean circulation differs considerably356

between the two hemispheres, the annular modes are remarkably similar, although the NAM357

is slightly weaker than the SAM, consistent with the weaker climatological jet. Gerber and358

Vallis (2005) suggest that the meridional structure of the annular modes tend to be fairly359

generic, constrained largely by the geometry of the sphere and the conservation of mass and360

momentum.361

The longitudinal correlation structures derived from the observations are not constrained362
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to be uniform with longitude, as is the case for the dry dynamical core. Nevertheless, they are363

very similar from one base meridian to the next, particularly in the Southern Hemisphere.364

For example, Fig. 7a shows four single point covariance maps based on Z850 at 50◦S: the365

covariance between Z850 at base points 0◦, 90◦E, 180◦, and 90◦W with all other longitudes.366

We have shifted the four regression plots so that the base points overlie each other at the367

center of the plot. Aside from slight variations in amplitude, there is remarkable uniformity368

of the east-west correlation structure in the midlatitudes Southern Hemisphere circulation:369

nearly all of the curves collapse upon each other. The correlation structures are positively370

correlated over a range of approximately ±60 degrees longitude and exhibit alternating371

negative and positive lobes beyond that point. There is little evidence of global correlation,372

as is the case with the default Held and Suarez (1994) model.373

Fig. 7b extends the analysis in the top panel to include averages over all base meridians for374

geopotential data at all latitudes. The figure is constructed as follows: (i) at a given latitude,375

we calculate the zonal covariance structure for all possible base meridians, as opposed to just376

four in Fig. 7a, (ii) we then average the resulting covariance structures after shifting them377

to a common base meridian, (iii) we normalize the resulting “average covariance structure”378

by the variance to convert to correlation coefficients, and lastly (iv) we repeat the analysis379

for all latitudes. The resulting “average correlation structures” for 850 hPa geopotential380

height are indicated by the shading in Fig. 7b. The black curve denotes the zero contour;381

the gray curves denote a distance of ±2500 km from the base longitude to provide a sense382

of the sphericity of the Earth. Normalizing the covariance functions by the variance allows383

us to compare the longitudinal structures in the tropics and the midlatitudes on the same384

figure; otherwise the increase in the variance of Z850 with latitude (illustrated in Fig. 7c)385

yields much larger amplitudes in the extratropics.386

At middle latitudes, positive correlations extend over a distance of approximately 2500387

km outward from the base longitude. Towards the polar regions, the autocorrelations extend388

over much of the latitude circle due to the increasingly smaller size of the zonal ring. The389
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austral polar regions are exceptional, in that the correlations extend not only around the390

circumference of the latitude circle, but also well beyond 2500 km as far equatorward as391

60◦S. Interestingly, tropical geopotential height is also correlated over long distances. The392

significant positive correlations at tropical latitudes are robust at most individual longitudes393

outside of the primary centers of action of ENSO (not shown). The in-phase behavior394

in tropical geopotential height is consistent with the dynamic constraint of weak pressure395

gradients at tropical latitudes (Charney 1963; Sobel et al. 2001) and will be investigated396

further in future work. Note that the amplitude of variations in geopotential height are397

more than an order of magnitude weaker in the tropics than midlatitudes, as illustrated in398

Fig. 7c.399

The results shown in Fig. 7 are based on 10 day low pass filtered data. As discussed in400

Wettstein and Wallace (2010), large-scale structures in the atmospheric circulation are in-401

creasingly prevalent at lower frequency timescales. Analogous calculations based on monthly402

mean data (not shown) reveal a slight extension of the region of positive correlations at all403

latitudes, but overall the results are qualitatively unchanged. Notably, the midlatitude cor-404

relation structure is still dominated by alternating negative and positive anomalies beyond405

2500 km, with little evidence of zonally coherent motions.406

How does the average correlation structure shown in Fig. 7b project onto the EOFs of407

the circulation? Fig. 8 characterizes the (top) “predicted” and (bottom) “actual” EOFs of408

zonally-varying Z850 calculated separately for each latitude (e.g., results at 60◦ N indicate the409

variance expressed by EOFs of Z850 sampled along the 60◦ N latitude circle). The “predicted”410

EOFs are found assuming the statistics of Z850 are zonally uniform. In this case, the results411

of the EOF analysis correspond to a Fourier decomposition of the flow (see discussion in412

Section 3), and the variance captured by each wavenumber is determined by the average413

correlation structure (Fig. 7b) applied to (3). Wavenumber 0 (i.e., annular mode) variability414

emerges as the leading predicted EOF of the flow at virtually all latitudes, but explains a415

much larger fraction of the variance of the flow in the tropics and polar regions than it does416
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in middle latitudes, where wavenumbers 0, 1, 2, and 3 are of nearly equal importance. The417

weak amplitude of wavenumber 0 variability in middle latitudes is consistent with the lack418

of zonally coherent motions in the average correlation structures shown in Fig. 7b.419

The “actual” EOFs are computed directly from Z850, and thus do not assume that the420

statistics of the flow are zonally uniform. Red dots indicate when the EOF is dominated421

by wavenumber 0 variability, orange dots by wave 1 variability, and so forth for higher422

wavenumbers. (Note that for the predicted EOFs, all wavenumbers other than 0 include two423

modes in quadrature that account for equal variance, whereas for the actual EOFs, the two424

modes associated with each wavenumber are not constrained to explain the same fraction of425

the variance.) Comparing the top and bottom panels, it is clear that the EOFs predicted426

from the average correlation structure, assuming zonally-uniform statistics, provide useful427

insight into the true EOFs of the flow. The meridional structures of the variance explained428

by the leading predicted and actual EOFs are very similar: in the high latitudes and tropics,429

the first mode is dominated by wavenumber 0 variability and explains a much larger fraction430

of the flow than EOF2; in the midlatitudes, the EOFs cluster together and are largely431

degenerate.432

The key point derived from Figs. 7 and 8 is that the “average correlation function” pro-433

vides a clear sense of where the EOFs of the flow derive from robust dynamical annularity.434

The circulation exhibits globally coherent motions in the tropics and high latitudes, partic-435

ularly in the SH high latitudes (Fig. 7), and it is over these regions that the leading EOFs436

predicted from the average correlation function (Fig. 8a) and from actual variations in the437

flow (Fig. 8b) exhibit robust wavenumber 0 variability. In contrast, the circulation does438

not exhibit globally coherent variations at middle latitudes (Fig. 7b), and thus both the439

predicted and actual EOFs of the flow are degenerate there (Fig. 8). Annular variations in440

lower tropospheric geopotential height are consistent with dynamical annularity of the flow441

in the polar and tropical regions, but statistical annularity at middle latitudes.442

Fig. 9 explores the average correlation structure in three additional fields. Fig. 9a,b show443
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results based on the zonal wind at 850 hPa (U850), which samples the barotropic component444

of the circulation, and thus emphasizes the eddy-driven jet in middle latitudes. Fig. 9c,d are445

based on the zonal wind at 50 hPa and (U50), which samples both the QBO and variations in446

the stratospheric polar vortices, and Fig. 9e,f, the eddy kinetic energy at 300 hPa (EKE300),447

which samples the baroclinic annular mode (Thompson and Barnes 2014).448

The most pronounced zonal correlations in U850 are found in two locations: (i) along449

60 degrees South, where positive correlations wrap around the latitude circle, and (ii) in450

the deep tropics, where positive correlations extend well beyond the 2500 km isopleths. At451

∼60 degrees South, the zonally coherent variations in the zonal flow follow from geostrophic452

balance and the coherence of the geopotential height field over Antarctica, as observed in453

Fig. 7b. In the subtropics, the far reaching correlations follow from geostrophic balance454

and the coherence of the geopotential height field in the tropics. At the equator, where455

geostrophic balance does not hold, Z850 exhibits globally coherent motions (consistent with456

weak temperature gradients in the tropics), while U850 becomes significantly anticorrelated457

at a distance. As a result, a zonally uniform annular mode dominates the EOF spectrum458

of Z850 in the tropics (Fig. 8b) whereas wavenumber 1 tends to dominate latitudinal EOF459

analysis of U850 (not shown). Neither Z850 (Fig. 7b) or U850 (Fig. 9a) exhibit zonally coherent460

motions at midlatitudes, where the autocorrelation function decays to zero ∼2500 kilometers461

and oscillates in the far field.462

The results shown in Figs. 7b and 9a are representative of the correlation structure of463

geopotential height and zonal wind throughout the depth of the troposphere (e.g., very464

similar results are derived at 300 hPa; not shown). However, the correlation structure of the465

zonal flow changes notably above the tropopause, as indicated in Fig. 9c and d. Consistent466

with the increase in the deformation radius in the stratosphere, the scale of motions increases467

(note that the grey lines now indicate the ±5,000 km isopleths). The most notable differences468

between the troposphere and stratosphere are found in the tropics, where the Quasi Biennial469

Oscillation (QBO) leads to an overwhelming annular signal. Marked annularity is also found470
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in the high latitudes, in the vicinity of both extratropical polar vortices. As observed in the471

analysis of the tropospheric zonal wind and geopotential height, however, there is no evidence472

of dynamical annularity in the midlatitudes.473

The average correlation structure of EKE300 (Fig. 9e) is notably different. Unlike Z or474

U , the zonal correlation of EKE is remarkably similar across all latitudes, with a slight475

peak in the physical scale of the correlation in the Southern Hemisphere midlatitudes where476

the baroclinic annular mode has largest amplitude (e.g., Thompson and Woodworth 2014).477

Interestingly, EKE300 remains positively correlated around the globe at all latitudes, albeit478

very weakly in the far field. The non-negative decorrelation structure leads to the dominance479

of a zonally uniform “annular mode” in EKE at each individual latitude poleward of 25◦S,480

as shown in Fig. 10. However, the separation between the first and second modes (which481

characterize wavenumber 1 motions) is modest at most latitudes. The largest separations482

between the first and second EOFs EKE300 are found near 45◦, where the top annular EOF483

represents about 16% of the variance, compared to about 11% for the second and third484

EOFs.485

c. Quantifying the role of dynamical annularity in EKE300 with the stochastic model486

At first glance, the weak separation between the first and second EOFs of EKE300487

suggests that much of the annular signal owes itself to local correlations, i.e., statistical488

annularity. However, a comparison of the EOFs of the observations with those derived489

from the “Gaussian + baseline” model explored in Sections 2 and 3 allows us to be more490

quantitative about the relative role of dynamical vs. statistical annularity in the context of491

the baroclinic annular mode.492

Fig. 11 compares (a) the zonal correlation structure and (b) EOF spectrum of the 300493

hPa eddy kinetic energy at 46◦S with three fits of the simple stochastic model, each designed494

to capture key features of the observed behavior. Recall that the model has two parameters:495

the width of local correlation, α, and the baseline correlation strength, β. As our goal is to496
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focus on the relative role of dynamical annularity, characterized by the difference between497

the variance expressed by the top EOF (annular mode) and higher order modes, we remove498

one degree of freedom by requiring that the top EOF express the same fraction of variance in499

both the simple model and the reanalysis. Hence the first mode explains 16% of the variance500

for all cases in Fig. 11b. From equation (3), this condition is equivalent to keeping the total501

integral of the correlation structure fixed.502

In the first fit (red curve, Fig. 11a), we optimize the stochastic model at short range,503

approximating the fall in local correlation in EKE as a Gaussian with width α = 17 degrees.504

To maintain the variance expressed by the top EOF, parameter β must then be set to 0.08.505

This choice effectively lumps the midrange shoulder of the EKE300 correlation (30-100◦)506

with the long range (100-180◦), where the observed correlation drops to about 0.03. As507

a result, the stochastic model exhibits a stronger separation between the first and second508

EOFs than for EKE300 (red triangles vs. black squares in Fig. 11b).509

An advantage of fitting the data to the simple stochastic model is that it allows us to510

explicitly quantify the role of dynamical annularity. Since the variance expressed by the511

annular mode is just the integral of correlation function (equation 3), the contribution of the512

long range correlation (dynamical annularity) to the total power of the annular mode is:513 ∫ 180

0
β dλ∫ 180

0
[(1− β)e−(λ/α)2 + β] dλ

≈ β
α(1−β)

√
π

360
+ β

(5)

where we have expressed longitude λ and parameter α in degrees. For the approximation514

on the left hand side, we assume that α << 180, such that the local correlation does not515

significantly wrap around the latitude circle. For the “red” model in Fig. 11, dynamical516

annularity accounts for half of the total strength of the annular mode. Given the fact that it517

exhibits a stronger separation between the first and second EOFs, however, this is an upper518

bound on the role of dynamical annularity in EKE300 at 46◦S.519

We obtain a lower bound on the dynamical annularity with the blue fit in Fig. 11a, where520

the correlation structure is explicitly matched at long range. To conserve the total integral,521

parameter α in this case must be set to 27◦, effectively lumping in the shoulder between522
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30 and 100◦ with the local correlation. These parameters would suggest that dynamical523

annularity contributes only 1/5th of annular mode variance. This is clearly a lower limit,524

however, as the separation between the first and second EOFs (Fig. 11b) is too small relative525

to that of EKE300.526

Lastly, we use both degrees of freedom of the stochastic model to find an optimal fit of527

the EOF spectrum, matching the variance expressed by the top two EOFs (effectively the528

top three, as higher order modes come in pairs). The fit, with parameters α = 23◦ and529

β = 0.05, is not shown in Fig. 11a (to avoid clutter), but the resulting EOF spectrum is530

illustrated by the green triangles in Fig. 11b. With this configuration, dynamical annularity531

contributes approximately 1/3rd of the annular mode, leaving the remaining two thirds to532

statistical annularity associated with the local redness of the EKE. The EOF spectra of this533

model diverges from EKE300 for higher order modes, such that we should take this as a534

rough estimate of the true role of dynamical annularity in the Baroclinic Annular Mode.535

The location of the three models (lower, optimal, and upper bounds), are marked by the536

black x’s in Fig. 3b, to put them in context of earlier results. The fits roughly fill in the537

space between models X1 and X2, but on a lower contour where the annular mode expresses538

16% of the total variance, as opposed to 20%. The rapid increase in the role of dynamical539

annularity (from 1/5 to 1/2) matches the rapid ascent in the importance of EOF 1 relative540

to EOF 2, emphasizing the utility of this ratio as an indicator of dynamical annularity.541

5. Concluding Remarks542

We have explored the conditions that give rise to annular patterns in Empirical Orthog-543

onal Function analysis across a hierarchy of systems: highly simplified stochastic models,544

idealized atmospheric GCMs, and reanalyses of the atmosphere. Annular EOFs can arise545

from two conditions, which we term dynamical annularity and statistical annularity. The546

former arises from zonally coherent dynamical motions across all longitudes, while the latter547
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arises from zonally coherent statistics of the flow (e.g., the variance), even in the absence of548

significant far field correlations. Atmospheric reanalyses indicate that both play important549

roles in the climate system and may aid in the interpretation of climate variability, but only550

dynamical annularity reflects zonally coherent motions in the circulation.551

In general, dynamical annularity arises when the dynamical scales of motion approach552

the scale of the latitude circle. The average zonal correlation structure (e.g., Fig. 7) thus553

provides a robust measure of dynamical annularity. In addition, the simple stochastic model554

suggests that the degree of dynamical annularity in a leading EOF is indicated by the ratio555

of the variances explained by the first two zonal EOFs of the flow. As a rule of thumb, if556

the leading annular EOF explains more than twice the variance of the second EOF, then557

dynamical annularity plays a substantial role in the annular mode. Note, however, that this558

intuition does not necessarily apply to two-dimensional EOFs in latitude-longitude space,559

where coherence of meridional variability can lead to dominance of an annular EOF, even560

when there is explicitly no dynamical annularity (e.g., Gerber and Vallis 2005).561

Annular EOFs always – at least partially – reflect statistical annularity of the circulation;562

zonally coherent motions necessarily imply some degree of zonal coherence. Far field correla-563

tion in the average zonal correlation structure robustly indicates dynamical annularity, but564

quantification of the statistical annularity requires further analysis, either comparison of the565

zonal correlation at different base points (e.g., Fig. 7a) or comparison of the predicted and566

observed zonal EOFs (e.g., Figs. 8 and 10). The localization of the North Pacific and North567

Atlantic storm tracks limits the utility of the zonal correlation structure in the Northern568

Hemisphere troposphere. But the Southern Hemisphere tropospheric circulation is remark-569

ably statistically annular, such that one can predict the full EOF spectrum from the average570

correlation structure alone.571

As discussed in Deser (2000) and Ambaum et al. (2001) and shown here, the observed572

geopotential height and zonal wind fields do not exhibit robust far field correlations beyond573

∼60◦ longitude in the midlatitudes (i.e., equatorward of roughly 60◦ latitude). However, the574
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geometry of the sphere naturally favors a high degree of zonal coherence at polar latitudes575

in both hemispheres, particularly in the geopotential height field. Hence, the northern576

and sourthern annular modes do not arise from dynamical annularity in the midlatitude577

tropospheric circulation, but derive a measure of dynamical annularity from the coherence578

of geopotential height within their polar centers of action. The dynamical annularity of579

the polar geopotential height field extends to the zonal wind field at high latitudes (∼60◦580

latitude) in the Southern Hemisphere, but less so in the Northern Hemisphere. Regions581

where dynamical annularity plays a seemingly important role in the circulation thus include:582

i. the geopotential height over polar latitudes in both hemispheres, which arises chiefly583

from the geometry of the sphere,584

ii. the zonal wind field near 60◦ latitude in the Southern Hemisphere, which exhibits585

greater dynamical annularity than would be expected from the geometry of the sphere,586

iii. the tropical geopotential height field, presumably because temperature gradients must587

be weak in this region (e.g., Charney 1963),588

iv. the tropospheric zonal flow near ∼15 degrees latitude; these features arises via geostro-589

phy and the dynamic annularity of the tropical Z field,590

v. the zonal wind field in the equatorial stratosphere, which reflects the QBO,591

vi. the eddy kinetic energy in the midlatitude Southern Hemisphere, consistent with the592

baroclinic annular mode and the downstream development of wave packets in the593

austral stormtrack (Thompson et al. submitted). The dynamical annularity of the594

eddy activity is surprising given the lack of dynamic annularity in the midlatitude595

barotropic jets, which are intimately connected with the eddies through the baroclinic596

lifecycle.597

The annular leading EOFs of the midlatitude flow have been examined extensively in598
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previous work, but to our knowledge, the annular nature of tropical tropospheric Z has599

received less attention. We intend to investigate this feature in more detail in a future study.600
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APPENDIX606

607

Technical details of the stochastic models608

The stochastic models in Section 2 are, in a sense, constructed in reverse, starting with609

the desired result. We begin with the correlation structure f , as shown in Fig. 1c, and610

project it onto cosine modes as in (3). This gives us the EOF spectra shown in Fig. 2c,611

i.e., how much variance (which we now denote vk) should be associated with each mode of612

wavenumber k. Note that not all correlation structures are possible. A sufficient criteria,613

however, is that the projection of every cosine mode onto f is non-negative (i.e., all vk ≥ 0).614

Realizations of the models, as shown in 1a and b, are constructed by moving back into615

grid space,616

X(λ, j) = v
1/2
0 δ0,j +

∞∑
k=1

(2vk)
1/2[δk1,j sin(kλ) + δk2,j cos(kλ)]. (A1)

where all the δk,j are independent samples from a Normal distribution with unit variance617

and λ is given in radians. In practise only the top 15 wavenumbers are needed, as the618

contribution of higher order modes becomes negligible.619

Note that it is possible to construct an infinite number of stochastic systems which620

have the same correlation structure f . We have take a simple approach by using the Normal621

distribution to introduce randomness. Any distribution with mean zero could be used, which622

would impact the variations in individual samples – and so the convergence of the system in623

j – but not the statistical properties in the limit of infinite sampling.624
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List of Figures712

1 Two stochastic models of variability in longitude. (a) and (b) illustrate sample713

profiles from models X1 and X2, respectively. The profiles are independently714

and identically sampled from the respective distribution of each model, but715

could be interpreted as different realizations in time, chose over an interval716

sufficiently large for the flow to lose all memory from one sample to the next.717

The y-axes are unitless, as each model has been designed to have unit variance.718

(c) shows covX(0, λ) for each model, the covariance between variability at each719

longitude with that at λ = 0. As the statistics are annular, the covariance720

structure can be fully characterized by this one sample, i.e., covX(λ1, λ2) =721

covX(0, |λ1 − λ2|). 34722

2 The EOF structure of the two stochastic models. (a) and (b) show the top723

three EOFs for models 1 and 2, respectively, normalized to have unit variance.724

In the limit of infinite sampling, the EOF patterns from the two models are725

identical. (c) The models’ EOF spectra, marking the fraction of the total726

variance associated with each of the top 20 EOFs. 35727

3 The impact of local vs. annular correlation in the “Gaussian + baseline”728

family of stochastic models. (a) illustrates the parameters α and β which729

characterize the correlation function f(λ) for each model. (b) maps out the730

variance expressed by the first EOF (black contours) and the ratio of the731

variance expressed by the first EOF to that of the second (color shading) as a732

function of α and β. The first EOF is always annular, and the second always a733

wavenumber 1 pattern. The blue and red markers show the location of models734

X1 and X2 (illustrated in Figs. 1 and 2) in parameter space, respectively; both735

fall along the same black contour, as their top EOF expresses 0.2 of the total736

variance. The black x’s will be discussed in the context of Fig. 11 36737
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4 The mean jet structure and annular modes of the Held and Suarez (1994)738

model for the (a) (∆T )y = 40 and (b) (∆T )y = 60◦C integrations. The jet is739

characterized by the time mean 850 hPa winds (blue lines, corresponding with740

the left y-axes), and the annular mode is the first EOF of daily, zonal mean741

SLP (red, right y-axes), normalized to indicate the strength of 1 standard742

deviation anomalies. The latitudes of the node, equatorward and poleward743

lobes of the annular mode are highlighed, and correspond with the analysis744

in Fig. 5. 37745

5 Characterizing the zonal structure of 10 day pass filtered SLP anomalies in746

the Held and Suarez (1994) model. (a,d) and (c,f) show analysis based at747

the latitude of the equatorward and poleward centers of action of the annular748

mode, respectively, while (b,e) show analysis based at the nodes of the annular749

mode. (a,b,c) show the zonal correlation structure f(λ) and (d,e,f) the fraction750

of variance associated with each of the top 20 EOFs for the integrations with751

(blue) (∆T )y = 40 and (red) (∆T )y = 60◦ C. 38752

6 The same as Fig. 4, but for the (a) Southern and (b) Northern Hemispheres753

in ECWMF Interim reanalysis, based on the period 1979-2013. To avoid754

interpolation over mountainous regions, the annular modes are defined in755

terms of daily, zonal mean 850 hPa geopotential height, Z850, instead of SLP. 39756
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7 Characterizing the longitudinal correlation structure of 10 day low pass filtered757

850 hPa geopotential height in ERA-Interim. (a) Sample single point corre-758

lation maps at 46◦S (the equatorward center of action of the SAM), shifted759

so that base points line up. The black line is the mean of the four curves,760

an “average single point correlation map”. (b) The average zonal correlation761

structure of 10 day low pass filtered Z850 as a function of latitude. The con-762

tour interval is 0.05, with black contours marking zero correlation, and gray763

lines indicate a separation of 5000 km, to provide a sense of geometry on the764

sphere. (c) The root mean square amplitude of 10 day low pass filtered Z850765

anomalies. 40766

8 A comparison of predictions based on zonally uniform statistics to the actual767

zonal EOF structure of 10 day low pass filtered Z850. (a) For each latitude,768

the fraction of variance associated with wavenumbers 0 to 6, given the average769

zonal correlation structure in Fig. 7b and assuming zonally uniform statistics770

(see text for details). (b) Again for each latitude, the fraction of variance771

associated with the top five 1-D longitudinal EOFs, but now based on the full772

flow. Large (small) colored dots indicate when a given wavenumber dominates773

more than 75% (50%) of the power in the EOF, the color identifying the774

respective wavenumber with the color convention in (a), i.e., red=wave 0,775

orange=wave 1. 41776

9 The average correlation structure of (a) zonal wind at 850 hPa, (c) zonal wind777

at 50 hPa, and (e) eddy kinetic energy at 300 hPa. As in Fig. 7b, thin black778

contours mark zero correlation and the thick gray contours give a sense of779

sphericity, marking a separation of 5000 km as a function of latitude in (a)780

and (e) and a distance of 10000 km in (c). Panels (b), (d), and (f) show781

the root mean square amplitude of variations as a function latitude for each782

variable, respectively. 42783
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10 The same as in Fig. 8b, but for eddy kinetic energy at 300 hPa. Zonal asym-784

metry in the statistics lead to substantial mixing between wavenumbers in785

the Northern Hemisphere (outside the polar cap) and tropics, such no sin-786

gle wavenumber dominates each EOF. Statistical annularity in the Southern787

Hemisphere, however, leads to a clearly order spectrum poleward of 25◦S,788

dominated by an annular (wavenumber 1) mode at all latitudes. 43789

11 (a) Comparison between the average longitudinal correlation structure of790

EKE300 at 46◦S and two possible fits with the Gaussian + baseline model791

of Section 3. As detailed in the text, the first fit (red) is optimized to cap-792

ture the initial decay in correlation, while the second fit (blue) is optimized793

for the long range correlation baseline. (b) The 1-dimensional EOF spectra794

of EKE300 at 46◦S, compared against the spectrum for the two fits of the795

Gaussian + baseline model shown in (a), and a third model with parameters796

α = 23◦ and β = 0.05, as discussed in the text. 44797
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Fig. 1. Two stochastic models of variability in longitude. (a) and (b) illustrate sample
profiles from models X1 and X2, respectively. The profiles are independently and identically
sampled from the respective distribution of each model, but could be interpreted as different
realizations in time, chose over an interval sufficiently large for the flow to lose all memory
from one sample to the next. The y-axes are unitless, as each model has been designed to
have unit variance. (c) shows covX(0, λ) for each model, the covariance between variability
at each longitude with that at λ = 0. As the statistics are annular, the covariance structure
can be fully characterized by this one sample, i.e., covX(λ1, λ2) = covX(0, |λ1 − λ2|).
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Fig. 2. The EOF structure of the two stochastic models. (a) and (b) show the top three
EOFs for models 1 and 2, respectively, normalized to have unit variance. In the limit of
infinite sampling, the EOF patterns from the two models are identical. (c) The models’
EOF spectra, marking the fraction of the total variance associated with each of the top 20
EOFs.
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Fig. 3. The impact of local vs. annular correlation in the “Gaussian + baseline” family of
stochastic models. (a) illustrates the parameters α and β which characterize the correlation
function f(λ) for each model. (b) maps out the variance expressed by the first EOF (black
contours) and the ratio of the variance expressed by the first EOF to that of the second
(color shading) as a function of α and β. The first EOF is always annular, and the second
always a wavenumber 1 pattern. The blue and red markers show the location of models X1

and X2 (illustrated in Figs. 1 and 2) in parameter space, respectively; both fall along the
same black contour, as their top EOF expresses 0.2 of the total variance. The black x’s will
be discussed in the context of Fig. 11
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Fig. 4. The mean jet structure and annular modes of the Held and Suarez (1994) model
for the (a) (∆T )y = 40 and (b) (∆T )y = 60◦C integrations. The jet is characterized by the
time mean 850 hPa winds (blue lines, corresponding with the left y-axes), and the annular
mode is the first EOF of daily, zonal mean SLP (red, right y-axes), normalized to indicate
the strength of 1 standard deviation anomalies. The latitudes of the node, equatorward
and poleward lobes of the annular mode are highlighed, and correspond with the analysis in
Fig. 5.
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Fig. 5. Characterizing the zonal structure of 10 day pass filtered SLP anomalies in the
Held and Suarez (1994) model. (a,d) and (c,f) show analysis based at the latitude of the
equatorward and poleward centers of action of the annular mode, respectively, while (b,e)
show analysis based at the nodes of the annular mode. (a,b,c) show the zonal correlation
structure f(λ) and (d,e,f) the fraction of variance associated with each of the top 20 EOFs
for the integrations with (blue) (∆T )y = 40 and (red) (∆T )y = 60◦ C.
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Fig. 6. The same as Fig. 4, but for the (a) Southern and (b) Northern Hemispheres in
ECWMF Interim reanalysis, based on the period 1979-2013. To avoid interpolation over
mountainous regions, the annular modes are defined in terms of daily, zonal mean 850 hPa
geopotential height, Z850, instead of SLP.

39



c
o

v
a

ri
a

n
c
e

 (
1

0
3
 m

2
)

-1

0

1

2

3

4

5

a) Shifted single point covariances, 46°S

cov
Z
(0,λ)

cov
Z
(90,λ)

cov
Z
(180,λ)

cov
Z
(-90,λ)

average

b) Average zonal correlation

relative longitude
-120 -60 0 60 120

la
ti
tu

d
e

-90

-60

-30

0

30

60

90

-1 -.8 -.6 -.4 -.2 0 0.2 0.4 0.6 0.8 1

meters
0 40 80

 c) RMSA

Fig. 7. Characterizing the longitudinal correlation structure of 10 day low pass filtered 850
hPa geopotential height in ERA-Interim. (a) Sample single point correlation maps at 46◦S
(the equatorward center of action of the SAM), shifted so that base points line up. The
black line is the mean of the four curves, an “average single point correlation map”. (b) The
average zonal correlation structure of 10 day low pass filtered Z850 as a function of latitude.
The contour interval is 0.05, with black contours marking zero correlation, and gray lines
indicate a separation of 5000 km, to provide a sense of geometry on the sphere. (c) The root
mean square amplitude of 10 day low pass filtered Z850 anomalies.
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Fig. 8. A comparison of predictions based on zonally uniform statistics to the actual zonal
EOF structure of 10 day low pass filtered Z850. (a) For each latitude, the fraction of variance
associated with wavenumbers 0 to 6, given the average zonal correlation structure in Fig. 7b
and assuming zonally uniform statistics (see text for details). (b) Again for each latitude, the
fraction of variance associated with the top five 1-D longitudinal EOFs, but now based on
the full flow. Large (small) colored dots indicate when a given wavenumber dominates more
than 75% (50%) of the power in the EOF, the color identifying the respective wavenumber
with the color convention in (a), i.e., red=wave 0, orange=wave 1.
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U850: a) average single point correlation
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U50: c) average single point correlation
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EKE300: e) ave. single point correlation
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Fig. 9. The average correlation structure of (a) zonal wind at 850 hPa, (c) zonal wind at
50 hPa, and (e) eddy kinetic energy at 300 hPa. As in Fig. 7b, thin black contours mark
zero correlation and the thick gray contours give a sense of sphericity, marking a separation
of 5000 km as a function of latitude in (a) and (e) and a distance of 10000 km in (c). Panels
(b), (d), and (f) show the root mean square amplitude of variations as a function latitude
for each variable, respectively.
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Fig. 10. The same as in Fig. 8b, but for eddy kinetic energy at 300 hPa. Zonal asym-
metry in the statistics lead to substantial mixing between wavenumbers in the Northern
Hemisphere (outside the polar cap) and tropics, such no single wavenumber dominates each
EOF. Statistical annularity in the Southern Hemisphere, however, leads to a clearly order
spectrum poleward of 25◦S, dominated by an annular (wavenumber 1) mode at all latitudes.
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Fig. 11. (a) Comparison between the average longitudinal correlation structure of EKE300

at 46◦S and two possible fits with the Gaussian + baseline model of Section 3. As detailed in
the text, the first fit (red) is optimized to capture the initial decay in correlation, while the
second fit (blue) is optimized for the long range correlation baseline. (b) The 1-dimensional
EOF spectra of EKE300 at 46◦S, compared against the spectrum for the two fits of the
Gaussian + baseline model shown in (a), and a third model with parameters α = 23◦ and
β = 0.05, as discussed in the text.
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