1

2

3

What makes an annular mode "annular"?

Edwin P. Gerber *

Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences,

New York University, New York NY, USA

DAVID W. J. THOMPSON

Department of Atmospheric Science, Colorado State University, Fort Collins, CO

^{*}*Corresponding author address:* Courant Institute of Mathematical Sciences, 251 Mercer Street, New York NY 10012.

E-mail: gerber@cims.nyu.edu

ABSTRACT

Annular patterns with a high degree of zonal symmetry play a prominent role in the natural variability of the atmospheric circulation and its response to external forcing. But despite their apparent importance for understanding climate variability, the processes that give rise to their marked zonally symmetric components remain largely unclear.

Here the authors use simple stochastic models in conjunction with atmospheric model g and observational analyses to explore the conditions under which annular patterns arise 10 from Empirical Orthogonal Function (EOF) analysis of the flow. The results indicate that 11 annular patterns arise not only from zonally coherent fluctuations in the circulation, i.e., 12 "dynamical annularity", but also from zonally symmetric statistics of the circulation in the 13 absence of zonally coherent fluctuations, i.e., "statistical annularity". It is argued that the 14 distinction between dynamical and statistical annular patterns derived from EOF analysis 15 can be inferred from the associated variance spectrum: larger differences in the variance 16 explained by an annular EOF and successive EOFs generally indicate underlying dynamical 17 annularity. 18

The authors provide a simple recipe for assessing the conditions that give rise to annular EOFs of the circulation. When applied to numerical models, the recipe indicates dynamical annularity in parameter regimes with strong feedbacks between the eddies and mean flow. When applied to observations, the recipe indicates that annular EOFs generally derive from statistical annularity of the flow in the middle latitude troposphere, but from dynamical annularity in both the stratosphere and the mid-high latitude Southern Hemisphere troposphere.

²⁶ 1. Introduction

"Annular" patterns of variability are structures dominated by their zonally symmet-27 ric components. They emerge as the leading empirical orthogonal functions (EOFs) of the 28 Northern Hemisphere sea-level pressure field (Lorenz 1951; Kutzbach 1970; Wallace and Gut-29 zler 1981; Trenberth and Paolino 1981; Thompson and Wallace 1998, 2000), the Southern 30 Hemisphere zonal-wind and geopotential height fields (Kidson 1988; Karoly 1990; Hartmann 31 and Lo 1998; Thompson and Wallace 2000; Lorenz and Hartmann 2001), the Southern Hemi-32 sphere eddy-kinetic field (Thompson and Woodworth 2014), the extratropical circulation in 33 a hierarchy of numerical simulations of the atmospheric circulation (e.g., Robinson 1991; 34 Yu and Hartmann 1993; Lee and Feldstein 1996; Shindell et al. 1999; Gerber and Vallis 35 2007), and aquaplanet simulations of the ocean circulation (Marshall et al. 2007). They are 36 seemingly ubiquitous features in a range of geophysical flows. 37

Despite their ubiquity in the climate system, one key aspect of annular structures remains 38 open to debate: What gives rise to their marked zonally symmetric components? Does the 39 zonal symmetry of annular structures reflect coherent variations in climate across a range 40 of longitudes? Or does it largely reflect the constraints of EOF analysis (e.g., Dommenget 41 and Latif 2002; Gerber and Vallis 2005)? Consider a long-standing example: the so-called 42 northern annular mode (NAM) emerges as the leading EOF of the NH sea-level pressure 43 field (e.g., Thompson and Wallace 2000). It exhibits a high degree of zonal symmetry and 44 its structure implies in-phase variability in climate between the North Atlantic and North 45 Pacific sectors of the hemisphere. But as discussed extensively in earlier papers (e.g., Deser 46 2000; Ambaum et al. 2001), the two midlatitude centers of action of the NAM do not exhibit 47 robust correlations on month-to-month timescales. Does the annularity of the NAM arise 48 from dynamic connections between widely separated longitudes that are simply masked by 49 other forms of variability (e.g., Wallace and Thompson 2002)? Or does the annularity arise 50 from the constraints of the EOF analysis (e.g., Dommenget and Latif 2002; Gerber and Vallis 51 2005; Monahan et al. 2009)? 52

The purpose of this paper is to revisit the conditions that give rise to annular structures 53 in the leading patterns of variability of the circulation. We will demonstrate that annular 54 patterns can arise from two distinct characteristics of the flow: (i) "dynamical annularity", 55 where variability in the circulation about its mean state exhibits in-phase correlations at all 56 longitudes, and (ii) "statistical annularity", where the statistics of the flow (e.g., the variance, 57 autocorrelation and spatial decorrelation scale) are similar at all longitudes. Both conditions 58 can give rise to annular-like EOFs that make important contributions to the variability in 59 the circulation. But only the former corresponds to coherent annular motions in the flow. 60 Section 2 explores the impacts of "dynamical annularity" vs. "statistical annularity" on 61 EOF analysis of output from two simple stochastic models. Section 3 provides theoretical 62 context for interpreting the results of the simple models. Section 4 applies the insights 63 gained from the simple models to the circulation of an idealized general circulation model 64 and observations. Conclusions are provided in Section 5. 65

66 2. A Tale of Two Annular Modes

In the following, we define *dynamical annularity* as the case where there are positive covariances between all longitudes around the globe, i.e.,

$$\operatorname{cov}_X(\lambda_1, \lambda_2) = \frac{\sum_{n=1}^N X(\lambda_1, t_n) X(\lambda_2, t_n)}{N} > 0$$
(1)

for all longitudes λ_1 and λ_2 . With this notation, we take X to be a generic variable of interest (e.g., geopotential height or eddy kinetic energy), given as an anomaly from its climatological mean. If (1) is satisfied, there are coherent underlying motions which cause the circulation to vary in concert at all longitudes, and the integrated covariance around the latitude circle provides a quantitative measure of the importance of the dynamical annularity.

⁷⁴ We define *statistical annularity* as the case where the statistics of the flow do not vary

⁷⁵ as a function of longitude, i.e.,

$$\operatorname{cov}_X(\lambda_1, \lambda_2) = f(\Delta \lambda). \tag{2}$$

where $\Delta \lambda = |\lambda_1 - \lambda_2|$ is the absolute distance between the two points. This definition 76 implies that the variance of the flow is uniform, i.e. f(0), and the covariance between any 77 two longitudes depends only on the distance between them, but not where the two points lie 78 relative to the origin (prime meridian). The criteria for dynamical and statistical annularity 79 are not mutually exclusive, and a flow could satisfy both at once. One would only expect 80 (2) to hold approximately in the presence of realistic boundary conditions, but in Section 4 81 we show the statistics of the observed atmosphere are remarkably annular, particularly in 82 the Southern Hemisphere. 83

Here we illustrate how statistical annularity can give rise to an annular EOF, even in 84 the case where there is no underlying dynamical annularity in the circulation (that is, the 85 motions are explicitly local). We consider two 1-dimensional stochastic models, $X_1(\lambda, j)$ 86 and $X_2(\lambda, j)$. The details of the models are given in the Appendix, but all the necessary 87 statistics of the models are summarized in Fig. 1. In short, both models are random processes 88 in longitude, are periodic over 360° , and have zonally uniform statistics (2). The distinction 89 between the models lies in their covariance structures (Fig. 1c). For model X_1 , there is 90 explicitly no global correlation: variability at a given location is only correlated with other 91 longitudes over a range of about $\pm 90^{\circ}$. For model X_2 there is a global correlation of 0.1. 92

⁹³ Note that since both models have zonally uniform statistics, the covariance structures ⁹⁴ shown in Fig. 1c are independent of the base longitude used in the calculations. Moreover, ⁹⁵ they contain all the information needed to characterize the EOFs of the two models; recall ⁹⁶ that EOFs correspond to the eigenvectors of the covariance matrix $c_{ij} = \text{cov}_X(\lambda_i, \lambda_j)$. When ⁹⁷ the statistics are uniform, c_{ij} is simply a function of the distance between λ_i and λ_j , as ⁹⁸ illustrated in Fig. 1c.

⁹⁹ The top three EOFs for the two models are shown in Fig. 2a and b. By construction (see ¹⁰⁰ discussion in the next section), both models exhibit exactly the same EOFs. The first EOF ¹⁰¹ is perfectly annular, as the analytic formulation of the model allows us to take the limit of ¹⁰² infinite sampling. As seen in Fig. 2c, the first EOF also explains exactly the same fraction ¹⁰³ of the variance in each model: 20%. The second and third EOFs characterize wavenumber 1 ¹⁰⁴ anomalies: all higher order EOFs come in sinusoidal pairs, increasing in wavenumber. The ¹⁰⁵ phase is arbitrary, as the two wavenumber 1 modes explain the same fraction of variance. For ¹⁰⁶ finite sampling, one would see slight mixing between the wavenumbers, but the top modes ¹⁰⁷ are well established, even for a reasonable number of samples.

The key result in Fig. 2 is that both models exhibit a robust "annular mode" as their leading EOF, and that both annular modes explain the same total fraction of the variance. Only one of the apparent "annular modes", however, reflects dynamical annularity in the flow.

From the perspective of EOFs, one can only distinguish the two models by examining 112 their EOF spectra, i.e., the relative variance associated with all modes (Fig. 2c). By design, 113 the annular modes (the leading EOFs) in both models explain the same fraction of the total 114 variance (20%). The key differences between the EOF spectra from the two models lie in the 115 relative variance explained by their higher order EOFs. In the case of model 1, the first EOF 116 explains only slightly more variance than the second or third EOFs. In the case of model 2, 117 there is a large gap between the first and second EOFs. It is the relative variance explained 118 that provides insight into the relative importance of statistical vs. dynamical annularity in 119 giving rise to an annular-like leading EOF. 120

The stochastic models considered in Figs. 1 and 2 highlight two key aspects of annular modes. First the models make clear that identical annular-like patterns can arise from two very different configurations of the circulation: (i) cases where the statistics of the flow are zonally uniform but the correlations are explicitly local (model 1) and (ii) cases with in-phase variability between remote longitudes (model 2). Second, the models make clear that the spectra of variance yields insight into the role of dynamical annularity in driving the leading EOF.

¹²⁸ 3. Theoretical Insight

For systems with statistical annularity, as in models X_1 and X_2 , the EOFs can be entirely 129 characterized based on the covariance structure $f(\Delta \lambda)$. Batchelor (1953) solved the EOF 130 problem for cases with zonally uniform statistics in his analysis of homogeneous, isotropic 131 turbulence in a triply periodic domain. Our discussion is the 1-D limit of this more compre-132 hensive analysis. If the statistics are zonally uniform (i.e., homogeneous), then EOF analysis 133 will yield a pure Fourier decomposition of the flow. All EOFs will come in degenerate pairs 134 expressing the same fraction of variance, except for the single wavenumber 0 (annular) mode. 135 The ordering of the Fourier coefficients depends on the Fourier decomposition of f. The 136 covariance function $f(\Delta \lambda)$ is defined for $0 \leq \Delta \lambda \leq \pi$, where we express longitude in radians. 137 The variance associated with a mode of wavenumber k is then given by 138

$$\operatorname{var}(k) = \frac{1}{\pi} \int_0^{\pi} f(\lambda) \cos(k\lambda) \, d\lambda \tag{3}$$

For all k other than 0, there will be two modes, each characterizing this amount of variance. 139 Setting k = 0 in (3) shows that the integral of the covariance function determines the 140 variance associated with the annular mode. If we normalize the covariance function by f(0)141 to obtain the correlation, the integral in turn provides the relative variance. For systems with 142 zonally uniform statistics, there is thus a nice interpretation of the strength of the annular 143 mode: the fraction of the variance expressed by the annular mode is simply the "average" 144 of the correlation function between a given base point and all other points. This will hold 145 even in cases where the annular mode is not the first EOF. 146

Returning to the simple stochastic models in Section 2, we can now see how the two models were designed to have the same annular mode. Given that the variance at each grid point was set to 1 by construction, the covariance functions are equivalent to the correlation functions. The average correlation in Fig. 1c is 0.2 in both cases, so that the "annular mode" in each model explains 20% of the total variance. In model X_1 , the average correlation of 0.2 derives solely from the strong positive correlation over half a hemisphere. That is, the annular mode is the most important EOF, but it only reflects the annularity of the statistics. In model X_2 , half of the variance associated with the annular mode can be attributed to dynamical annularity, as given by the global baseline correlation of 0.1. The other half is attributable to the positive correlation on local scales, reflecting the spatial redness of the circulation.

Model X_2 shows that even in a system with dynamical annularity, the "strength" of the 158 annular model is enhanced by the spatial redness of the flow, which exists independent of 159 underlying dynamical annularity. The weaker spatial redness of the flow in model X_2 relative 160 to X_1 is visibly apparent in the structure of its samples (compare Fig. 1a and b), while the 161 presence of coherent dynamical annularity leads to the large gap between the fraction of 162 variance associated with wavenumber 0 and other waves in the EOF spectrum in Fig. 1c. 163 It follows that an annular EOF is more likely to reflect dynamical annularity when there is 164 large separation between the variance explained by it and higher order modes. In this case, 165 the average correlation over all longitudes arises from far field correlation and not simply 166 the local positive correlations associated with the spatial redness of the circulation. 167

The models in Section 2 are two examples from a family of stochastic systems with spatial correlation structure

$$f(\lambda) = (1 - \beta)e^{-(\lambda/\alpha)^2} + \beta, \qquad (4)$$

illustrated graphically in Fig. 3a. The parameter α is the spatial decorrelation scale (defined as the Gaussian width of the correlations in units of radians) and parameter β is the baseline annular correlation of the model. For systems with this spatial decorrelation structure, the leading EOF is always annular and the second and third EOFs always have wave 1 structure, even if there is no annular correlation (i.e., $\beta = 0$). This follows from the fact that a Fourier transform of a Gaussian is a Gaussian, such that power is always maximum at zero and decays with higher wavenumbers.

Fig. 3b summarize the variance explained by the leading EOFs of the system considered in Fig. 3a as a function of the spatial decorrelation scale (ordinate) and the amplitude of the baseline annular correlation (abscissa). The contours indicate the variance explained by the leading (annular) EOF; the shading indicates the ratio of the variance between the leading and second (wavenumber one) EOFs. Dark blue shading indicates regions where the EOFs are degenerate (explain the same amount of variance). White shading indicates regions where the first EOF explains about twice the variance of the second EOF.

At the origin of the plot ($\alpha \rightarrow 0$ and $\beta = 0$), the system approaches the white noise limit, and all EOFs become degenerate. Traveling right along the x-axis from the origin (i.e., keeping the spatial decorrelation scale α infinitesimally small and increasing the baseline annular correlation with β), we find that the variance associated with the wavenumber 0 annular mode is simply given by the value of β . Here the spatial decorrelation scale collapses to a single longitude, so all higher modes are degenerate, and the strength of the annular mode derives entirely from dynamical annularity.

If one instead travels upward from the origin, allowing α to increase but keeping $\beta = 0$, the 191 strength of the annular mode increases as well, despite their being no dynamical annularity. 192 These are systems where the annular mode only reflects the *annularity of the statistics*, not 193 annularity of the motions. As α gets increasingly large, positive correlations will develop 194 at all longitudes by virtue of the fact that the spatial decorrelation scale is longer than a 195 latitude circle. At this point, the spatial redness of the atmospheric motions gives rise to a 196 baseline annular correlation due to the relatively short length of the latitude circle. When 197 the spatial redness of the flow exceeds half of a latitude circle (0.5 on the ordinate axis). 198 then the variance of the leading (annular) EOF explains \sim twice the variance of the second 199 (wavenumber one) EOF. 200

Model 1 sits in the blue shaded region along the ordinate (see blue circle in Fig. 3b), with a spatial decorrelation scale of approximately 0.23 radians. Model 2 (the red square) was designed to have baseline annular correlation of 0.1 (i.e., $\beta = 0.1$), but with an annular mode that express the same fraction of variance, requiring a local correlation $\alpha \approx 0.13$ radians.

²⁰⁵ The simple models considered in this and the previous section provide insight into the

conditions that give rise to annular EOFs, and to the importance of the variance explained by the leading EOFs in distinguishing between statistical and dynamical annularity. In the following sections we apply these insights to output from a general circulation model and observations. In the case of complex geophysical flows with out-of-phase correlations between remote longitudes (i.e., teleconnections), one must consider not only the variance explained by the leading EOFs, but also the spatial correlation structure $f(\Delta\lambda)$.

4. The annularity of the circulation in models and re analysis

How does the balance between dynamical vs. statistical annularity play out in general 214 circulation models and observations? In this section, we apply the insights gained from the 215 simple models to longitudinal variations of the atmospheric circulation at a single latitude, 216 e.g., variations in sea level pressure or geopotential height at 50°S. We focus on a single 217 latitude to provide a direct analogue to the simple one-dimensional stochastic models in 218 previous sections, albeit a single latitude serves as a stiff test for annular behavior. The 219 northern and southern annular mode patterns are based on EOF analysis of two-dimensional 220 SLP or geopotential height fields, where spherical geometry naturally connects the circulation 221 at all longitudes over the pole. 222

223 a. Annular variability in a dry dynamical core

We first consider a moisture free, 3-dimensional primitive equation model on the sphere, often referred to as a dry dynamical core. The model is run with a flat, uniform lower boundary, so that all the forcings are independent of longitude. Hence the circulation is statistically annular, making it an ideal starting point to connect with the theory outlined in the previous section.

The model is a spectral primitive equation model developed by the Geophysical Fluid Dy-229 namics Laboratory (GFDL), run with triangular truncation 42 (T42) spectral resolution and 230 20 evenly spaced σ -levels in the vertical. It is forced with Held and Suarez (1994) "physics," 231 a simple recipe for generating a realistic global circulation with minimal parameterization. 232 Briefly, all diabatic processes are replaced by Newtonian relaxation of the temperature to-233 ward an analytic profile approximating an atmosphere in radiative-convective equilibrium, 234 and interaction with the surface is approximated by Rayleigh friction in the lower atmo-235 sphere. The equilibrium temperature profile is independent of longitude and time, so there 236 is no annual cycle. 237

A key parameter setting the structure of the equilibrium temperature profile is the tem-238 perature difference between the equator and pole, denoted $(\Delta T)_y$ by Held and Suarez (1994). 239 As explored in a number of studies (e.g., Gerber and Vallis 2007; Simpson et al. 2010; 240 Garfinkel et al. 2013), the strength of coupling between the zonal mean jet and baroclinic 241 eddies is sensitive to the meridional structure of the equilibrium temperature profile. A 242 weaker temperature gradient leads to stronger zonal coherence of the circulation and en-243 hanced persistence of the annular mode. We use this sensitivity to contrast integrations 244 with varying degrees of dynamical annularity. 245

The temperature difference $(\Delta T)_y$ strongly influences the climatology of the model, as illustrated by the near surface winds (blue curves) in Fig. 4, and can be compared with similar results based on ERA-Interim reanalysis in Fig. 6. The results are based on 10,000 day integrations, exclusive of a 500 day spin up. The default setting for $(\Delta T)_y$ is 60° C, and drives a fairly realistic equinoctial climatology with jets at 46° latitude in both hemispheres. With a weaker temperature gradient, $(\Delta T)_y = 40^\circ$ C, the jets weaken and shifts equatorward to approximately 38°.

The annular modes – defined as the first EOFs of daily zonal mean SLP – are illustrated by the red curves in in Fig. 4 (the output is normalized by the square root cosine of latitude before computing the EOFs, following Gerber et al. 2008; Baldwin and Thompson 2009).

By definition, the positive phase of the annular mode is defined as low SLP over the polar 256 region and thus a poleward shift of the model jet. We use the leading EOFs of SLP to 257 define the annular modes since SLP captures the barotropic component of the flow and is 258 frequently used in previous studies of annular variability (e.g., Thompson and Wallace 2000). 259 In practice, analyses of the near surface zonal wind field (not shown) yield the same patterns 260 of variability: the first principal component time series associated with the leadings EOFs 261 of zonal mean SLP and 850 hPa zonal wind are strongly correlated, $R^2 = 0.92$ and 0.88 for 262 $(\Delta T)_y = 40$ and 60° C, respectively. The centers of action of the annular modes in sea level 263 pressure vary between the two simulations, and are indicated by vertical black lines. In the 264 following, we focus our analyses on latitudes corresponding to the centers of action of the 265 annular modes, contrasting it with similar analysis at their nodes. 266

The top row in Fig. 5 compares the spatial decorrelation structure of sea level pressure 267 anomalies as a function of longitude at these three key latitudes. Results for the integration 268 with weak and standard HS temperature gradients are indicated by blue and red colors, 269 respectively. The bottom row shows the variances explained by the leading EOFs of SLP 270 calculated along the same latitude bands (i.e., the EOFs are calculated as a function of 271 longitude and time along the indicated latitude bands). We applied a 10 day low pass Lanczos 272 filter (Duchon 1979) to the data before our analysis to reduce the influence of synoptic 273 scale variability, but the results are qualitatively similar when based on daily or monthly 274 mean data. To further reduce the sampling uncertainty, the autocorrelation functions were 275 averaged over all longitudes and the EOF spectra were computed directly with equation 276 (3). This has the effect of imposing zonally symmetric statistics, which would be the case 277 with infinite sampling, and the results are virtually identical if we use the full fields for the 278 calculations. 279

We focus first on the equatorward center of action of the annular mode (left column). Variations in sea level pressure in this region are tightly linked with shifts in the midlatitude jet, as evidenced by the high correlation between zonal mean SLP at this single latitude and

the first principal component of zonal mean zonal wind: $R^2 = 0.95$ and 0.94 for $(\Delta T)_y = 40$ 283 and 60° C, respectively. The spatial decorrelation scale of SLP anomalies is approximately 284 60° longitude in both integrations (Fig. 5a). The east-west structure of the correlations 285 reflects the scale of synoptic disturbances and wave trains emanating in both directions. 286 The similarities between the spatial decorrelation scales reflects the fact that the deformation 287 radius is similar in both runs. The most striking difference between the two runs lies in their 288 baseline annular correlations. In the case of $(\Delta T)_y = 40$ the east-west structure of the 289 correlations rides on top of a zonally uniform correlation of approximately 0.3. In the case 290 of the model with $(\Delta T)_y = 60$, there is a weaker baseline correlation of approximately 0.1. 291 The difference in the underlying annularity of the flow explains the differences in the 292 variance spectra shown in Fig. 5d. In both model configurations, the leading EOFs are 293 annular; higher order modes generally increase monotonically in wavenumber with the ex-294 ception of waves 5 and 6, which explain larger fractions of the variance that waves 3 and 4, 295 consistent with the synoptic structure of the correlation functions. The distinction between 296 the EOFs between the two model configurations lies in their variance spectra. In the case 297 of $(\Delta T)_y = 40$, the annular mode explains more than four times the variance of the second 298 EOF. In the case of $(\Delta T)_y = 60$, the annular mode explains about two times the variance 299 of the second EOF. 300

The differences in the variance spectra for the two model configurations are consistent 301 with the theoretical arguments outlined in the previous section. Both model configurations 302 exhibit dynamical annularity, as evidenced by the fact the spatial correlations are > 0 at all 303 longitudes. However, the dynamical annularity is much more pronounced for the $(\Delta T)_y = 40$ 304 configuration, consistent with the larger ratio in variance explained between the first and 305 second EOFs. The $(\Delta T)_y = 60$ configuration is reminiscent of the simple stochastic model 306 X_2 , where the leading EOF explains approximately 20% of the variance in the flow: half due 307 to the dynamical annularity; half due to the spatial redness of the flow. 308

³⁰⁹ The annularity of flow is notably different along the node of the annular mode, which is

strongly linked with variations in the strength of the jet stream. Zonal mean sea level pressure 310 here is highly correlated with the second EOF of zonal mean zonal wind, which characterizes 311 fluctuations in the strength and width of the jet (e.g., Vallis et al. 2004): $R^2 = 0.88$ and 312 0.83 for $(\Delta T)_y = 40$ and 60° C, respectively. The leading EOFs of SLP along the nodes 313 of the annular modes are again annular, as is the case at the equatorward centers of action 314 (not shown). But along this latitude, there is no apparent baseline annular correlation in 315 either model configuration (Fig. 5b). Accordingly, the EOF variance spectra exhibit little 316 distinction between the variance explained by the first and second EOFs. The enhanced 317 dynamical annularity in the $(\Delta T)_y = 40$ case is thus associated chiefly with vacillations 318 of the jet stream's position, not fluctuations in its strength, which would be reflected by 319 dynamical annularity in SLP at this latitude. 320

At the minimum of the annular mode pattern on the poleward flank of the jet stream, 321 Fig. 5c and f, the relatively small size of the latitude circle leads to a strong baseline annular 322 correlation and thus clear dominance of the annular mode in the variance spectra. The 323 spherical effect is more pronounced for the $(\Delta T)_y = 60$ case since the minimum in the 324 EOF pattern is located very close to the pole (Fig. 4). As the length of the latitude circle 325 approaches the scale of the deformation radius, a single synoptic scale disturbance connects 326 all longitudes, enforcing zonally uniform statistics. While the result appears trivial in this 327 light, this geometric effect may play a significant role in helping the annular mode rise above 328 other modes in two-dimensional EOF analysis. The flow is naturally zonally coherent near 329 the pole, and the tendency for anticorrelation between pressures at polar and middle latitudes 330 may play a role in generating annular-scale motions at lower latitudes (e.g., Ambaum et al. 331 2001; Gerber and Vallis 2005). 332

It's important to note that the circulation is more realistic with the default Held and Suarez (1994) setting of $(\Delta T)_y = 60$, where the flow exhibits relatively modest zonal coherence at the midlatitude center of action (Fig. 5a). The stronger dynamical annularity in the $(\Delta T)_y = 40$ configuration is due to the weak baroclinicity of the jet and the zonally uniform boundary conditions. When zonal asymmetries are introduced to the model, the uniform motions are much reduced, even with weak temperature forcing (Gerber and Vallis 2007). Zonal asymmetries on Earth will thus likely both reduce the strength of globally coherent motions in the sense of equation (1), and break the assumption of uniform statistics in the sense of equation (2). We find, however, that both dynamical and statistical annularity are highly relevant to flow in reanalysis, at least in the Southern Hemisphere.

343 b. Annular variability in reanalysis

The data used in this section are derived from the European Center for Medium Range Weather Forecasting (ECMWF) Interim Reanalysis (ERA-I; Dee and coauthors 2011) over the period 1979 to 2013. All results are based on anomalies, where the annual cycle is defined as the long-term mean over the entire 35 year period. As done for the dynamical core, a 10 day low pass filter is applied to all data before computing correlations and performing the EOF analyses. Note that qualitatively similar results are derived from daily and monthlymean data.

Fig. 6 shows the meridional structures of (i) the climatological zonal mean zonal wind at 351 850 hPa and (ii) the southern and northern annular modes. The annular mode time series 352 are defined as the standardized leading PCs of zonal mean 850 hPa geopotential height, 353 Z_{850} , between 20-90 degrees latitude. Since the time series are standardized, the regression 354 patterns shown in Fig. 6 reveal the characteristic amplitude of a one standard deviation 355 anomaly in the annular modes. While the long-term mean circulation differs considerably 356 between the two hemispheres, the annular modes are remarkably similar, although the NAM 357 is slightly weaker than the SAM, consistent with the weaker climatological jet. Gerber and 358 Vallis (2005) suggest that the meridional structure of the annular modes tend to be fairly 359 generic, constrained largely by the geometry of the sphere and the conservation of mass and 360 momentum. 361

³⁶² The longitudinal correlation structures derived from the observations are not constrained

to be uniform with longitude, as is the case for the dry dynamical core. Nevertheless, they are 363 very similar from one base meridian to the next, particularly in the Southern Hemisphere. 364 For example, Fig. 7a shows four single point covariance maps based on Z_{850} at 50°S: the 365 covariance between Z_{850} at base points 0°, 90°E, 180°, and 90°W with all other longitudes. 366 We have shifted the four regression plots so that the base points overlie each other at the 367 center of the plot. Aside from slight variations in amplitude, there is remarkable uniformity 368 of the east-west correlation structure in the midlatitudes Southern Hemisphere circulation: 369 nearly all of the curves collapse upon each other. The correlation structures are positively 370 correlated over a range of approximately ± 60 degrees longitude and exhibit alternating 371 negative and positive lobes beyond that point. There is little evidence of global correlation, 372 as is the case with the default Held and Suarez (1994) model. 373

Fig. 7b extends the analysis in the top panel to include averages over all base meridians for 374 geopotential data at all latitudes. The figure is constructed as follows: (i) at a given latitude. 375 we calculate the zonal covariance structure for all possible base meridians, as opposed to just 376 four in Fig. 7a, (ii) we then average the resulting covariance structures after shifting them 377 to a common base meridian, (iii) we normalize the resulting "average covariance structure" 378 by the variance to convert to correlation coefficients, and lastly (iv) we repeat the analysis 379 for all latitudes. The resulting "average correlation structures" for 850 hPa geopotential 380 height are indicated by the shading in Fig. 7b. The black curve denotes the zero contour; 381 the gray curves denote a distance of ± 2500 km from the base longitude to provide a sense 382 of the sphericity of the Earth. Normalizing the covariance functions by the variance allows 383 us to compare the longitudinal structures in the tropics and the midlatitudes on the same 384 figure; otherwise the increase in the variance of Z_{850} with latitude (illustrated in Fig. 7c) 385 yields much larger amplitudes in the extratropics. 386

At middle latitudes, positive correlations extend over a distance of approximately 2500 km outward from the base longitude. Towards the polar regions, the autocorrelations extend over much of the latitude circle due to the increasingly smaller size of the zonal ring. The

austral polar regions are exceptional, in that the correlations extend not only around the 390 circumference of the latitude circle, but also well beyond 2500 km as far equatorward as 391 60°S. Interestingly, tropical geopotential height is also correlated over long distances. The 392 significant positive correlations at tropical latitudes are robust at most individual longitudes 393 outside of the primary centers of action of ENSO (not shown). The in-phase behavior 394 in tropical geopotential height is consistent with the dynamic constraint of weak pressure 395 gradients at tropical latitudes (Charney 1963; Sobel et al. 2001) and will be investigated 396 further in future work. Note that the amplitude of variations in geopotential height are 397 more than an order of magnitude weaker in the tropics than midlatitudes, as illustrated in 398 Fig. 7c. 399

The results shown in Fig. 7 are based on 10 day low pass filtered data. As discussed in Wettstein and Wallace (2010), large-scale structures in the atmospheric circulation are increasingly prevalent at lower frequency timescales. Analogous calculations based on monthly mean data (not shown) reveal a slight extension of the region of positive correlations at all latitudes, but overall the results are qualitatively unchanged. Notably, the midlatitude correlation structure is still dominated by alternating negative and positive anomalies beyond 2500 km, with little evidence of zonally coherent motions.

How does the average correlation structure shown in Fig. 7b project onto the EOFs of 407 the circulation? Fig. 8 characterizes the (top) "predicted" and (bottom) "actual" EOFs of 408 zonally-varying Z_{850} calculated separately for each latitude (e.g., results at 60° N indicate the 409 variance expressed by EOFs of Z_{850} sampled along the 60° N latitude circle). The "predicted" 410 EOFs are found assuming the statistics of Z_{850} are zonally uniform. In this case, the results 411 of the EOF analysis correspond to a Fourier decomposition of the flow (see discussion in 412 Section 3), and the variance captured by each wavenumber is determined by the average 413 correlation structure (Fig. 7b) applied to (3). Wavenumber 0 (i.e., annular mode) variability 414 emerges as the leading predicted EOF of the flow at virtually all latitudes, but explains a 415 much larger fraction of the variance of the flow in the tropics and polar regions than it does 416

in middle latitudes, where wavenumbers 0, 1, 2, and 3 are of nearly equal importance. The weak amplitude of wavenumber 0 variability in middle latitudes is consistent with the lack of zonally coherent motions in the average correlation structures shown in Fig. 7b.

The "actual" EOFs are computed directly from Z_{850} , and thus do not assume that the 420 statistics of the flow are zonally uniform. Red dots indicate when the EOF is dominated 421 by wavenumber 0 variability, orange dots by wave 1 variability, and so forth for higher 422 wavenumbers. (Note that for the predicted EOFs, all wavenumbers other than 0 include two 423 modes in quadrature that account for equal variance, whereas for the actual EOFs, the two 424 modes associated with each wavenumber are not constrained to explain the same fraction of 425 the variance.) Comparing the top and bottom panels, it is clear that the EOFs predicted 426 from the average correlation structure, assuming zonally-uniform statistics, provide useful 427 insight into the true EOFs of the flow. The meridional structures of the variance explained 428 by the leading predicted and actual EOFs are very similar: in the high latitudes and tropics. 429 the first mode is dominated by wavenumber 0 variability and explains a much larger fraction 430 of the flow than EOF2; in the midlatitudes, the EOFs cluster together and are largely 431 degenerate. 432

The key point derived from Figs. 7 and 8 is that the "average correlation function" pro-433 vides a clear sense of where the EOFs of the flow derive from robust dynamical annularity. 434 The circulation exhibits globally coherent motions in the tropics and high latitudes, partic-435 ularly in the SH high latitudes (Fig. 7), and it is over these regions that the leading EOFs 436 predicted from the average correlation function (Fig. 8a) and from actual variations in the 437 flow (Fig. 8b) exhibit robust wavenumber 0 variability. In contrast, the circulation does 438 not exhibit globally coherent variations at middle latitudes (Fig. 7b), and thus both the 439 predicted and actual EOFs of the flow are degenerate there (Fig. 8). Annular variations in 440 lower tropospheric geopotential height are consistent with dynamical annularity of the flow 441 in the polar and tropical regions, but statistical annularity at middle latitudes. 442

⁴⁴³ Fig. 9 explores the average correlation structure in three additional fields. Fig. 9a,b show

results based on the zonal wind at 850 hPa (U_{850}) , which samples the barotropic component of the circulation, and thus emphasizes the eddy-driven jet in middle latitudes. Fig. 9c,d are based on the zonal wind at 50 hPa and (U_{50}) , which samples both the QBO and variations in the stratospheric polar vortices, and Fig. 9e,f, the eddy kinetic energy at 300 hPa (EKE_{300}) , which samples the baroclinic annular mode (Thompson and Barnes 2014).

The most pronounced zonal correlations in U_{850} are found in two locations: (i) along 449 60 degrees South, where positive correlations wrap around the latitude circle, and (ii) in 450 the deep tropics, where positive correlations extend well beyond the 2500 km isopleths. At 451 ~ 60 degrees South, the zonally coherent variations in the zonal flow follow from geostrophic 452 balance and the coherence of the geopotential height field over Antarctica, as observed in 453 Fig. 7b. In the subtropics, the far reaching correlations follow from geostrophic balance 454 and the coherence of the geopotential height field in the tropics. At the equator, where 455 geostrophic balance does not hold, Z_{850} exhibits globally coherent motions (consistent with 456 weak temperature gradients in the tropics), while U_{850} becomes significantly anticorrelated 457 at a distance. As a result, a zonally uniform annular mode dominates the EOF spectrum 458 of Z_{850} in the tropics (Fig. 8b) whereas wavenumber 1 tends to dominate latitudinal EOF 459 analysis of U_{850} (not shown). Neither Z_{850} (Fig. 7b) or U_{850} (Fig. 9a) exhibit zonally coherent 460 motions at midlatitudes, where the autocorrelation function decays to zero ~ 2500 kilometers 461 and oscillates in the far field. 462

The results shown in Figs. 7b and 9a are representative of the correlation structure of 463 geopotential height and zonal wind throughout the depth of the troposphere (e.g., very 464 similar results are derived at 300 hPa; not shown). However, the correlation structure of the 465 zonal flow changes notably above the tropopause, as indicated in Fig. 9c and d. Consistent 466 with the increase in the deformation radius in the stratosphere, the scale of motions increases 467 (note that the grey lines now indicate the $\pm 5,000$ km isopleths). The most notable differences 468 between the troposphere and stratosphere are found in the tropics, where the Quasi Biennial 469 Oscillation (QBO) leads to an overwhelming annular signal. Marked annularity is also found 470

⁴⁷¹ in the high latitudes, in the vicinity of both extratropical polar vortices. As observed in the
⁴⁷² analysis of the tropospheric zonal wind and geopotential height, however, there is no evidence
⁴⁷³ of dynamical annularity in the midlatitudes.

The average correlation structure of EKE_{300} (Fig. 9e) is notably different. Unlike Z or 474 U, the zonal correlation of EKE is remarkably similar across all latitudes, with a slight 475 peak in the physical scale of the correlation in the Southern Hemisphere midlatitudes where 476 the baroclinic annular mode has largest amplitude (e.g., Thompson and Woodworth 2014). 477 Interestingly, EKE_{300} remains positively correlated around the globe at all latitudes, albeit 478 very weakly in the far field. The non-negative decorrelation structure leads to the dominance 479 of a zonally uniform "annular mode" in EKE at each individual latitude poleward of 25°S, 480 as shown in Fig. 10. However, the separation between the first and second modes (which 481 characterize wavenumber 1 motions) is modest at most latitudes. The largest separations 482 between the first and second EOFs EKE_{300} are found near 45°, where the top annular EOF 483 represents about 16% of the variance, compared to about 11% for the second and third 484 EOFs. 485

486 c. Quantifying the role of dynamical annularity in EKE_{300} with the stochastic model

At first glance, the weak separation between the first and second EOFs of EKE_{300} suggests that much of the annular signal owes itself to local correlations, i.e., statistical annularity. However, a comparison of the EOFs of the observations with those derived from the "Gaussian + baseline" model explored in Sections 2 and 3 allows us to be more quantitative about the relative role of dynamical vs. statistical annularity in the context of the baroclinic annular mode.

Fig. 11 compares (a) the zonal correlation structure and (b) EOF spectrum of the 300 hPa eddy kinetic energy at 46°S with three fits of the simple stochastic model, each designed to capture key features of the observed behavior. Recall that the model has two parameters: the width of local correlation, α , and the baseline correlation strength, β . As our goal is to focus on the relative role of dynamical annularity, characterized by the difference between the variance expressed by the top EOF (annular mode) and higher order modes, we remove one degree of freedom by requiring that the top EOF express the same fraction of variance in both the simple model and the reanalysis. Hence the first mode explains 16% of the variance for all cases in Fig. 11b. From equation (3), this condition is equivalent to keeping the total integral of the correlation structure fixed.

In the first fit (red curve, Fig. 11a), we optimize the stochastic model at short range, approximating the fall in local correlation in EKE as a Gaussian with width $\alpha = 17$ degrees. To maintain the variance expressed by the top EOF, parameter β must then be set to 0.08. This choice effectively lumps the midrange shoulder of the EKE_{300} correlation (30-100°) with the long range (100-180°), where the observed correlation drops to about 0.03. As a result, the stochastic model exhibits a stronger separation between the first and second EOFs than for EKE_{300} (red triangles vs. black squares in Fig. 11b).

An advantage of fitting the data to the simple stochastic model is that it allows us to explicitly quantify the role of dynamical annularity. Since the variance expressed by the annular mode is just the integral of correlation function (equation 3), the contribution of the long range correlation (dynamical annularity) to the total power of the annular mode is:

$$\frac{\int_0^{180} \beta \, d\lambda}{\int_0^{180} [(1-\beta)e^{-(\lambda/\alpha)^2} + \beta] \, d\lambda} \approx \frac{\beta}{\frac{\alpha(1-\beta)\sqrt{\pi}}{360} + \beta} \tag{5}$$

where we have expressed longitude λ and parameter α in degrees. For the approximation on the left hand side, we assume that $\alpha \ll 180$, such that the local correlation does not significantly wrap around the latitude circle. For the "red" model in Fig. 11, dynamical annularity accounts for half of the total strength of the annular mode. Given the fact that it exhibits a stronger separation between the first and second EOFs, however, this is an upper bound on the role of dynamical annularity in EKE_{300} at 46°S.

⁵²⁰ We obtain a lower bound on the dynamical annularity with the blue fit in Fig. 11a, where ⁵²¹ the correlation structure is explicitly matched at long range. To conserve the total integral, ⁵²² parameter α in this case must be set to 27°, effectively lumping in the shoulder between ⁵²³ 30 and 100° with the local correlation. These parameters would suggest that dynamical ⁵²⁴ annularity contributes only $1/5^{\text{th}}$ of annular mode variance. This is clearly a lower limit, ⁵²⁵ however, as the separation between the first and second EOFs (Fig. 11b) is too small relative ⁵²⁶ to that of EKE_{300} .

Lastly, we use both degrees of freedom of the stochastic model to find an optimal fit of 527 the EOF spectrum, matching the variance expressed by the top two EOFs (effectively the 528 top three, as higher order modes come in pairs). The fit, with parameters $\alpha = 23^{\circ}$ and 529 $\beta = 0.05$, is not shown in Fig. 11a (to avoid clutter), but the resulting EOF spectrum is 530 illustrated by the green triangles in Fig. 11b. With this configuration, dynamical annularity 531 contributes approximately 1/3rd of the annular mode, leaving the remaining two thirds to 532 statistical annularity associated with the local redness of the EKE. The EOF spectra of this 533 model diverges from EKE_{300} for higher order modes, such that we should take this as a 534 rough estimate of the true role of dynamical annularity in the Baroclinic Annular Mode. 535

The location of the three models (lower, optimal, and upper bounds), are marked by the black x's in Fig. 3b, to put them in context of earlier results. The fits roughly fill in the space between models X_1 and X_2 , but on a lower contour where the annular mode expresses 16% of the total variance, as opposed to 20%. The rapid increase in the role of dynamical annularity (from 1/5 to 1/2) matches the rapid ascent in the importance of EOF 1 relative to EOF 2, emphasizing the utility of this ratio as an indicator of dynamical annularity.

542 5. Concluding Remarks

We have explored the conditions that give rise to annular patterns in Empirical Orthogonal Function analysis across a hierarchy of systems: highly simplified stochastic models, idealized atmospheric GCMs, and reanalyses of the atmosphere. Annular EOFs can arise from two conditions, which we term *dynamical annularity* and *statistical annularity*. The former arises from zonally coherent dynamical motions across all longitudes, while the latter arises from zonally coherent statistics of the flow (e.g., the variance), even in the absence of significant far field correlations. Atmospheric reanalyses indicate that both play important roles in the climate system and may aid in the interpretation of climate variability, but only dynamical annularity reflects zonally coherent motions in the circulation.

In general, dynamical annularity arises when the dynamical scales of motion approach 552 the scale of the latitude circle. The average zonal correlation structure (e.g., Fig. 7) thus 553 provides a robust measure of dynamical annularity. In addition, the simple stochastic model 554 suggests that the degree of dynamical annularity in a leading EOF is indicated by the ratio 555 of the variances explained by the first two zonal EOFs of the flow. As a rule of thumb, if 556 the leading annular EOF explains more than twice the variance of the second EOF, then 557 dynamical annularity plays a substantial role in the annular mode. Note, however, that this 558 intuition does not necessarily apply to two-dimensional EOFs in latitude-longitude space, 559 where coherence of meridional variability can lead to dominance of an annular EOF, even 560 when there is explicitly no dynamical annularity (e.g., Gerber and Vallis 2005). 561

Annular EOFs always – at least partially – reflect statistical annularity of the circulation; 562 zonally coherent motions necessarily imply some degree of zonal coherence. Far field correla-563 tion in the average zonal correlation structure robustly indicates dynamical annularity, but 564 quantification of the statistical annularity requires further analysis, either comparison of the 565 zonal correlation at different base points (e.g., Fig. 7a) or comparison of the predicted and 566 observed zonal EOFs (e.g., Figs. 8 and 10). The localization of the North Pacific and North 567 Atlantic storm tracks limits the utility of the zonal correlation structure in the Northern 568 Hemisphere troposphere. But the Southern Hemisphere tropospheric circulation is remark-569 ably statistically annular, such that one can predict the full EOF spectrum from the average 570 correlation structure alone. 571

As discussed in Deser (2000) and Ambaum et al. (2001) and shown here, the observed geopotential height and zonal wind fields do not exhibit robust far field correlations beyond $\sim 60^{\circ}$ longitude in the midlatitudes (i.e., equatorward of roughly 60° latitude). However, the

geometry of the sphere naturally favors a high degree of zonal coherence at polar latitudes 575 in both hemispheres, particularly in the geopotential height field. Hence, the northern 576 and sourthern annular modes do not arise from dynamical annularity in the midlatitude 577 tropospheric circulation, but derive a measure of dynamical annularity from the coherence 578 of geopotential height within their polar centers of action. The dynamical annularity of 579 the polar geopotential height field extends to the zonal wind field at high latitudes ($\sim 60^{\circ}$ 580 latitude) in the Southern Hemisphere, but less so in the Northern Hemisphere. Regions 581 where dynamical annularity plays a seemingly important role in the circulation thus include: 582

i. the geopotential height over polar latitudes in both hemispheres, which arises chiefly from the geometry of the sphere,

- ii. the zonal wind field near 60° latitude in the Southern Hemisphere, which exhibits
 greater dynamical annularity than would be expected from the geometry of the sphere,
- iii. the tropical geopotential height field, presumably because temperature gradients must
 be weak in this region (e.g., Charney 1963),
- 589

590

iv. the tropospheric zonal flow near ~ 15 degrees latitude; these features arises via geostrophy and the dynamic annularity of the tropical Z field,

v. the zonal wind field in the equatorial stratosphere, which reflects the QBO,

vi. the eddy kinetic energy in the midlatitude Southern Hemisphere, consistent with the
baroclinic annular mode and the downstream development of wave packets in the
austral stormtrack (Thompson et al. submitted). The dynamical annularity of the
eddy activity is surprising given the lack of dynamic annularity in the midlatitude
barotropic jets, which are intimately connected with the eddies through the baroclinic
lifecycle.

598

The annular leading EOFs of the midlatitude flow have been examined extensively in

previous work, but to our knowledge, the annular nature of tropical tropospheric Z has received less attention. We intend to investigate this feature in more detail in a future study.

601 Acknowledgments.

We thank two anonymous reviewers for constructive feedback on an earlier version of this manuscript. EPG was supported by the National Science Foundation (NSF) through grant AGS-1546585 and DWJT was supported by the NSF through the Climate Dynamics Program.

APPENDIX

607

608

606

Technical details of the stochastic models

The stochastic models in Section 2 are, in a sense, constructed in reverse, starting with 609 the desired result. We begin with the correlation structure f, as shown in Fig. 1c, and 610 project it onto cosine modes as in (3). This gives us the EOF spectra shown in Fig. 2c, 611 i.e., how much variance (which we now denote v_k) should be associated with each mode of 612 wavenumber k. Note that not all correlation structures are possible. A sufficient criteria, 613 however, is that the projection of every cosine mode onto f is non-negative (i.e., all $v_k \ge 0$). 614 Realizations of the models, as shown in 1a and b, are constructed by moving back into 615 grid space, 616

$$X(\lambda, j) = v_0^{1/2} \delta_{0,j} + \sum_{k=1}^{\infty} (2v_k)^{1/2} [\delta_{k1,j} \sin(k\lambda) + \delta_{k2,j} \cos(k\lambda)].$$
(A1)

where all the $\delta_{k,j}$ are independent samples from a Normal distribution with unit variance and λ is given in radians. In practise only the top 15 wavenumbers are needed, as the contribution of higher order modes becomes negligible.

Note that it is possible to construct an infinite number of stochastic systems which have the same correlation structure f. We have take a simple approach by using the Normal distribution to introduce randomness. Any distribution with mean zero could be used, which would impact the variations in individual samples – and so the convergence of the system in j – but not the statistical properties in the limit of infinite sampling.

REFERENCES

- Ambaum, M. H. P., B. J. Hoskins, and D. B. Stephenson, 2001: Arctic Oscillation or North
 Atlantic Oscillation? J. Climate, 14, 3495–3507.
- Baldwin, M. P. and D. W. J. Thompson, 2009: A critical comparison of stratospheretroposphere coupling indices. *Quart. J. Roy. Meteor. Soc.*, 135, 1661–1672.
- Batchelor, G. K., 1953: The Theory of Homogeneous Turbulence. Cambridge University
 Press, 197 pp.
- ⁶³³ Charney, J. G., 1963: A note on large-scale motions in the tropics. J. Atmos. Sci., 20,
 ⁶³⁴ 607–609.
- Dee, D. P. and . coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. *Quart. J. Roy. Meteor. Soc.*, 137, 553–597,
 doi:10.1002/qj.828.
- ⁶³⁸ Deser, C., 2000: On the teleconnectivity of the "arctic oscillation". *Geophysical Research* ⁶³⁹ Letters, 27 (6), 779–782, doi:10.1029/1999GL010945.
- ⁶⁴⁰ Dommenget, D. and M. Latif, 2002: A cautionary note on the interpretation of EOFs. J.
 ⁶⁴¹ Climate, 15, 216–225.
- ⁶⁴² Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Applied Meteor., 18,
 ⁶⁴³ 1016–1022.
- Garfinkel, C. I., D. W. Waugh, and E. P. Gerber, 2013: The effect of tropospheric jet latitude
 on coupling between the stratospheric polar vortex and the troposphere. J. Climate, 26,
 2077–2095, doi:10.1175/JCLI-D-12-00301.1.

- Gerber, E. P. and G. K. Vallis, 2005: A stochastic model for the spatial structure of annular
 patterns of variability and the NAO. J. Climate, 18, 2102–2118.
- Gerber, E. P. and G. K. Vallis, 2007: Eddy-zonal flow interactions and the persistence of
 the zonal index. J. Atmos. Sci., 64, 3296–3311.
- Gerber, E. P., S. Voronin, and L. M. Polvani, 2008: Testing the annular mode autocorrelation
 timescale in simple atmospheric general circulation models. *Mon. Wea. Rev.*, 136, 1523–
 1536.
- Hartmann, D. L. and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 1303–1315.
- ⁶⁵⁶ Held, I. M. and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical
 ⁶⁵⁷ cores of atmospheric general circulation models. *Bull. Am. Meteor. Soc.*, **75**, 1825–1830.
- Karoly, D. J., 1990: The role of transient eddies in low-frequency zonal variations of the southern hemisphere circulation. *Tellus A*, **42**, 41–50, doi:10.1034/j.1600-0870.1990.00005. X.
- Kidson, J. W., 1988: Interannual variations in the Southern Hemisphere circulation. J.
 Climate, 1, 1177–1198.
- Kutzbach, J. E., 1970: Large-scale features of monthly mean Northern Hemisphere anomaly
 maps of sea-level pressure. Mon. Wea. Rev., 98, 708–716.
- Lee, S. and S. B. Feldstein, 1996: Mechanism of zonal index evolution in a two-layer model.
 J. Atmos. Sci., 53, 2232–2246.
- ⁶⁶⁷ Lorenz, D. J. and D. L. Hartmann, 2001: Eddy-zonal flow feedback in the Southern Hemi-⁶⁶⁸ sphere. J. Atmos. Sci., **58**, 3312–3327.
- Lorenz, E. N., 1951: Seasonal and irregular variations of the Northern Hemisphere sea-level
 pressure profile. J. Meteor., 8, 52–59.

- Marshall, J., D. Ferreira, J.-M. Campin, and D. Enderton, 2007: Mean climate and variability of the atmosphere and ocean on an aquaplanet. J. Atmos. Sci., 64, 4270–4286, doi:10.1175/2007JAS2226.1.
- Monahan, A. H., J. C. Fyfe, M. H. P. Ambaum, D. B. Stephenson, and G. R. North, 2009:
 Empirical Orthogonal Functions: The Medium is the Message. J. Climate, 22, 6501–6514,
 doi:10.1175/2009JCLI3062.1.
- Robinson, W. A., 1991: The dynamics of low-frequency variability in a simple model of the
 global atmosphere. J. Atmos. Sci., 48, 429–441.
- Shindell, D. T., R. L. Miller, G. A. Schmidt, and L. Pandolfo, 1999: Simulation of recent
 northern winter climate trends by greenhous-gas forcing. *Nature*, **399**, 452–455.
- Simpson, I. R., M. Blackburn, J. D. Haigh, and S. N. Sparrow, 2010: The impact of the
 state of the troposphere on the response to stratospheric heating in a simplified GCM. J.
 Climate, 23, 6166–6185.
- Sobel, A. H., J. Nilsson, and L. M. Polvani, 2001: The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmos. Sci., 58, 3650–3665.
- Thompson, D. W. J. and E. A. Barnes, 2014: Periodic variability in the large-scale Southern
 Hemisphere atmospheric circulation. *Science*, 343, 641–645, doi:10.1126/science.1247660.
- ⁶⁸⁸ Thompson, D. W. J., B. R. Crow, and E. A. Barnes, submitted: Intraseasonal periodicity ⁶⁸⁹ in the southern hemisphere circulation on regional spatial scales. *J. Atmos. Sci.*
- Thompson, D. W. J. and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. *Geophys. Res. Lett.*, **25**, 1297– 1300.
- ⁶⁹³ Thompson, D. W. J. and J. M. Wallace, 2000: Annular modes in the extratropical circulation.
- Part I: Month-to-month variability. J. Climate, 13, 1000–1016.

- ⁶⁹⁵ Thompson, D. W. J. and J. D. Woodworth, 2014: Barotropic and baroclinic annular ⁶⁹⁶ variability in the Southern Hemisphere. J. Atmos. Sci., **71**, 1480–1493, doi:10.1175/ ⁶⁹⁷ JAS-D-13-0185.1.
- ⁶⁹⁸ Trenberth, K. E. and D. A. Paolino, 1981: Characteristic patterns of variability of sea level ⁶⁹⁹ pressure in the Northern Hemisphere. *Mon. Wea. Rev.*, **109**, 1169–1189.
- Vallis, G. K., E. P. Gerber, P. J. Kushner and B. A. Cash, 2004: A Mechanism and Simple
 Dynamical Model of the North Atlantic Oscillation and Annular Modes. J. Atmos. Sci.,
 61, 264–280.
- Wallace, J. M. and D. S. Gutzler, 1981: Teleconnections in the geopotential height field
 during the Northern Hemisphere winter. *Mon. Wea. Rev.*, 109, 784–812.
- Wallace, J. M. and D. W. J. Thompson, 2002: The Pacific center of action of the Northern
 Hemisphere annular mode: Real or artifact? J. Climate, 15, 1987–1991.
- Wettstein, J. J. and J. M. Wallace, 2010: Observed patterns of month-to-month storm-track
 variability and their relationship to the background flow. J. Atmos. Sci., 67, 1420–1437,
 doi:10.1175/2009JAS3194.1.
- Yu, J. Y. and D. L. Hartmann, 1993: Zonal flow vacillation and eddy forcing in a simple
 GCM of the atmosphere. J. Atmos. Sci., 50, 3244–3259.

List of Figures 712

1

713

714

715

716

717

718

719

720

721

722

Two stochastic models of variability in longitude. (a) and (b) illustrate sample profiles from models X_1 and X_2 , respectively. The profiles are independently and identically sampled from the respective distribution of each model, but could be interpreted as different realizations in time, chose over an interval sufficiently large for the flow to lose all memory from one sample to the next. The y-axes are unitless, as each model has been designed to have unit variance. (c) shows $\operatorname{cov}_X(0,\lambda)$ for each model, the covariance between variability at each longitude with that at $\lambda = 0$. As the statistics are annular, the covariance structure can be fully characterized by this one sample, i.e., $cov_X(\lambda_1, \lambda_2) =$ $\operatorname{cov}_X(0, |\lambda_1 - \lambda_2|).$

34

35

36

2The EOF structure of the two stochastic models. (a) and (b) show the top 723 three EOFs for models 1 and 2, respectively, normalized to have unit variance. 724 In the limit of infinite sampling, the EOF patterns from the two models are 725 identical. (c) The models' EOF spectra, marking the fraction of the total 726 variance associated with each of the top 20 EOFs. 727

3 The impact of local vs. annular correlation in the "Gaussian + baseline" 728 family of stochastic models. (a) illustrates the parameters α and β which 729 characterize the correlation function $f(\lambda)$ for each model. (b) maps out the 730 variance expressed by the first EOF (black contours) and the ratio of the 731 variance expressed by the first EOF to that of the second (color shading) as a 732 function of α and β . The first EOF is always annular, and the second always a 733 wavenumber 1 pattern. The blue and red markers show the location of models 734 X_1 and X_2 (illustrated in Figs. 1 and 2) in parameter space, respectively; both 735 fall along the same black contour, as their top EOF expresses 0.2 of the total 736 variance. The black x's will be discussed in the context of Fig. 11 737

4 The mean jet structure and annular modes of the Held and Suarez (1994) 738 model for the (a) $(\Delta T)_y = 40$ and (b) $(\Delta T)_y = 60^{\circ}$ C integrations. The jet is 739 characterized by the time mean 850 hPa winds (blue lines, corresponding with 740 the left y-axes), and the annular mode is the first EOF of daily, zonal mean 741 SLP (red, right y-axes), normalized to indicate the strength of 1 standard 742 deviation anomalies. The latitudes of the node, equatorward and poleward 743 lobes of the annular mode are highlighed, and correspond with the analysis 744 in Fig. 5. 745

37

38

⁷⁴⁶ 5 Characterizing the zonal structure of 10 day pass filtered SLP anomalies in ⁷⁴⁷ the Held and Suarez (1994) model. (a,d) and (c,f) show analysis based at ⁷⁴⁸ the latitude of the equatorward and poleward centers of action of the annular ⁷⁴⁹ mode, respectively, while (b,e) show analysis based at the nodes of the annular ⁷⁵⁰ mode. (a,b,c) show the zonal correlation structure $f(\lambda)$ and (d,e,f) the fraction ⁷⁵¹ of variance associated with each of the top 20 EOFs for the integrations with ⁷⁵² (blue) $(\Delta T)_y = 40$ and (red) $(\Delta T)_y = 60^\circ$ C.

The same as Fig. 4, but for the (a) Southern and (b) Northern Hemispheres
in ECWMF Interim reanalysis, based on the period 1979-2013. To avoid
interpolation over mountainous regions, the annular modes are defined in
terms of daily, zonal mean 850 hPa geopotential height, Z₈₅₀, instead of SLP. 39

7 Characterizing the longitudinal correlation structure of 10 day low pass filtered 757 850 hPa geopotential height in ERA-Interim. (a) Sample single point corre-758 lation maps at 46° S (the equatorward center of action of the SAM), shifted 759 so that base points line up. The black line is the mean of the four curves, 760 an "average single point correlation map". (b) The average zonal correlation 761 structure of 10 day low pass filtered Z_{850} as a function of latitude. The con-762 tour interval is 0.05, with black contours marking zero correlation, and gray 763 lines indicate a separation of 5000 km, to provide a sense of geometry on the 764 sphere. (c) The root mean square amplitude of 10 day low pass filtered Z_{850} 765 anomalies. 766

8 A comparison of predictions based on zonally uniform statistics to the actual 767 zonal EOF structure of 10 day low pass filtered Z_{850} . (a) For each latitude, 768 the fraction of variance associated with wavenumbers 0 to 6, given the average 769 zonal correlation structure in Fig. 7b and assuming zonally uniform statistics 770 (see text for details). (b) Again for each latitude, the fraction of variance 771 associated with the top five 1-D longitudinal EOFs, but now based on the full 772 flow. Large (small) colored dots indicate when a given wavenumber dominates 773 more than 75% (50%) of the power in the EOF, the color identifying the 774 respective wavenumber with the color convention in (a), i.e., red=wave 0, 775 orange=wave 1. 776

The average correlation structure of (a) zonal wind at 850 hPa, (c) zonal wind at 50 hPa, and (e) eddy kinetic energy at 300 hPa. As in Fig. 7b, thin black contours mark zero correlation and the thick gray contours give a sense of sphericity, marking a separation of 5000 km as a function of latitude in (a) and (e) and a distance of 10000 km in (c). Panels (b), (d), and (f) show the root mean square amplitude of variations as a function latitude for each variable, respectively. 40

42

10The same as in Fig. 8b, but for eddy kinetic energy at 300 hPa. Zonal asym-784 metry in the statistics lead to substantial mixing between wavenumbers in 785 the Northern Hemisphere (outside the polar cap) and tropics, such no sin-786 gle wavenumber dominates each EOF. Statistical annularity in the Southern 787 Hemisphere, however, leads to a clearly order spectrum poleward of 25°S, 788 dominated by an annular (wavenumber 1) mode at all latitudes. 789 11 (a) Comparison between the average longitudinal correlation structure of 790 EKE_{300} at 46°S and two possible fits with the Gaussian + baseline model 791 of Section 3. As detailed in the text, the first fit (red) is optimized to cap-792 ture the initial decay in correlation, while the second fit (blue) is optimized 793 for the long range correlation baseline. (b) The 1-dimensional EOF spectra 794 of EKE_{300} at 46°S, compared against the spectrum for the two fits of the 795 Gaussian + baseline model shown in (a), and a third model with parameters 796 $\alpha = 23^{\circ}$ and $\beta = 0.05$, as discussed in the text. 797

44

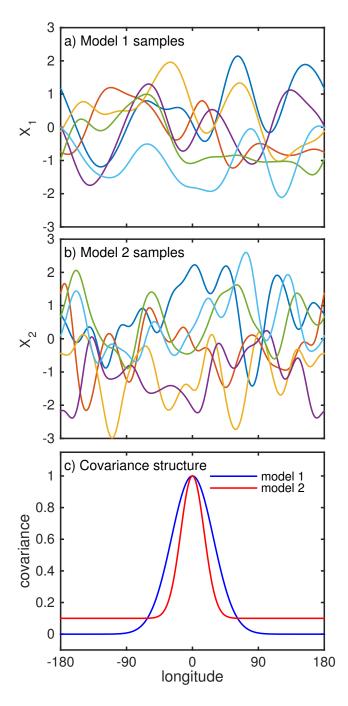


FIG. 1. Two stochastic models of variability in longitude. (a) and (b) illustrate sample profiles from models X_1 and X_2 , respectively. The profiles are independently and identically sampled from the respective distribution of each model, but could be interpreted as different realizations in time, chose over an interval sufficiently large for the flow to lose all memory from one sample to the next. The y-axes are unitless, as each model has been designed to have unit variance. (c) shows $\operatorname{cov}_X(0,\lambda)$ for each model, the covariance between variability at each longitude with that at $\lambda = 0$. As the statistics are annular, the covariance structure can be fully characterized by this one sample, i.e., $\operatorname{cov}_X(\lambda_1, \lambda_2) = \operatorname{cov}_X(0, |\lambda_1 - \lambda_2|)$.

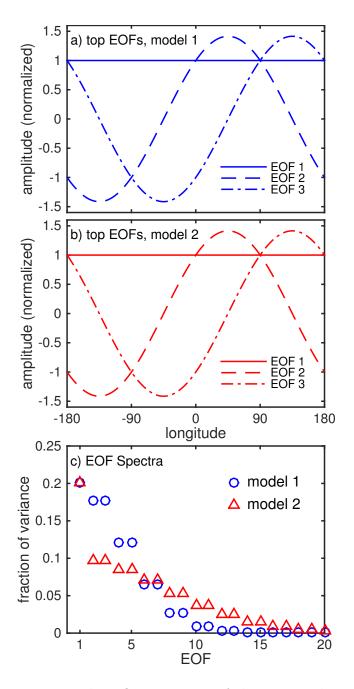


FIG. 2. The EOF structure of the two stochastic models. (a) and (b) show the top three EOFs for models 1 and 2, respectively, normalized to have unit variance. In the limit of infinite sampling, the EOF patterns from the two models are identical. (c) The models' EOF spectra, marking the fraction of the total variance associated with each of the top 20 EOFs.

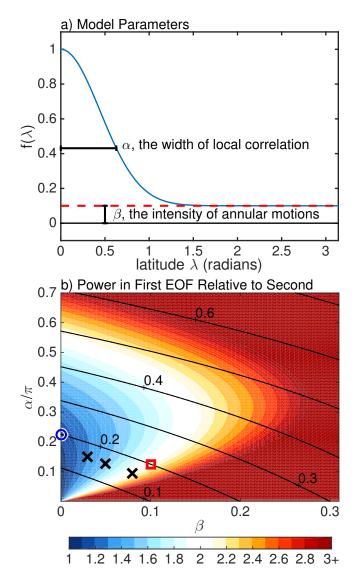


FIG. 3. The impact of local vs. annular correlation in the "Gaussian + baseline" family of stochastic models. (a) illustrates the parameters α and β which characterize the correlation function $f(\lambda)$ for each model. (b) maps out the variance expressed by the first EOF (black contours) and the ratio of the variance expressed by the first EOF to that of the second (color shading) as a function of α and β . The first EOF is always annular, and the second always a wavenumber 1 pattern. The blue and red markers show the location of models X_1 and X_2 (illustrated in Figs. 1 and 2) in parameter space, respectively; both fall along the same black contour, as their top EOF expresses 0.2 of the total variance. The black x's will be discussed in the context of Fig. 11

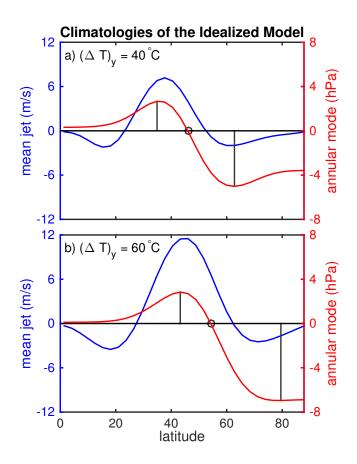


FIG. 4. The mean jet structure and annular modes of the Held and Suarez (1994) model for the (a) $(\Delta T)_y = 40$ and (b) $(\Delta T)_y = 60^{\circ}$ C integrations. The jet is characterized by the time mean 850 hPa winds (blue lines, corresponding with the left y-axes), and the annular mode is the first EOF of daily, zonal mean SLP (red, right y-axes), normalized to indicate the strength of 1 standard deviation anomalies. The latitudes of the node, equatorward and poleward lobes of the annular mode are highlighed, and correspond with the analysis in Fig. 5.

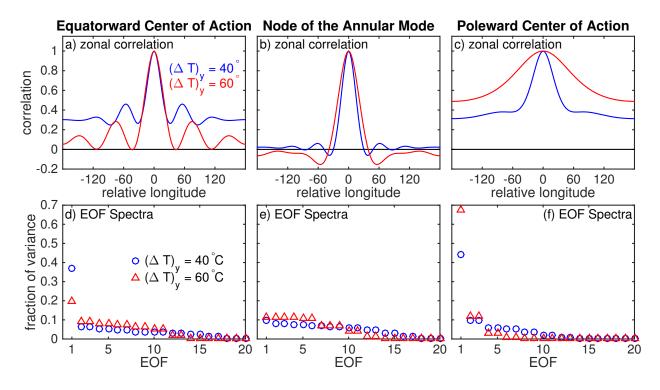


FIG. 5. Characterizing the zonal structure of 10 day pass filtered SLP anomalies in the Held and Suarez (1994) model. (a,d) and (c,f) show analysis based at the latitude of the equatorward and poleward centers of action of the annular mode, respectively, while (b,e) show analysis based at the nodes of the annular mode. (a,b,c) show the zonal correlation structure $f(\lambda)$ and (d,e,f) the fraction of variance associated with each of the top 20 EOFs for the integrations with (blue) $(\Delta T)_y = 40$ and (red) $(\Delta T)_y = 60^{\circ}$ C.

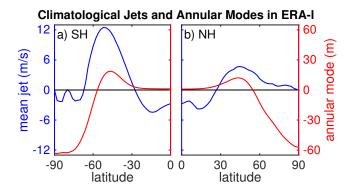


FIG. 6. The same as Fig. 4, but for the (a) Southern and (b) Northern Hemispheres in ECWMF Interim reanalysis, based on the period 1979-2013. To avoid interpolation over mountainous regions, the annular modes are defined in terms of daily, zonal mean 850 hPa geopotential height, Z_{850} , instead of SLP.

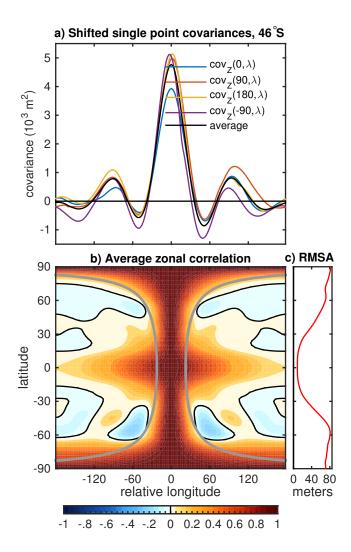


FIG. 7. Characterizing the longitudinal correlation structure of 10 day low pass filtered 850 hPa geopotential height in ERA-Interim. (a) Sample single point correlation maps at 46°S (the equatorward center of action of the SAM), shifted so that base points line up. The black line is the mean of the four curves, an "average single point correlation map". (b) The average zonal correlation structure of 10 day low pass filtered Z_{850} as a function of latitude. The contour interval is 0.05, with black contours marking zero correlation, and gray lines indicate a separation of 5000 km, to provide a sense of geometry on the sphere. (c) The root mean square amplitude of 10 day low pass filtered Z_{850} anomalies.

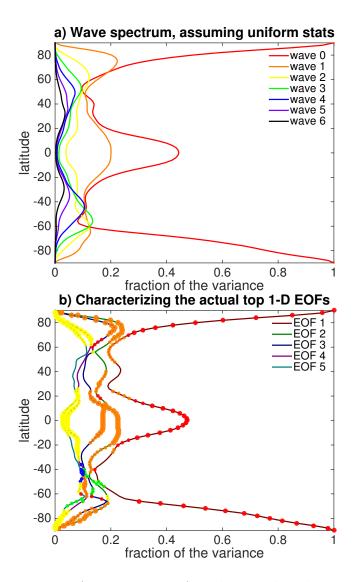


FIG. 8. A comparison of predictions based on zonally uniform statistics to the actual zonal EOF structure of 10 day low pass filtered Z_{850} . (a) For each latitude, the fraction of variance associated with wavenumbers 0 to 6, given the average zonal correlation structure in Fig. 7b and assuming zonally uniform statistics (see text for details). (b) Again for each latitude, the fraction of variance associated with the top five 1-D longitudinal EOFs, but now based on the full flow. Large (small) colored dots indicate when a given wavenumber dominates more than 75% (50%) of the power in the EOF, the color identifying the respective wavenumber with the color convention in (a), i.e., red=wave 0, orange=wave 1.

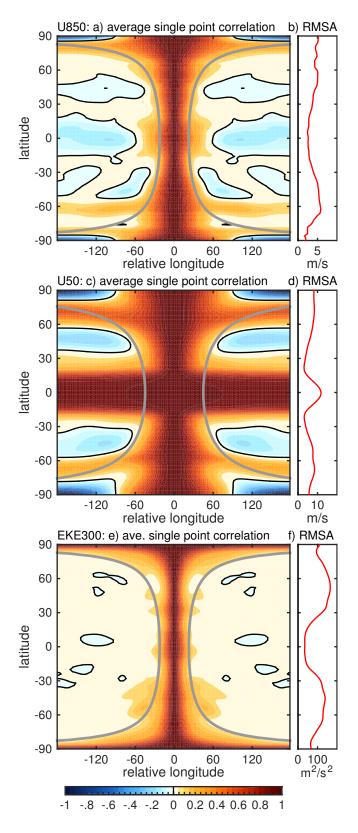


FIG. 9. The average correlation structure of (a) zonal wind at 850 hPa, (c) zonal wind at 50 hPa, and (e) eddy kinetic energy at 300 hPa. As in Fig. 7b, thin black contours mark zero correlation and the thick gray contours give a sense of sphericity, marking a separation of 5000 km as a function of latitude in (a) and (e) and a distance of 10000 km in (c). Panels (b), (d), and (f) show the root mean square42 mplitude of variations as a function latitude for each variable, respectively.

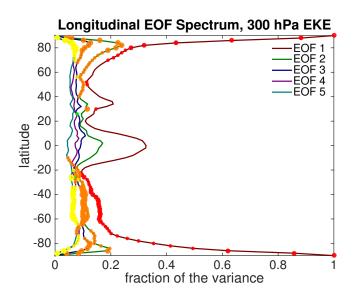


FIG. 10. The same as in Fig. 8b, but for eddy kinetic energy at 300 hPa. Zonal asymmetry in the statistics lead to substantial mixing between wavenumbers in the Northern Hemisphere (outside the polar cap) and tropics, such no single wavenumber dominates each EOF. Statistical annularity in the Southern Hemisphere, however, leads to a clearly order spectrum poleward of 25°S, dominated by an annular (wavenumber 1) mode at all latitudes.

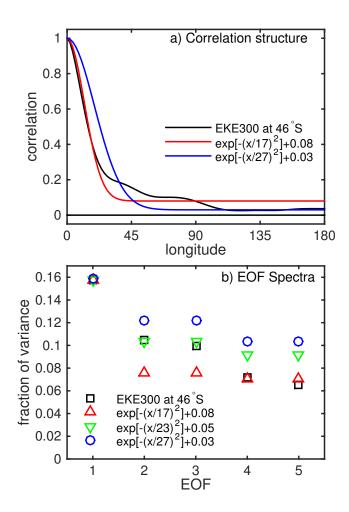


FIG. 11. (a) Comparison between the average longitudinal correlation structure of EKE_{300} at 46°S and two possible fits with the Gaussian + baseline model of Section 3. As detailed in the text, the first fit (red) is optimized to capture the initial decay in correlation, while the second fit (blue) is optimized for the long range correlation baseline. (b) The 1-dimensional EOF spectra of EKE_{300} at 46°S, compared against the spectrum for the two fits of the Gaussian + baseline model shown in (a), and a third model with parameters $\alpha = 23^{\circ}$ and $\beta = 0.05$, as discussed in the text.