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ABSTRACT4

Annular patterns with a high degree of zonal symmetry play a prominent role in the5

natural variability of the atmospheric circulation and its response to external forcing. But6

despite their apparent importance for understanding climate variability, the processes that7

give rise to their marked zonally symmetric components remain largely unclear.8

Here the authors use simple stochastic models in conjunction with atmospheric model9

and observational analyses to explore the conditions under which annular patterns arise10

from Empirical Orthogonal Function (EOF) analysis of the flow. The results indicate that11

annular patterns arise not only from zonally coherent fluctuations in the circulation, i.e.,12

“dynamical annularity”, but also from zonally symmetric statistics of the circulation in the13

absence of zonally coherent fluctuations, i.e., “statistical annularity”. It is argued that the14

distinction between dynamical and statistical annular patterns derived from EOF analysis15

can be inferred from the associated variance spectrum: larger differences in the variance16

explained by an annular EOF and successive EOFs generally indicate underlying dynamical17

annularity.18

The authors provide a simple recipe for assessing the conditions that give rise to annular19

EOFs of the circulation. When applied to numerical models, the recipe indicates dynam-20

ical annularity in parameter regimes with strong feedbacks between the eddies and mean21

flow. When applied to observations, the recipe indicates that annular EOFs generally derive22

from statistical annularity of the flow in the middle latitude troposphere, but from dynam-23

ical annularity in both the stratosphere and the mid-high latitude Southern Hemisphere24

troposphere.25
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1. Introduction26

“Annular” patterns of variability are structures dominated by their zonally symmet-27

ric components. They emerge as the leading empirical orthogonal functions (EOFs) of the28

Northern Hemisphere sea-level pressure field (Lorenz 1951; Kutzbach 1970; Wallace and Gut-29

zler 1981; Trenberth and Paolino 1981; Thompson and Wallace 1998, 2000), the Southern30

Hemisphere zonal-wind and geopotential height fields (Kidson 1988; Karoly 1990; Hartmann31

and Lo 1998; Thompson and Wallace 2000; Lorenz and Hartmann 2001), the Southern Hemi-32

sphere eddy-kinetic field (Thompson and Woodworth 2014), the extratropical circulation in33

a hierarchy of numerical simulations of the atmospheric circulation (e.g., Robinson 1991;34

Yu and Hartmann 1993; Lee and Feldstein 1996; Shindell et al. 1999; Gerber and Vallis35

2007), and aquaplanet simulations of the ocean circulation (Marshall et al. 2007). They are36

seemingly ubiquitous features in a range of geophysical flows.37

Despite their ubiquity in the climate system, one key aspect of annular structures remains38

open to debate: What gives rise to their marked zonally symmetric components? Does the39

zonal symmetry of annular structures reflect coherent variations in climate across a range40

of longitudes? Or does it largely reflect the constraints of EOF analysis (e.g., Dommenget41

and Latif 2002; Gerber and Vallis 2005)? Consider a long-standing example: the so-called42

northern annular mode (NAM) emerges as the leading EOF of the NH sea-level pressure43

field (e.g., Thompson and Wallace 2000). It exhibits a high degree of zonal symmetry and44

its structure implies in-phase variability in climate between the North Atlantic and North45

Pacific sectors of the hemisphere. But as discussed extensively in earlier papers (e.g., Deser46

2000; Ambaum et al. 2001), the two primary centers of action of the NAM do not exhibit47

robust correlations on month-to-month timescales. Does the annularity of the NAM arise48

from dynamic connections between widely separated longitudes that are simply masked by49

other forms of variability (e.g., Wallace and Thompson 2002)? Or does the annularity arise50

from the constraints of the EOF analysis (e.g., Dommenget and Latif 2002; Gerber and Vallis51

2005)?52
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The purpose of this paper is to revisit the conditions that give rise to annular structures53

in the leading patterns of variability of the circulation. We will demonstrate that annular54

patterns can arise from two distinct characteristics of the flow: (i) “dynamical annularity”,55

where variability in the circulation about its mean state exhibits in-phase correlations at all56

longitudes, and (ii) “statistical annularity”, where the statistics of the flow (e.g., the variance,57

autocorrelation and spatial decorrelation scale) are similar at all longitudes. Both conditions58

can give rise to annular-like EOFs that make important contributions to the variability in59

the circulation. But only the former corresponds to coherent annular motions in the flow.60

Section 2 explores the impacts of “dynamical annularity” vs. “statistical annularity” on61

EOF analysis of output from two simple stochastic models. Section 3 provides theoretical62

context for interpreting the results of the simple models. Section 4 applies the insights63

gained from the simple models to the circulation of an idealized general circulation model64

and observations. Conclusions are provided in Section 5.65

2. A Tale of Two Annular Modes66

In the following, we will define dynamical annularity as the case where there are positive67

covariances between all longitudes around the globe, i.e.,68

covX(λ1, λ2) =

∑N
n=1X(λ1, tn)X(λ2, tn)

N
> 0 (1)

for all longitudes λ1 and λ2. With this notation, we take X to be a generic variable of interest69

(e.g., geopotential height or eddy kinetic energy), given as an anomaly from its climatological70

mean. If (1) is satisfied, there are coherent underlying motions which cause the circulation71

to vary in concert at all longitudes. We will define statistical annularity as the case where72

the statistics of the flow do not vary as a function of longitude, i.e.,73

covX(λ1, λ2) = f(∆λ). (2)
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where ∆λ = |λ1 − λ2| is the absolute distance between the two points. This definition74

implies that the variance of the flow is uniform, i.e. f(0), and the covariance between any75

two longitudes depends only on the distance between them, but not where the two points76

lie relative to the origin (prime meridian). These criteria are not mutually exclusive, and a77

flow could satisfy both criteria at once. One would only expect (2) to hold approximately in78

the presence of realistic boundary conditions, but in Section 4 we show the statistics of the79

observed atmosphere are remarkably annular, particularly in the Southern Hemisphere.80

Here we illustrate how statistical annularity can give rise to an annular EOF, even in81

the case where there is no underlying dynamical annularity in the circulation (that is, the82

motions are explicitly local). We consider two 1-dimensional stochastic models, X1(λ, j)83

and X2(λ, j). The details of the models are given in the Appendix, but all the necessary84

statistics of the models are summarized in Fig. 1. In short, both models are random processes85

in longitude, are periodic over 360◦, and have zonally uniform statistics (2). The distinction86

between the models lies in their covariance structures (Fig. 1c). For model X1, there is87

explicitly no global correlation: variability at a given location is only correlated with other88

longitudes over a range of about ±90◦. For model X2 there is a global correlation of 0.1.89

Note that since both models have zonally uniform statistics, the covariance structures90

shown in Fig. 1c are independent of the base longitude used in the calculations. Moreover,91

they contain all the information needed to characterize the EOFs of the two models; recall92

that EOFs correspond to the eigenvectors of the covariance matrix cij = covX(λi, λj). When93

the statistics are uniform, cij is simply a function of the distance between λi and λj, as94

illustrated in Fig. 1c.95

The top three EOFs for the two models are shown in Fig. 2a and b. By construction (see96

discussion in the next section), both models exhibit exactly the same EOFs. The first EOF97

is perfectly annular, as the analytic formulation of the model allows us to take the limit of98

infinite sampling. As seen in Fig. 2c, the first EOF also explains exactly the same fraction99

of the variance in each model: 20%. The second and third EOFs characterize wavenumber 1100
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anomalies: all higher order EOFs come in sinusoidal pairs, increasing in wavenumber. The101

phase is arbitrary, as the two wavenumber 1 modes explain the same fraction of variance. For102

finite sampling, one would see slight mixing between the wavenumbers, but the top modes103

are well established, even for a reasonable number of samples.104

The key result in Fig. 2 is that both models exhibit a robust “annular mode” as their105

leading EOF, and that both annular modes explain the same total fraction of the variance.106

Only one of the apparent “annular modes”, however, reflects dynamical annularity in the107

flow.108

From the perspective of EOFs, one can only distinguish the two models by examining109

their EOF spectra, i.e., the relative variance associated with all modes (Fig. 2c). By design,110

the annular modes (the leading EOFs) in both models explain the same fraction of the total111

variance (20%). The key differences between the EOF spectra from the two models lie in the112

relative variance explained by their higher order EOFs. In the case of model 1, the first EOF113

explains only slightly more variance than the second or third EOFs. In the case of model 2,114

there is a large gap between the first and second EOFs. It is the relative variance explained115

that provides insight into the relative importance of statistical vs. dynamical annularity in116

giving rise to an annular-like leading EOF.117

The stochastic models considered in Figs. 1 and 2 highlight two key aspects of annular118

modes. First the models make clear that identical annular-like patterns can arise from two119

very different configurations of the circulation: (i) cases where the statistics of the flow are120

zonally uniform but the correlations are explicitly local (model 1) and (ii) cases with in-phase121

variability between remote longitudes (model 2). Second, the models make clear that the122

spectra of variance yields insight into the role of dynamical annularity in driving the leading123

EOF.124
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3. Theoretical Insight125

For systems with statistical annularity, as in models X1 and X2, the EOFs can be entirely126

characterized based on the covariance structure f(∆λ). Batchelor (1953) solved the EOF127

problem for cases with zonally uniform statistics in his analysis of homogeneous, isotropic128

turbulence in a triply periodic domain. Our discussion is the 1-D limit of this more com-129

prehensive analysis. If the statistics are zonally uniform (i.e., homogeneous), then EOF130

analysis will yield a pure Fourier decomposition of the flow. All EOFs will come in degen-131

erate pairs expressing the same fraction of variance, except for the single wavenumber 0132

(annular) mode1.133

The ordering of the Fourier coefficients depends on the Fourier decomposition of f . The134

covariance function f(∆λ) is defined for 0 ≤ ∆λ ≤ π, where we express longitude in radians.135

The variance associated with a mode of wavenumber k is then given by136

var(k) =
1

π

∫ π

0

f(λ) cos(kλ) dλ (3)

For all k other than 0, there will be two modes, each characterizing this amount of variance.137

Setting k = 0 in (3) shows that the integral of the autocorrelation function determines138

the strength of the annular mode. For systems with zonally uniform statistics, there is139

thus a nice interpretation of the strength of the annular mode: the fraction of the variance140

expressed by the annular mode is simply the “average” of the covariance function between a141

given base point and all other points. This will hold even in cases where the annular mode142

is not the first EOF.143

Returning to the simple stochastic models in Section 2, we can now see how the two mod-144

els were designed to have the same annular mode. The average value of the two covariance145

functions in Fig. 1c is 0.2 in both cases, so that the “annular mode” in each model explains146

1For a discrete system with n points in longitude, the missing partner to the wavenumber 0 mode is one

of the wavenumber n/2 modes which is degenerate, appearing constant on the discrete grid. But for any

realistic geophysical flow the variance decays quickly for high wavenumbers and this mode is insignificant.
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20% of the total variance. In model X1, the average correlation of 0.2 derives solely from the147

strong positive correlation over half a hemisphere. That is, the annular mode is the most148

important EOF, but it only reflects the annularity of the statistics. In model X2, half of the149

variance associated with the annular mode can be attributed to dynamical annularity, as150

given by the global baseline correlation of 0.1. The other half is attributable to the positive151

correlation on local scales, reflecting the spatial redness of the circulation.152

Model X2 shows that even in a system with dynamical annularity, the “strength” of the153

annular model is enhanced by the spatial redness of the flow, which exists independent of154

underlying dynamical annularity. The weaker spatial redness of the flow in model X2 relative155

to X1 is visibly apparent in the structure of its samples (compare Fig. 1a and b), while the156

presence of coherent dynamical annularity leads to the large gap between the fraction of157

variance associated with wavenumber 0 and other waves in the EOF spectrum in Fig. 1c.158

It follows that an annular EOF is more likely to reflect dynamical annularity when there is159

large separation between the variance explained by it and higher order modes. In this case,160

the “average correlation” over all longitudes arises from far field correlation, not just the161

spatial redness of the circulation.162

The models in Section 2 are two examples from a family of stochastic systems with spatial163

correlation structure164

f(λ) = (1− β)e−(λ/α)
2

+ β, (4)

illustrated graphically in Fig. 3a. The parameter α is the spatial decorrelation scale (defined165

as the Gaussian width of the correlations in units of radians) and parameter β is the baseline166

annular correlation of the model. For systems with this spatial decorrelation structure, the167

leading EOF is always annular and the second and third EOFs always have wave 1 structure,168

even if there is no annular correlation (i.e., β = 0). This follows from the fact that a Fourier169

transform of a Gaussian is a Gaussian, such that power is always maximum at zero and170

decays with higher wavenumbers.171

Fig. 3b summarize the variance explained by the leading EOFs of the system considered172
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in Fig. 3a as a function of the spatial decorrelation scale (ordinate) and the amplitude of173

the baseline annular correlation (abscissa). The contours indicate the variance explained174

by the leading (annular) EOF; the shading indicates the ratio of the variance between the175

leading and second (wavenumber one) EOFs. Dark blue shading indicates regions where176

the EOFs are degenerate (explain the same amount of variance). White shading indicates177

regions where the first EOF explains about twice the variance of the second EOF.178

At the origin of the plot (α→ 0 and β = 0), the system approaches the white noise limit,179

and all EOFs become degenerate. Traveling right along the x-axis from the origin (i.e.,180

keeping the spatial decorrelation scale α infinitesimally small and increasing the baseline181

annular correlation with β), we find that the variance associated with the wavenumber 0182

annular mode is simply given by the value of β. Here the spatial decorrelation scale collapses183

to a single longitude, so all higher modes are degenerate, and the strength of the annular184

mode derives entirely from dynamical annularity.185

If one instead travels upward from the origin, allowing α to increase but keeping β = 0, the186

strength of the annular mode increases as well, despite their being no dynamical annularity.187

These are systems where the annular mode only reflects the annularity of the statistics, not188

annularity of the motions. As α gets increasingly large, positive correlations will develop189

at all longitudes by virtue of the fact that the spatial decorrelation scale is longer than a190

latitude circle. At this point, the spatial redness of the atmospheric motions gives rise to a191

baseline annular correlation due to the relatively short length of the latitude circle. When192

the spatial redness of the flow exceeds half of a latitude circle (0.5 on the ordinate axis),193

then the variance of the leading (annular) EOF explains ∼ twice the variance of the second194

(wavenumber one) EOF.195

Model 1 sits in the blue shaded region along the ordinate (see blue circle in Fig. 3b), with196

a spatial decorrelation scale of approximately 0.23 radians. Model 2 (the red square) was197

designed to have baseline annular correlation of 0.1 (i.e., β = 0.1), but with an annular mode198

that express the same fraction of variance, requiring a local correlation α ≈ 0.13 radians.199
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The simple models considered in this and the previous section provide insight into the200

conditions that give rise to annular EOFs, and to the importance of the variance explained201

by the leading EOFs in distinguishing between statistical and dynamical annularity. In the202

following sections we apply these insights to output from a general circulation model and203

observations. In the case of complex geophysical flows with out-of-phase correlations between204

remote longitudes (i.e., teleconnections), one must consider not only the variance explained205

by the leading EOFs, but also the spatial correlation structure f(∆λ).206

4. The annularity of the circulation in models and re-207

analysis208

How does the balance between dynamical vs. statistical annularity play out in general209

circulation models and observations? In this section, we apply the insights gained from the210

simple models to longitudinal variations of the atmospheric circulation at a single latitude,211

e.g., variations in sea level pressure or geopotential height at 50◦S. We focus on a single212

latitude to provide a direct analogue to the simple one-dimensional stochastic models in213

previous sections, albeit a single latitude serves as a stiff test for annular behavior. The214

northern and southern annular mode patterns are based on EOF analysis of two-dimensional215

SLP or geopotential height fields, where spherical geometry naturally connects the circulation216

at all longitudes over the pole.217

a. Annular variability in a dry dynamical core218

We first consider a moisture free, 3-dimensional primitive equation model on the sphere,219

often referred to as a dry dynamical core. The model is run with a flat, uniform lower220

boundary, so that all the forcings are independent of longitude. Hence the circulation is221

statistically annular, making it an ideal starting point to connect with the theory outlined222
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in the previous section.223

The model is a spectral primitive equation model developed by the Geophysical Fluid Dy-224

namics Laboratory (GFDL), run with triangular truncation 42 (T42) spectral resolution and225

20 evenly spaced σ-levels in the vertical. It is forced with Held and Suarez (1994) “physics,”226

a simple recipe for generating a realistic global circulation with minimal parameterization.227

Briefly, all diabatic processes are replaced by Newtonian relaxation of the temperature to-228

ward an analytic profile approximating an atmosphere in radiative-convective equilibrium,229

and interaction with the surface is approximated by Rayleigh friction in the lower atmo-230

sphere. The equilibrium temperature profile is independent of longitude and time, so there231

is no annual cycle.232

A key parameter setting the structure of the equilibrium temperature profile is the tem-233

perature difference between the equator and pole, denoted (∆T )y by Held and Suarez (1994).234

As explored in a number of studies (e.g., Gerber and Vallis 2007; Simpson et al. 2010;235

Garfinkel et al. 2013), the strength of coupling between the zonal mean jet and baroclinic236

eddies is sensitive to the meridional structure of the equilibrium temperature profile. A237

weaker temperature gradient leads to stronger zonal coherence of the circulation and en-238

hanced persistence of the annular mode. We use this sensitivity to contrast integrations239

with varying degrees of dynamical annularity.240

The temperature difference (∆T )y strongly influences the climatology of the model, as241

illustrated by the near surface winds (blue curves) in Fig. 4, and can be compared with242

similar results based on ERA-Interim reanalysis in Fig. 6. The results are based on 10,000243

day integrations, exclusive of a 500 day spin up. The default setting for (∆T )y is 60◦ C, and244

drives a fairly realistic equinoctial climatology with jets at 46◦ latitude in both hemispheres.245

With a weaker temperature gradient, (∆T )y = 40◦ C, the jets weaken and shifts equatorward246

to approximately 38◦.247

The annular modes, defined as the first EOF of zonal mean SLP following Gerber et al.248

(2008) and Baldwin and Thompson (2009), are illustrated by the red curves in in Fig. 4. By249
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definition, the positive phase of the model annular models is defined as low SLP over the250

polar regions and thus a poleward shift of the model jet. The centers of action of the model251

annular modes in sea level pressure vary between the two simulations, and are indicated by252

the vertical black lines. In the following, we focus our analyses on latitudes corresponding253

to the centers of action of the annular modes, contrasting it with similar analysis at their254

nodes.255

The top row in Fig. 5 compares the spatial decorrelation structure of sea level pressure256

anomalies as a function of longitude at these three key latitudes. Results for the integration257

with weak and standard HS temperature gradients are indicated by blue and red colors,258

respectively. The bottom row shows the variances explained by the leading EOFs of SLP259

calculated along the same latitude bands (i.e., the EOFs are calculated as a function of260

longitude and time along the indicated latitude bands). We applied a 10 day low pass Lanczos261

filter (Duchon 1979) to the data before our analysis to reduce the influence of synoptic262

scale variability, but the results are qualitatively similar when based on daily or monthly263

mean data. To further reduce the sampling uncertainty, the autocorrelation functions were264

averaged over all longitudes and the EOF spectra were computed directly with equation265

(3). This has the effect of imposing zonally symmetric statistics, which would be the case266

with infinite sampling, and the results are virtually identical if we use the full fields for the267

calculations.268

We focus first on the equatorward center of action of the annular mode (left column).269

The spatial decorrelation scale of SLP anomalies is approximately 60◦ longitude in both270

integrations (Fig. 5a). The east-west structure of the correlations reflects the scale of syn-271

optic disturbances and wave trains emanating in both directions. The similarities between272

the spatial decorrelation scales reflects the fact that the deformation radius is similar in273

both runs. The most striking difference between the two runs lies in their baseline annular274

correlations. In the case of (∆T )y = 40 the east-west structure of the correlations rides on275

top of a zonally uniform correlation of approximately 0.3. In the case of the model with276
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(∆T )y = 60, there is a weaker baseline correlation of approximately 0.1.277

The difference in the underlying annularity of the flow explains the differences in the278

variance spectra shown in Fig. 5d. In both model configurations, the leading EOFs are279

annular; higher order modes generally increase monotonically in wavenumber with the ex-280

ception of waves 5 and 6 , which explain larger fractions of the variance that waves 3 and 4,281

consistent with the synoptic structure of the correlation functions. The distinction between282

the EOFs between the two model configurations lies in their variance spectra. In the case283

of (∆T )y = 40, the annular mode explains more than four times the variance of the second284

EOF. In the case of (∆T )y = 60, the annular mode explains about two times the variance285

of the second EOF.286

The differences in the variance spectra for the two model configurations are consistent287

with the theoretical arguments outlined in the previous section. Both model configurations288

exhibit dynamical annularity, as evidenced by the fact the spatial correlations are > 0 at all289

longitudes. However, the dynamical annularity is much more pronounced for the (∆T )y = 40290

configuration, consistent with the larger ratio in variance explained between the first and291

second EOFs. The (∆T )y = 60 configuration is reminiscent of the simple stochastic model292

X2, where the leading EOF explains approximately 20% of the variance in the flow: half due293

to the dynamical annularity; half due to the spatial redness of the flow.294

The annularity of flow is notably different along the node of the annular mode, which295

coincides roughly with the maximum in the climatological jet stream (Fig. 5b and e). The296

leading EOFs of SLP along the nodes of the annular modes are again annular, as is the297

case at the equatorward centers of action (not shown). But along this latitude, there is no298

apparent baseline annular correlation in either model configuration (Fig. 5b). Accordingly,299

the EOF variance spectra exhibit little distinction between the variance explained by the300

first and second EOFs. The enhanced dynamical annularity in the (∆T )y = 40 case is thus301

associated only with vacillations of the jet stream’s position, not fluctuations in its strength,302

which would be reflected by dynamical annularity in SLP at this latitude.303
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At the minimum of the annular mode pattern on the poleward flank of the jet stream,304

Fig. 5c and f, the relatively small size of the latitude circle leads to a strong baseline annular305

correlation and thus clear dominance of the annular mode in the variance spectra. The306

spherical effect is more pronounced for the (∆T )y = 60 case since the minimum in the307

EOF pattern is located very close to the pole (Fig. 4). As the length of the latitude circle308

approaches the scale of the deformation radius, a single synoptic scale disturbance connects309

all longitudes, enforcing zonally uniform statistics. While the result appears trivial in this310

light, this geometric effect may play a significant role in helping the annular mode rise above311

other modes in two-dimensional EOF analysis. The flow is naturally zonally coherent near312

the pole, and the tendency for anticorrelation between pressures at polar and middle latitudes313

may play a role in generating annular-scale motions at lower latitudes (e.g., Ambaum et al.314

2001; Gerber and Vallis 2005).315

Its important to note that the circulation is more realistic with the default Held and316

Suarez (1994) setting of (∆T )y = 60, where the flow exhibits relatively modest zonal co-317

herence. The stronger dynamical annularity in the (∆T )y = 40 configuration is due to the318

weak baroclinicity of the jet and the zonally uniform boundary conditions. When zonal319

asymmetries are introduced to the model, the uniform motions are much reduced, even with320

weak temperature forcing (Gerber and Vallis 2007). Zonal asymmetries on Earth will thus321

likely both reduce the strength of globally coherent motions in the sense of equation (1), and322

break the assumption of uniform statistics in the sense of equation (2). We find, however,323

that both dynamical and statistical annularity are highly relevant to flow in reanalysis, at324

least in the Southern Hemisphere.325

b. Annular variability in reanalysis326

The data used in this section are derived from the European Center for Medium Range327

Weather Forecasting (ECMWF) Interim Reanalysis (ERA-I; Dee and coauthors 2011) over328

the period 1979 to 2013. All results are based on anomalies, where the annual cycle is defined329
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as the long-term mean over the entire 35 year period. As done for the dynamical core, a 10330

day low pass filter is applied to all data before computing correlations and performing the331

EOF analyses. Note that qualitatively similar results are derived from daily and monthly-332

mean data.333

Fig. 6 shows the meridional structures of (i) the climatological zonal mean zonal wind at334

850 hPa and (ii) the southern and northern annular modes. The annular mode time series335

are defined as the standardized leading PCs of zonal mean 850 hPa geopotential height,336

Z850, between 20-90 degrees latitude. Since the time series are standardized, the regression337

patterns shown in Fig. 6 reveal the characteristic amplitude of a one standard deviation338

anomaly in the annular modes. While the long-term mean circulation differs considerably339

between the two hemispheres, the annular modes are remarkably similar, although the NAM340

is slightly weaker than the SAM, consistent with the weaker climatological jet. Gerber and341

Vallis (2005) suggest that the meridional structure of the annular modes tend to be fairly342

generic, constrained largely by the geometry of the sphere and the conservation of mass and343

momentum.344

The longitudinal correlation structures derived from the observations are not constrained345

to be uniform with longitude, as is the case for the dry dynamical core. Nevertheless, they are346

very similar from one base meridian to the next, particularly in the Southern Hemisphere.347

For example, Fig. 7a shows four single point covariance maps based on Z850 at 50◦S: the348

covariance between Z850 at base points 0◦, 90◦E, 180◦, and 90◦W with all other longitudes.349

We have shifted the four regression plots so that the base points overlie each other at the350

center of the plot. Aside from slight variations in amplitude, there is remarkable uniformity351

of the east-west correlation structure in the midlatitudes Southern Hemisphere circulation:352

nearly all of the curves collapse upon each other. The correlation structures are positively353

correlated over a range of approximately ±60 degrees longitude and exhibit alternating354

negative and positive lobes beyond that point. There is little evidence of global correlation,355

as is the case with the default Held and Suarez (1994) model.356

14



Fig. 7b extends the analysis in the top panel to include averages over all base meridians for357

geopotential data at all latitudes. The figure is constructed as follows: (i) at a given latitude,358

we calculate the zonal covariance structure for all possible base meridians, as opposed to just359

four in Fig. 7a, (ii) we then average the resulting covariance structures after shifting them360

to a common base meridian, (iii) we normalize the resulting “average covariance structure”361

by the variance to convert to correlation coefficients, and lastly (iv) we repeat the analysis362

for all latitudes. The resulting “average correlation structures” for 850 hPa geopotential363

height are indicated by the shading in Fig. 7b. The black curve denotes the zero contour;364

the gray curves denote a distance of ±2500 km from the base longitude to provide a sense365

of the sphericity of the Earth. Normalizing the covariance functions by the variance allows366

us to compare the longitudinal structures in the tropics and the midlatitudes on the same367

figure; otherwise the increase in the variance of Z850 with latitude (illustrated in Fig. 7c)368

yields much larger amplitudes in the extratropics.369

At middle latitudes, positive correlations extend over a distance of approximately 2500370

km outward from the base longitude. Towards the polar regions, the autocorrelations extend371

over much of the latitude circle due to the increasingly smaller size of the zonal ring. The372

austral polar regions are exceptional, in that the correlations extend not only around the373

circumference of the latitude circle, but also well beyond 2500 km as far equatorward as374

60◦S. Interestingly, tropical geopotential height is also correlated over long distances. The375

significant positive correlations at tropical latitudes are robust at most individual longitudes376

outside of the primary centers of action of ENSO (not shown). The in-phase behavior377

in tropical geopotential height is consistent with the dynamic constraint of weak pressure378

gradients at tropical latitudes (Charney 1963; Sobel et al. 2001) and will be investigated379

further in future work. Note that the amplitude of variations in geopotential height are380

more than an order of magnitude weaker in the tropics than midlatitudes, as illustrated in381

Fig. 7c.382

The results shown in Fig. 7 are based on 10 day low pass filtered data. As discussed in383
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Wettstein and Wallace (2010), large-scale structures in the atmospheric circulation are in-384

creasingly prevalent at lower frequency timescales. Analogous calculations based on monthly385

mean data (not shown) reveal a slight extension of the region of positive correlations at all386

latitudes, but overall the results are qualitatively unchanged. Notably, the midlatitude cor-387

relation structure is still dominated by alternating negative and positive anomalies beyond388

2500 km, with little evidence of zonally coherent motions.389

How does the average correlation structure shown in Fig. 7b project onto the EOFs of390

the circulation? Fig. 8 characterizes the (top) “predicted” and (bottom) “actual” EOFs of391

zonally-varying Z850 calculated separately for each latitude (e.g., results at 60◦ N indicate the392

variance expressed by EOFs of Z850 sampled along the 60◦ N latitude circle). The “predicted”393

EOFs are found assuming the statistics of Z850 are zonally uniform. In this case, the results394

of the EOF analysis correspond to a Fourier decomposition of the flow (see discussion in395

Section 3), and the variance captured by each wavenumber is determined by the average396

correlation structure (Fig. 7b) applied to (3). Wavenumber 0 (i.e., annular mode) variability397

emerges as the leading predicted EOF of the flow at virtually all latitudes, but explains a398

much larger fraction of the variance of the flow in the tropics and polar regions than it does399

in middle latitudes, where wavenumbers 0, 1, 2, and 3 are of nearly equal importance. The400

weak amplitude of wavenumber 0 variability in middle latitudes is consistent with the lack401

of zonally coherent motions in the average correlation structures shown in Fig. 7b.402

The “actual” EOFs are computed directly from Z850, and thus do not assume that the403

statistics of the flow are zonally uniform. Red dots indicate when the EOF is dominated404

by wavenumber 0 variability, orange dots by wave 1 variability, and so forth for higher405

wavenumbers. (Note that for the predicted EOFs, all wavenumbers other than 0 include two406

modes in quadrature that account for equal variance, whereas for the actual EOFs, the two407

modes associated with each wavenumber are not constrained to explain the same fraction of408

the variance.) Comparing the top and bottom panels, it is clear that the EOFs predicted409

from the average correlation structure, assuming zonally-uniform statistics, provide useful410
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insight into the true EOFs of the flow. The meridional structures of the variance explained411

by the leading predicted and actual EOFs are very similar: in the high latitudes and tropics,412

the first mode is dominated by wavenumber 0 variability and explains a much larger fraction413

of the flow than EOF2; in the midlatitudes, the EOFs cluster together and are largely414

degenerate.415

The key point derived from Figs. 7 and 8 is that the “average correlation function” pro-416

vides a clear sense of where the EOFs of the flow derive from robust dynamical annularity.417

The circulation exhibits globally coherent motions in the tropics and high latitudes, partic-418

ularly in the SH high latitudes (Fig. 7), and it is over these regions that the leading EOFs419

predicted from the average correlation function (Fig. 8a) and from actual variations in the420

flow (Fig. 8b) exhibit robust wavenumber 0 variability. In contrast, the circulation does421

not exhibit globally coherent variations at middle latitudes (Fig. 7b), and thus both the422

predicted and actual EOFs of the flow are degenerate there (Fig. 8). Annular variations in423

lower tropospheric geopotential height are consistent with dynamical annularity of the flow424

in the polar and tropical regions, but statistical annularity at middle latitudes.425

Fig. 9 explores the average correlation structure in three additional fields. Fig. 9a,b show426

results based on the zonal wind at 850 hPa (U850), which samples the barotropic component427

of the circulation, and thus emphasizes the eddy-driven jet in middle latitudes. Fig. 9c,d are428

based on the zonal wind at 50 hPa and (U50), which samples both the QBO and variations in429

the stratospheric polar vortices, and Fig. 9e,f, the eddy kinetic energy at 300 hPa (EKE300),430

which samples the baroclinic annular mode (Thompson and Barnes 2014).431

The most pronounced zonal correlations in U850 are found in two locations: (i) along432

60 degrees South, where positive correlations wrap around the latitude circle, and (ii) in433

the deep tropics, where positive correlations extend well beyond the 2500 km isopleths. At434

∼60 degrees South, the zonally coherent variations in the zonal flow follow from geostrophic435

balance and the coherence of the geopotential height field over Antarctica, as observed in436

Fig. 7b. In the subtropics, the far reaching correlations follow from geostrophic balance437
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and the coherence of the geopotential height field in the tropics. At the equator, where438

geostrophic balance does not hold, Z850 exhibits globally coherent motions (consistent with439

weak temperature gradients in the tropics), while U850 becomes significantly anticorrelated440

at a distance. As a result, a zonally uniform annular mode dominates the EOF spectrum441

of Z850 in the tropics (Fig. 8b) whereas wavenumber 1 tends to dominate latitudinal EOF442

analysis of U850 (not shown). Neither Z850 (Fig. 7b) or U850 (Fig. 9a) exhibit zonally coherent443

motions at midlatitudes, where the autocorrelation function decays to zero ∼2500 kilometers444

and oscillates in the far field.445

The results shown in Figs. 7b and 9a are representative of the correlation structure of446

geopotential height and zonal wind throughout the depth of the troposphere (e.g., very447

similar results are derived at 300 hPa; not shown). However, the correlation structure of the448

zonal flow changes notably above the tropopause, as indicated in Fig. 9c and d. Consistent449

with the increase in the deformation radius in the stratosphere, the scale of motions increases450

(note that the grey lines now indicate the ±5,000 km isopleths). The most notable differences451

between the troposphere and stratosphere are found in the tropics, where the Quasi Biennial452

Oscillation (QBO) leads to an overwhelming annular signal. Marked annularity is also found453

in the high latitudes, in the vicinity of both extratropical polar vortices. As observed in the454

analysis of the tropospheric zonal wind and geopotential height, however, there is no evidence455

of dynamical annularity in the midlatitudes.456

The average correlation structure of EKE300 (Fig. 9e) is notably different. Unlike Z or457

U , the zonal correlation of EKE is remarkably similar across all latitudes, with a slight458

peak in the physical scale of the correlation in the Southern Hemisphere midlatitudes where459

the baroclinic annular mode has largest amplitude (e.g., Thompson and Woodworth 2014).460

Interestingly, EKE300 remains positively correlated around the globe at all latitudes, albeit461

very weakly in the far field. The non-negative decorrelation structure leads to the dominance462

of a zonally uniform “annular mode” in EKE at each individual latitude poleward of 25◦S,463

as shown in Fig. 10. However, the separation between the first and second modes (which464
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characterize wavenumber 1 motions) is modest at most latitudes. The largest separations465

between the first and second EOFs EKE300 are found near 45◦, where the top annular EOF466

represents about 16% of the variance, compared to about 11% for the second and third467

EOFs.468

c. Quantifying the role of dynamical annularity in EKE300 with the stochastic model469

At first glance, the weak separation between the first and second EOFs of EKE300470

suggests that much of the annular signal owes itself to local correlations, i.e., statistical471

annularity. However, a comparison of the EOFs of the observations with those derived472

from the “Gaussian + baseline” model explored in Sections 2 and 3 allows us to be more473

quantitative about the relative role of dynamical vs. statistical annularity in the context of474

the baroclinic annular mode.475

Fig. 11 compares (a) the zonal correlation structure and (b) EOF spectrum of the 300476

hPa eddy kinetic energy at 46◦S with three fits of the simple stochastic model, each designed477

to capture key features of the observed behavior. Recall that the model has two parameters:478

the width of local correlation, α, and the baseline correlation strength, β. As our goal is to479

focus on the relative role of dynamical annularity, characterized by the difference between480

the variance expressed by the top EOF (annular mode) and higher order modes, we remove481

one degree of freedom by requiring that the top EOF express the same fraction of variance in482

both the simple model and the reanalysis. Hence the first mode explains 16% of the variance483

for all cases in Fig. 11b. From equation (3), this condition is equivalent to keeping the total484

integral of the correlation structure fixed.485

In the first fit (red curve, Fig. 11a), we optimize the stochastic model at short range,486

approximating the fall in local correlation in EKE as a Gaussian with width α = 17 degrees.487

To maintain the variance expressed by the top EOF, parameter β must then be set to 0.08.488

This choice effectively lumps the midrange shoulder of the EKE300 correlation (30-100◦)489

with the long range (100-180◦), where the observed correlation drops to about 0.03. As490
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a result, the stochastic model exhibits a stronger separation between the first and second491

EOFs than for EKE300 (red triangles vs. black squares in Fig. 11b).492

An advantage of fitting the data to the simple stochastic model is that it allows us to493

explicitly quantify the role of dynamical annularity. Since the variance expressed by the494

annular mode is just the integral of correlation function (equation 3), the contribution of the495

long range correlation (dynamical annularity) to the total power of the annular mode is:496 ∫ 180

0
β dλ∫ 180

0
[(1− β)e−(λ/α)2 + β] dλ

≈ β
α(1−β)

√
π

360
+ β

(5)

where we have expressed longitude λ and parameter α in degrees. For the approximation497

on the left hand side, we assume that α << 180, such that the local correlation does not498

significantly wrap around the latitude circle. For the “red” model in Fig. 11, dynamical499

annularity accounts for half of the total strength of the annular mode. Given the fact that it500

exhibits a stronger separation between the first and second EOFs, however, this is an upper501

bound on the role of dynamical annularity in EKE300 at 46◦S.502

We obtain a lower bound on the dynamical annularity with the blue fit in Fig. 11a, where503

the correlation structure is explicitly matched at long range. To conserve the total integral,504

parameter α in this case must be set to 27◦, effectively lumping in the shoulder between505

30 and 100◦ with the local correlation. These parameters would suggest that dynamical506

annularity contributes only 1/5th of annular mode variance. This is clearly a lower limit,507

however, as the separation between the first and second EOFs (Fig. 11b) is too small relative508

to that of EKE300.509

Lastly, we use both degrees of freedom of the stochastic model to find an optimal fit of510

the EOF spectrum, matching the variance expressed by the top two EOFs (effectively the511

top three, as higher order modes come in pairs). The fit, with parameters α = 23◦ and512

β = 0.05, is not shown in Fig. 11a (to avoid clutter), but the resulting EOF spectrum is513

illustrated by the green triangles in Fig. 11b. With this configuration, dynamical annularity514

contributes approximately 1/3rd of the annular mode, leaving the remaining two thirds to515

statistical annularity associated with the local redness of the EKE. The EOF spectra of this516

20



model diverges from EKE300 for higher order modes, such that we should take this as a517

rough estimate of the true role of dynamical annularity in the Baroclinic Annular Mode.518

The location of the three models (lower, optimal, and upper bounds), are marked by the519

black x’s in Fig. 3b, to put them in context of earlier results. The fits roughly fill in the520

space between models X1 and X2, but on a lower contour where the annular mode expresses521

16% of the total variance, as opposed to 20%. The rapid increase in the role of dynamical522

annularity (from 1/5 to 1/2) matches the rapid ascent in the importance of EOF 1 relative523

to EOF 2, emphasizing the utility of this ratio as an indicator of dynamical annularity.524

5. Concluding Remarks525

We have explored the conditions that give rise to annular patterns in Empirical Orthog-526

onal Function analysis across a hierarchy of systems: highly simplified stochastic models,527

idealized atmospheric GCMs, and reanalyses of the atmosphere. Annular EOFs can arise528

from two conditions, which we term dynamical annularity and statistical annularity. The529

former arises from zonally coherent dynamical motions across all longitudes, while the latter530

arises from zonally coherent statistics of the flow (e.g., the variance), even in the absence of531

significant far field correlations. Atmospheric reanalyses indicate that both play important532

roles in the climate system and may aid in the interpretation of climate variability, but only533

dynamical annularity reflects zonally coherent motions in the circulation.534

In general, dynamical annularity arises when the dynamical scales of motion approach535

the scale of the latitude circle. The average zonal correlation structure (e.g., Fig. 7) thus536

provides a robust measure of dynamical annularity. In addition, the simple stochastic model537

suggests that the degree of dynamical annularity in a leading EOF is indicated by the ratio538

of the variances explained by the first two zonal EOFs of the flow. As a rule of thumb, if539

the leading annular EOF explains more than twice the variance of the second EOF, then540

dynamical annularity plays a substantial role in the annular mode. Note, however, that this541
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intuition does not necessarily apply to two-dimensional EOFs in latitude-longitude space,542

where coherence of meridional variability can lead to dominance of an annular EOF, even543

when there is explicitly no dynamical annularity (e.g., Gerber and Vallis 2005).544

Annular EOFs always – at least partially – reflect statistical annularity of the circulation;545

zonally coherent motions necessarily imply some degree of zonal coherence. Far field correla-546

tion in the average zonal correlation structure robustly indicates dynamical annularity, but547

quantification of the statistical annularity requires further analysis, either comparison of the548

zonal correlation at different base points (e.g., Fig. 7a) or comparison of the predicted and549

observed zonal EOFs (e.g., Figs. 8 and 10). The localization of the North Pacific and North550

Atlantic storm tracks limits the utility of the zonal correlation structure in the Northern551

Hemisphere troposphere. But the Southern Hemisphere tropospheric circulation is remark-552

ably statistically annular, such that one can predict the full EOF spectrum from the average553

correlation structure alone.554

As discussed in Deser (2000) and Ambaum et al. (2001), the observed geopotential height555

field does not exhibit robust far field correlations beyond ∼60 degrees longitude in the556

midlatitudes. However, the geometry of the sphere naturally favors a high degree of zonal557

coherence at higher latitudes. Hence, the northern and southern annular modes do not558

arise from dynamical annularity in the middle latitude tropospheric circulation, but derive559

a measure of dynamical annularity from the coherence of their polar centers of action in560

the geopotential height field. The dynamical annularity of the annular mode extends to the561

zonal wind field at high latitudes in the Southern Hemisphere, but less so in the Northern562

Hemisphere. Other regions where dynamical annularity plays a seemingly important role in563

the circulation include:564

i. the tropical geopotential height field, presumably because temperature gradients must565

be weak in this region (e.g., Charney 1963),566

ii. the tropospheric zonal flow near ∼15 degrees latitude; these features arises via geostro-567

phy and the dynamic annularity of the tropical Z field.568
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iii. the zonal wind field in the equatorial stratosphere, which reflects the QBO,569

iv. the eddy kinetic energy in the midlatitude Southern Hemisphere, consistent with the570

baroclinic annular mode and the downstream development of wave packets in the571

austral stormtrack (Thompson et al. submitted). The dynamical annularity of the572

eddy activity is surprising given the lack of dynamic annularity in the midlatitude573

barotropic jets, which are intimately connected with the eddies through the baroclinic574

lifecycle.575

The annular leading EOFs of the midlatitude flow have been examined extensively in576

previous work, but to our knowledge, the annular nature of tropical tropospheric Z has577

received less attention. We intend to investigate this feature in more detail in a future study.578
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APPENDIX582

583

Technical details of the stochastic models584

The stochastic models in Section 2 are, in a sense, constructed in reverse, starting with585

the desired result. We begin with the correlation structure f , as shown in Fig. 1c, and586

project it onto cosine modes as in (3). This gives us the EOF spectra shown in Fig. 2c,587

i.e., how much variance (which we now denote vk) should be associated with each mode of588

wavenumber k. Note that not all correlation structures are possible. A sufficient criteria,589

however, is that the projection of every cosine mode onto f is non-negative (i.e., all vk ≥ 0).590

Realizations of the models, as shown in 1a and b, are constructed by moving back into591

grid space,592

X(λ, j) = v
1/2
k δ0,j +

∞∑
k=1

(2vk)
1/2[δk1,j sin(kλ) + δk2,j cos(kλ)]. (A1)

where all the δk,j are independent samples from a Normal distribution with unit variance593

and λ is given in radians. In practise only the top 15 wavenumbers are needed, as the594

contribution of higher order modes becomes trivial.595

Note that it is possible to construct an infinite number of stochastic systems which596

have the same correlation structure f . We have take a simple approach by using the Normal597

distribution to introduce randomness. Any distribution with mean zero could be used, which598

would impact the variations in individual samples – and so the convergence of the system in599

j – but not the statistical properties in the limit of infinite sampling.600
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List of Figures682

1 Two stochastic models of variability in longitude. (a) and (b) illustrate sample683

profiles from models X1 and X2, respectively. The y-axes are unitless, as each684

model has been designed to have unit variance. (c) shows covX(0, λ) for685

each model, the covariance between variability at each longitude with that at686

λ = 0. As the statistics are annular, the covariance structure can be fully687

characterized by this one sample, i.e., covX(λ1, λ2) = covX(0, |λ1 − λ2|). 33688

2 The EOF structure of the two stochastic models. (a) and (b) show the top689

three EOFs for models 1 and 2, respectively, normalized to have unit variance.690

In the limit of infinite sampling, the EOF patterns from the two models are691

identical. (c) The models’ EOF spectra, marking the fraction of the total692

variance associated with each of the top 20 EOFs. 34693

3 The impact of local vs. annular correlation in the “Gaussian + baseline”694

family of stochastic models. (a) illustrates the parameters α and β which695

characterize the correlation function f(λ) for each model. (b) maps out the696

variance expressed by the first EOF (black contours) and the ratio of the697

variance expressed by the first EOF to that of the second (color shading) as a698

function of α and β. The first EOF is always annular, and the second always a699

wavenumber 1 pattern. The blue and red markers show the location of models700

X1 and X2 (illustrated in Figs. 1 and 2) in parameter space, respectively; both701

fall along the same black contour, as their top EOF expresses 0.2 of the total702

variance. The black x’s will be discussed in the context of Fig. 11 35703

29



4 The mean jet structure and annular modes of the Held and Suarez (1994)704

model for the (a) (∆T )y = 40 and (b) (∆T )y = 60◦C integrations. The jet is705

characterized by the time mean 850 hPa winds (blue lines, corresponding with706

the left y-axes), and the annular mode is the first EOF of daily, zonal mean707

SLP (red, right y-axes), normalized to indicate the strength of 1 standard708

deviation anomalies. The latitudes of the node, equatorward and poleward709

lobes of the annular mode are highlighed, and correspond with the analysis710

in Fig. 5. 36711

5 Characterizing the zonal structure of 10 day pass filtered SLP anomalies in712

the Held and Suarez (1994) model. (a,d) and (c,f) show analysis based at713

the latitude of the equatorward and poleward centers of action of the annular714

mode, respectively, while (b,e) show analysis based at the nodes of the annular715

mode. (a,b,c) show the zonal correlation structure f(λ) and (d,e,f) the fraction716

of variance associated with each of the top 20 EOFs for the integrations with717

(blue) (∆T )y = 40 and (red) (∆T )y = 60◦ C. 37718

6 The same as Fig. 4, but for the (a) Southern and (b) Northern Hemispheres719

in ECWMF Interim reanalysis, based on the period 1979-2013. To avoid720

interpolation over mountainous regions, the annular modes are defined in721

terms of daily, zonal mean 850 hPa geopotential height, Z850, instead of SLP. 38722
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7 Characterizing the longitudinal correlation structure of 10 day low pass filtered723

850 hPa geopotential height in ERA-Interim. (a) Sample single point corre-724

lation maps at 46◦S (the equatorward center of action of the SAM), shifted725

so that base points line up. The black line is the mean of the four curves,726

an “average single point correlation map”. (b) The average zonal correlation727

structure of 10 day low pass filtered Z850 as a function of latitude. The con-728

tour interval is 0.05, with black contours marking zero correlation, and gray729

lines indicate a separation of 5000 km, to provide a sense of geometry on the730

sphere. (c) The root mean square amplitude of 10 day low pass filtered Z850731

anomalies. 39732

8 A comparison of predictions based on zonally uniform statistics to the actual733

zonal EOF structure of 10 day low pass filtered Z850. (a) For each latitude,734

the fraction of variance associated with wavenumbers 0 to 6, given the average735

zonal correlation structure in Fig. 7b and assuming zonally uniform statistics736

(see text for details). (b) Again for each latitude, the fraction of variance737

associated with the top five 1-D longitudinal EOFs, but now based on the full738

flow. Large (small) colored dots indicate when a given wavenumber dominates739

more than 75% (50%) of the power in the EOF, the color identifying the740

respective wavenumber with the color convention in (a), i.e., red=wave 0,741

orange=wave 1. 40742

9 The average correlation structure of (a) zonal wind at 850 hPa, (c) zonal wind743

at 50 hPa, and (e) eddy kinetic energy at 300 hPa. As in Fig. 7b, thin black744

contours mark zero correlation and the thick gray contours give a sense of745

sphericity, marking a separation of 5000 km as a function of latitude in (a)746

and (e) and a distance of 10000 km in (c). Panels (b), (d), and (f) show747

the root mean square amplitude of variations as a function latitude for each748

variable, respectively. 41749
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10 The same as in Fig. 8b, but for eddy kinetic energy at 300 hPa. Zonal asym-750

metry in the statistics lead to substantial mixing between wavenumbers in751

the Northern Hemisphere (outside the polar cap) and tropics, such no sin-752

gle wavenumber dominates each EOF. Statistical annularity in the Southern753

Hemisphere, however, leads to a clearly order spectrum poleward of 25◦S,754

dominated by an annular (wavenumber 1) mode at all latitudes. 42755

11 (a) Comparison between the average longitudinal correlation structure of756

EKE300 at 46◦S and two possible fits with the Gaussian + baseline model757

of Section 3. As detailed in the text, the first fit (red) is optimized to cap-758

ture the initial decay in correlation, while the second fit (blue) is optimized759

for the long range correlation baseline. (b) The 1-dimensional EOF spectra760

of EKE300 at 46◦S, compared against the spectrum for the two fits of the761

Gaussian + baseline model shown in (a), and a third model with parameters762

α = 23◦ and β = 0.05, as discussed in the text. 43763
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Fig. 1. Two stochastic models of variability in longitude. (a) and (b) illustrate sample
profiles from models X1 and X2, respectively. The y-axes are unitless, as each model has
been designed to have unit variance. (c) shows covX(0, λ) for each model, the covariance
between variability at each longitude with that at λ = 0. As the statistics are annular,
the covariance structure can be fully characterized by this one sample, i.e., covX(λ1, λ2) =
covX(0, |λ1 − λ2|).
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Fig. 2. The EOF structure of the two stochastic models. (a) and (b) show the top three
EOFs for models 1 and 2, respectively, normalized to have unit variance. In the limit of
infinite sampling, the EOF patterns from the two models are identical. (c) The models’
EOF spectra, marking the fraction of the total variance associated with each of the top 20
EOFs.
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Fig. 3. The impact of local vs. annular correlation in the “Gaussian + baseline” family of
stochastic models. (a) illustrates the parameters α and β which characterize the correlation
function f(λ) for each model. (b) maps out the variance expressed by the first EOF (black
contours) and the ratio of the variance expressed by the first EOF to that of the second
(color shading) as a function of α and β. The first EOF is always annular, and the second
always a wavenumber 1 pattern. The blue and red markers show the location of models X1

and X2 (illustrated in Figs. 1 and 2) in parameter space, respectively; both fall along the
same black contour, as their top EOF expresses 0.2 of the total variance. The black x’s will
be discussed in the context of Fig. 11
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Fig. 4. The mean jet structure and annular modes of the Held and Suarez (1994) model
for the (a) (∆T )y = 40 and (b) (∆T )y = 60◦C integrations. The jet is characterized by the
time mean 850 hPa winds (blue lines, corresponding with the left y-axes), and the annular
mode is the first EOF of daily, zonal mean SLP (red, right y-axes), normalized to indicate
the strength of 1 standard deviation anomalies. The latitudes of the node, equatorward
and poleward lobes of the annular mode are highlighed, and correspond with the analysis in
Fig. 5.
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Fig. 5. Characterizing the zonal structure of 10 day pass filtered SLP anomalies in the
Held and Suarez (1994) model. (a,d) and (c,f) show analysis based at the latitude of the
equatorward and poleward centers of action of the annular mode, respectively, while (b,e)
show analysis based at the nodes of the annular mode. (a,b,c) show the zonal correlation
structure f(λ) and (d,e,f) the fraction of variance associated with each of the top 20 EOFs
for the integrations with (blue) (∆T )y = 40 and (red) (∆T )y = 60◦ C.
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Fig. 6. The same as Fig. 4, but for the (a) Southern and (b) Northern Hemispheres in
ECWMF Interim reanalysis, based on the period 1979-2013. To avoid interpolation over
mountainous regions, the annular modes are defined in terms of daily, zonal mean 850 hPa
geopotential height, Z850, instead of SLP.
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Fig. 7. Characterizing the longitudinal correlation structure of 10 day low pass filtered 850
hPa geopotential height in ERA-Interim. (a) Sample single point correlation maps at 46◦S
(the equatorward center of action of the SAM), shifted so that base points line up. The
black line is the mean of the four curves, an “average single point correlation map”. (b) The
average zonal correlation structure of 10 day low pass filtered Z850 as a function of latitude.
The contour interval is 0.05, with black contours marking zero correlation, and gray lines
indicate a separation of 5000 km, to provide a sense of geometry on the sphere. (c) The root
mean square amplitude of 10 day low pass filtered Z850 anomalies.
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Fig. 8. A comparison of predictions based on zonally uniform statistics to the actual zonal
EOF structure of 10 day low pass filtered Z850. (a) For each latitude, the fraction of variance
associated with wavenumbers 0 to 6, given the average zonal correlation structure in Fig. 7b
and assuming zonally uniform statistics (see text for details). (b) Again for each latitude, the
fraction of variance associated with the top five 1-D longitudinal EOFs, but now based on
the full flow. Large (small) colored dots indicate when a given wavenumber dominates more
than 75% (50%) of the power in the EOF, the color identifying the respective wavenumber
with the color convention in (a), i.e., red=wave 0, orange=wave 1.
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U850: a) average single point correlation
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U50: c) average single point correlation
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EKE300: e) ave. single point correlation
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Fig. 9. The average correlation structure of (a) zonal wind at 850 hPa, (c) zonal wind at
50 hPa, and (e) eddy kinetic energy at 300 hPa. As in Fig. 7b, thin black contours mark
zero correlation and the thick gray contours give a sense of sphericity, marking a separation
of 5000 km as a function of latitude in (a) and (e) and a distance of 10000 km in (c). Panels
(b), (d), and (f) show the root mean square amplitude of variations as a function latitude
for each variable, respectively.
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Fig. 10. The same as in Fig. 8b, but for eddy kinetic energy at 300 hPa. Zonal asym-
metry in the statistics lead to substantial mixing between wavenumbers in the Northern
Hemisphere (outside the polar cap) and tropics, such no single wavenumber dominates each
EOF. Statistical annularity in the Southern Hemisphere, however, leads to a clearly order
spectrum poleward of 25◦S, dominated by an annular (wavenumber 1) mode at all latitudes.
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Fig. 11. (a) Comparison between the average longitudinal correlation structure of EKE300

at 46◦S and two possible fits with the Gaussian + baseline model of Section 3. As detailed in
the text, the first fit (red) is optimized to capture the initial decay in correlation, while the
second fit (blue) is optimized for the long range correlation baseline. (b) The 1-dimensional
EOF spectra of EKE300 at 46◦S, compared against the spectrum for the two fits of the
Gaussian + baseline model shown in (a), and a third model with parameters α = 23◦ and
β = 0.05, as discussed in the text.
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