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ABSTRACT

The strength of the Brewer–Dobson circulation is difficult to estimate using

observations. Trends in the age of stratospheric air, deduced from observa-

tions of transient tracers, have been used to identify trends in the circulation,

but there are ambiguities in the relationship between age and the strength

of the circulation. This paper presents a steady–state theory and a time–

dependent extension to relate age of air directly to the diabatic circulation

of the stratosphere. In steady state, the difference between the age of up-

welling and downwelling air through an isentrope is a measure of the strength

of the diabatic circulation through that isentrope. For the time–varying case,

expressions for other terms that contribute to the age budget are derived. An

idealized atmospheric general circulation model with and without a seasonal

cycle is used to test the time–dependent theory and to find that these additional

terms are small upon annual averaging. The steady–state theory holds as well

for annual averages of a seasonally–varying model as for a perpetual solstice

model. These results suggest how age data could potentially be used to quan-

tify the strength of the diabatic circulation, provided global data coverage for

a sufficiently long time.
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1. Introduction33

The Brewer–Dobson circulation (BDC) is the slow meridional overturning circulation of the34

stratosphere, consisting of upwelling through the tropical tropopause then poleward motion and35

downwelling through the midlatitudes and at the poles. This circulation is critical for the vertical36

transport of tracers such as ozone, volcanic aerosols, and CFCs; for the temperature of the tropical37

tropopause and consequently the amount of water vapor in the stratosphere; and for stratosphere–38

troposphere exchange (e.g. Butchart 2014, and references therein). Stratosphere–resolving climate39

models show a positive trend in the BDC—an increase in the tropical upwelling at a fixed pressure40

level—as a robust response to increasing greenhouse gases (Butchart et al. 2006; Hardiman et al.41

2014). This increasing trend in the residual circulation, however, might better be described as a42

“lifting” trend, associated with the upward expansion of the tropopause (and entire tropospheric43

circulation) in response to global warming (Singh and O’Gorman 2012; Oberländer-Hayn et al.44

2016). Reanalysis products are in qualitative agreement with the climate models, showing positive45

trends over the period 1979–2012, but with differing spatial structures for each individual product46

(Abalos et al. 2015). Satellite -derived temperature trends are also consistent with the model47

predictions (Fu et al. 2015).48

The mean age of air (Hall and Plumb, 1994; Waugh and Hall 2002) has been used as a metric49

for models’ ability to reproduce the stratospheric circulation (e.g., Hall et al. 1999; Butchart et al.50

2011). The apparent increase in the residual circulation has led to predictions that the mean age51

of air should decrease. Attempts to identify trends of decreasing age of air from observations of52

transient tracers in the stratosphere have found little evidence; in fact age appears to be mostly53

increasing (Engel et al. 2009; Stiller et al. 2012; Haenel et al. 2015). However, for one thing,54

available data records are short enough — global satellite coverage of age tracers is available for55
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less than a decade — that apparent trends could be indicative of interannual variability rather than56

of long-term trends (cf. Garcia et al. 2011). Moreover, mean age is a statistical average over57

many transport pathways (Hall and Plumb 1994), and at a given location it depends on mixing58

processes and not just mean advection (Waugh and Hall 2002; Garny et al. 2014; Ploeger et al.59

2015a). Satellite observations of SF6 have been used to identify spatially inhomogeneous trends60

in age between 2002–2012 (Stiller et al. 2012; Haenel et al. 2015), and while these trends can be61

compared to model output, for which the contributions of advection and mixing can be isolated62

(Ploeger et al. 2015b), in reality they are difficult to disentangle (Ray et al. 2010).63

There are certain aspects of the stratospheric age distribution that are dependent on the mean cir-64

culation alone. Using a “leaky tropical pipe” model, Neu and Plumb (1999) showed that, in steady65

state, the tropics–midlatitude age difference on an isentrope depends only on the overturning mass66

flux and is independent of isentropic mixing, provided that diabatic mixing is negligible. This67

result has been used to assess transport in chemistry–climate models (Strahan et al. 2011) Here we68

present a generalization of this analysis. In Section 2(a) we show that the steady–state result of a69

simple and direct relationship between age gradient and overturning diabatic mass flux holds even70

in the absence of a “tropical pipe,” provided the isentropic age gradient is defined appropriately.71

For the more realistic case of an unsteady circulation, we show in Section 2(b) that the result holds72

for the time average; in Section 2(c), the fully transient case is discussed. The accuracy of the73

theoretical predictions is demonstrated in Section 3 using results from a simple general circulation74

model; the theory works well when applied to multi-year averages, though there are systematic75

discrepancies which appear to indicate a role for large–scale diabatic diffusion. Applications and76

limitations of the theory are discussed in Section 4.77
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2. Age difference theory78

In the stratosphere, age satisfies an advection–diffusion equation with a source of 1 (year/year):79

∂Γ

∂ t
+L(Γ) = 1, (1)

where Γ is the age and L is the advection–diffusion operator, with a boundary condition of zero80

at the tropopause. In equilibrium, age determined from linearly growing tracers also satisfies this81

equation (Waugh and Hall 2002). Rewriting the full advection–diffusion operator as the divergence82

of a flux, this becomes, in potential temperature (θ ) coordinates,83

∂

∂ t
(σΓ)+∇ ·FΓ = σ , (2)

where σ =−1
g

∂ p
∂θ

is the isentropic density and FΓ is the flux of age.84

a. Steady–state85

In a steady state, integrating (2) over the volume V above any surface S shows that86

∫
S

n ·FΓdA =
∫
V

σdAdθ =
∫
V

ρdV, (3)

where n is the downward unit normal to the surface S. The net age flux through a surface is equal87

to the mass above that surface, so that, for example, the age flux through the tropopause is equal to88

the mass of the stratosphere and the rest of the atmosphere above (Volk et al. 1997; Plumb 2002).89

Let us choose S to be an isentropic surface. If the motions are strictly adiabatic, isentropic90

stirring will cause no flux through the surface. Assuming diabatic diffusion of age is negligible,91

the diabatic transport is entirely advective, and (3) gives92

∫
θ

σθ̇ΓdA =−M(θ), (4)
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where
∫

θ
is the integral over the θ surface and M(θ) =

∫
VρdV is the mass above the θ surface.93

We define the mass–flux–weighted age of upwelling and downwelling air as94

Γu(θ) =

[∫
up

σθ̇dA
]−1 ∫

up
σθ̇ΓdA, (5)

and95

Γd(θ) =

[∫
down

σθ̇dA
]−1 ∫

down
σθ̇ΓdA. (6)

where
∫

up and
∫

down are integrals over the portion of the area of the isentropic surface through96

which air is upwelling and downwelling respectively as shown in Figure 1. Although this97

schematic is for a zonal mean, the regions are defined in two dimensions and not simply by the98

zonal mean turnaround latitudes.99

In equilibrium, the mass flux through the upwelling and downwelling areas must be equal, and100

let this be called M(θ):101 ∫
up

σθ̇dA =−
∫

down
σθ̇dA =M(θ). (7)

Then102 ∫
up

σθ̇ΓdA =MΓu; (8)
103 ∫

down
σθ̇ΓdA =−MΓd. (9)

The global integral in (4) is the sum of (8) and (9):104

∫
θ

σθ̇ΓdA =M(Γu−Γd) =−M(θ), (10)

which can be rewritten as105

∆Γ(θ) = Γd(θ)−Γu(θ) =
M(θ)

M(θ)
. (11)

Thus, the gross age difference, as defined by (11), (5), and (6), between downwelling and up-106

welling air is simply the ratio of the mass above the isentrope to the mass flux through it, i.e. the107

gross residence time of the air above the surface.108
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This relationship is essentially identical to that obtained by Neu and Plumb (1999) in their trop-109

ical pipe model, but the present approach avoids assumptions made in that model, other than110

steadiness and the neglect of diabatic diffusion (which will both be addressed in the following111

sections). As discussed by those authors (and by Plumb 2002 and Waugh and Hall 2002), (11) is112

remarkable and counter–intuitive in that the gross isentropic age gradient is independent of isen-113

tropic mixing (except insofar as the mixing of potential vorticity drives the diabatic circulation)114

and depends only on the overturning mass flux through the θ surface—it is independent of path in115

the diabatic circulation. For a given mass flux, the age gradient is the same whether the circulation116

is deep or shallow.117

The potential power of (11) lies in the fact that, unlike age itself, ∆Γ is a measure of the age118

distribution that is directly dependent only on the overturning mass flux and hence provides a119

tracer–based means of quantifying the strength of the circulation. The one isentrope on which120

the age itself is relevant is that which skims the tropical tropopause; there Γu ≈ 0 and so Γd =121

∆Γ. Below this isentrope (i.e. in the “lowermost stratosphere”), (11) is no longer applicable as122

the assumptions made (in particular, the neglect of diabatic diffusion) do not apply where the123

isentropes are below the tropopause.124

b. Time–average125

The atmosphere is not in steady state; the stratospheric circulation varies on synoptic, seasonal,126

and interannual timescales. We can instead consider the time–average age equation. The time127

derivative in (2) goes to zero for a long enough averaging period, provided the trends are small.128

Then (4) becomes129

∫
θ

σθ̇ΓdA
t

=−M(θ)
t
, (12)
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where ¯̄ ¯̄ t̄ is the time mean. We can define the time–average mass–flux–weighted age of upwelling130

and of downwelling air as:131

Γu(θ) =

[∫
upt

σθ̇dA
]−1t∫

upt
σθ̇ΓdA

t

, (13)

and132

Γd(θ) =

[∫
downt σθ̇dA

]−1t∫
downt σθ̇ΓdA

t

, (14)

where now the upwelling region is defined by where the time–average diabatic vertical velocity is133

positive (θ̇
t
> 0). When we equivalently define the mass flux134 ∫

upt
σθ̇dA

t

=−
∫

downt σθ̇dA
t

=M(θ)
t
, (15)

this allows us to write (12) as135 ∫
θ

σθ̇ΓdA
t

=M
t (

Γu−Γd

)
=−M(θ)

t
, (16)

or136 (
Γd−Γu

)
=

M(θ)
t

M
t . (17)

With time–averaging, we thus recover the form of the result from the steady–state theory.137

Although this derivation has been done for upwelling and downwelling regions, the time–138

average formulation does not require the two regions of the isentrope to be strictly upwelling139

or downwelling. As long as the isentrope is split into only two regions which together span the140

surface, any division will do. The overturning mass flux M(θ)
t

will be the net mass flux up141

through one region and down through the other. For example, the “upwelling” could be defined as142

20◦S−20◦N and the “downwelling” the rest of the isentrope. The difference between the mass–143

flux–weighted age averaged over the area outside of 20◦S−20◦N and averaged over the area within144

20◦S−20◦N would give the total overturning mass flux through those regions. We emphasize that145

the “age difference” in all of these cases is based on the mass–flux–weighted average ages; hence146
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in principle, it is necessary to know the circulation in order to accurately calculate the age differ-147

ence as defined here.148

c. Time–varying149

Here we use a different approach that allows us to look at seasonal variability and fully account150

for time variations. The upwelling and downwelling mass fluxes are not necessarily equal, and the151

mass above the isentrope may be changing. The age at a given location can also change in time.152

Returning to the ideal age equation, (2), integrating over the volume above an isentropic surface,153

there is now an additional time–dependent term:154 ∫
θ

σθ̇ΓdA =−M(θ)+
∂

∂ t

[∫
ΓdM

]
, (18)

where155 ∫
ΓdM =

∫
V

σΓdAdθ (19)

is the mass–integrated age above the isentrope. This term accounts for fluctuations in the mass–156

weighted total age above the isentrope. If the mass above the isentrope is varying in time,157

Md +Mu =
∂M
∂ t

. (20)

The upwelling and downwelling regions can also be varying in time and must now be defined158

instantaneously. Define the total overturning circulation159

M(θ) = (Mu−Md)/2, (21)

recalling that Mu > 0 and Md < 0 so that M(θ) is always positive. From (20) and (21) we write160

Mu =M(θ)+
1
2

∂M
∂ t

, (22)

and161

Md =−M(θ)+
1
2

∂M
∂ t

. (23)
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Then we rewrite the flux equations, (8) and (9):162

∫
up

σθ̇ΓdA =MuΓu = Γu

[
M(θ)+

1
2

∂M
∂ t

]
, (24)

and163 ∫
down

σθ̇ΓdA =−MdΓd =−Γd

[
M(θ)− 1

2
∂M
∂ t

]
. (25)

As in the steady–state case, the net global flux is the sum of these two. Using (18), the time–164

dependent version of (10) is165

M∆Γ−M =−(MΓs)t +
1
2
(Γu +Γd)

∂M
∂ t

, (26)

where ∆Γ = Γd−Γu as before, and166

Γs(θ) =
1
M

∫
θ

ΓdM (27)

is the mean age of air above the isentrope. The two terms on the right side of (26) arise because167

the time–derivatives are no longer zero. Throughout the rest of the paper, these two terms will be168

collectively referred to as the “time–derivative terms.”169

The balance expressed by (26) should hold true at any time. However, averaging over a year or170

several years will make the trends smaller. Rearranging and taking the time average gives171

M∆Γ
t
= Mt− (MΓs)t

t
+

1
2

Mt (Γu +Γd)
t
. (28)

Separating the overturning, M, and the age difference, ∆Γ, into time mean components and devi-172

ations therefrom (M=M
t
+M′ and ∆Γ = ∆Γ

t
+∆Γ′) yields173

M
t

∆Γ
t
= Mt−M′∆Γ′

t− (MΓs)t
t
+

1
2

Mt (Γu +Γd)
t
, (29)

or174

∆Γ
t
=

Mt

M
t −

M′∆Γ′
t

M
t −

(MΓs)t
t

M
t +

1
2

Mt (Γu +Γd)
t

M
t . (30)
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If the time–derivative terms and the term involving fluctuations, M′∆Γ′
t
, are small, then we175

arrive at the same result as in steady state and the age difference is the mean residence time in the176

region above the isentrope.177

Note that this differs from the time–average version of the theory, presented in Section 2b.178

In the derivation of (30), the average of ∆Γ is taken after calculating the mass–flux–weighted179

upwelling and downwelling ages instantaneously. The time–varying theory is sensitive to the180

definition of region of upwelling/downwelling, in contrast to the time–average theory, because the181

instantaneous mass flux averaged over either the upwelling or downelling region could change182

sign in time. If the flux were zero in one region and nonzero in the other, then because of the183

mass–flux weighting, ∆Γ would be singular. In contrast, the time–average mass flux through a184

region as defined in (11) will be well defined as long as the regions are defined to have nonzero185

overturning mass flux. The time–varying theory is therefore only appropriate when the upwelling186

and downwelling regions are defined instantaneously.187

3. Verification in a simple atmospheric GCM188

a. Model setup189

To verify the theory, we evaluate the terms in (10), (17), and (26) in a simple atmospheric GCM190

with and without a seasonal cycle. The model is a version of the dynamical core developed at191

the Geophysical Fluid Dynamics Laboratory (GFDL). It is dry and hydrostatic, with radiation and192

convection replaced with Newtonian relaxation to a zonally–symmetric equilibrium temperature193

profile. We use 40 hybrid vertical levels that are terrain–following near the surface and transition194

to pressure levels by 115 hPa. Unlike previous studies using similar idealized models (e.g. Polvani195

and Kushner 2002, Kushner and Polvani 2006, Gerber and Polvani 2009, Gerber 2012, Sheshadri196
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et al. 2015), the model solver is not pseudospectral. It is the finite–volume dynamical core used in197

the GFDL Atmospheric Model Version 3 (AM3; Donner et al. 2011), the atmospheric component198

of GFDL’s CMIP5 coupled climate model. The model utilizes a cubed–sphere grid (Putnam and199

Lin 2007) with “C48” resolution, where there is a 48×48 grid on each side of the cube, and so200

roughly equivalent to a 2◦×2◦ resolution. Before analysis, all fields are interpolated to a regular201

latitude–longitude grid using code provided by GFDL.202

In the troposphere, the equilibrium temperature profile is constant in time and similar to Held203

and Suarez (1994) with the addition of a hemispheric asymmetry in the equilibrium temperature204

gradient that creates a colder Northern Hemisphere (identical to Polvani and Kushner 2002). In the205

polar region (50◦–90◦ N/S), the equilibrium temperature profile decreases linearly with height with206

a fixed lapse rate of γ , which sets the strength of the stratospheric polar vortex. The stratospheric207

thermal relaxation timescale is 40 days. As an analog for the planetary scale waves generated by208

land–sea contrast, flow over topography, and nonlinear interactions of synoptic scale eddies, wave–209

2 topography is included in the Northern Hemisphere at the surface centered at 45◦N as in Gerber210

and Polvani (2009). The Southern Hemisphere has no topography. As in Gerber (2012), a “clock”211

tracer is specified to increase linearly with time at all levels within the effective boundary layer212

of the Held and Suarez (1994) forcing (model levels where p/ps=0.7) and is conserved otherwise,213

providing an age of air tracer.214

The seasonally–varying run has a seasonal cycle in the stratospheric equilibrium temperature215

profile following Kushner and Polvani (2006), with a 360 day year consisting of a constant summer216

polar temperature and sinusoidal variation of the winter polar temperature, so that equilibrium217

temperature in the polar vortex is minimized at winter solstice. The lapse rate is γ = 4 K/km, and218

the topography is 4 km high. With a lower stratosphere–troposphere transition, this topographic219

forcing and lapse rate were found by Sheshadri et al. (2015) to create the most realistic Northern220
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and Southern Hemisphere–like seasonal behavior. The model is run until the age has equilibrated221

(27 years) and then for another 50 years, which provide the statistics for these results.222

For the perpetual–solstice runs, the model is run in a variety of configurations as described223

in Table 1. These four simulations correspond to those highlighted in detail in Figs. 1–3 of224

Gerber (2012), capturing two cases with an “older” stratosphere and two cases with a “younger”225

stratosphere. Note however, that Gerber (2012) used a pseudo–spectral model and the age is226

sensitive to model numerics. All are run to equilibrium, at least 10000 days, and the final 2000227

days are averaged for the results presented here.228

b. Model seasonality229

Panel a) of Figure 2 shows a 20 year climatology of the residual vertical velocity at 53 hPa for230

the seasonally–varying model run. Because of artifacts from the interpolation from the cubed–231

sphere grid and the high frequency of temporal variability, the field has been smoothed in time and232

latitude using a binomial filter of two weeks and 10◦. The edge of the cube is nevertheless still233

visible at around 40◦. The seasonal cycle is barely evident; there is stronger polar downwelling in234

Northern Hemisphere winter/spring and weaker tropical upwelling during Southern Hemisphere235

winter. Panel b) of Figure 2 shows the climatology of the zonal mean diabatic velocity, θ̇/θ z,236

on the 500 K surface for the same model run. The 500 K surface is, in the annual mean, near237

the 53 hPa surface. The diabatic vertical velocity is similar to the residual vertical velocity in238

the annual mean, but differs at the equinoxes and has a much stronger seasonal cycle in high239

latitudes. These differences are primarily a result of the motion of the isentropes over the course240

of the year; in spring, the isentropes descend as the polar region warms, and hence the air moves241

upward relative to the isentropes. This strong seasonal variability in the diabatic vertical velocity,242

the relevant vertical velocity for the age difference theory, suggests the importance of the time–243
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derivative terms in (26) and (30). Panel c) of Figure 2 shows the climatology of age on the 500K244

isentrope for the same run. The ages for this model tend to be older than observed ages, which can245

be attributed partially to the age being zero at 700 hPa rather than at the tropopause and partially246

to the strength of the circulation in the model. Nevertheless, the pattern of age is as expected given247

the circulation; the air is younger in the tropics and older at the poles, with little variability in the248

tropics and the oldest air in the vortices in late winter. As in observations (Stiller et al. 2012), the249

Northern Hemisphere air is generally younger than the Southern Hemisphere air. The seasonal250

variability in age difference, dominated by variability in polar age of air, is also large compared251

to the variability in the residual vertical velocity. Meanwhile, the total mass above the isentropic252

surfaces changes very little over the course of the year.253

c. Time–average results254

We examine the time–average theory as described in Section 2(b). We calculate the terms in255

(17) for annual averages of 50 years of the seasonally–varying model run and for the average over256

the last 2000 days of the perpetual–solstice run with the same lapse rate and topography (runs257

1 and 3 in Table 1). In order to demonstrate the flexibility of the definition of “upwelling” and258

“downwelling” regions, we have calculated
(
Γd−Γu

)
and M(θ)

t
/M

t
for several regions, and259

these are shown in Figure 3. The different “upwelling” regions are defined as follows: the “true”260

upwelling based on the time–averaged location of positive diabatic vertical velocity (this is not261

uniform in longitude); between 20◦S and 20◦N; between 30◦S and 30◦N; and between 40◦S and262

40◦N. For each case, the “downwelling” region is the rest of the globe. The average age in each263

region (Γu or Γd) is the mass–flux weighted age through each of these regions as defined in (13)264

and (14). Three different levels are shown, and error bars are one standard deviation of the annual265

averages for the seasonally–varying model run. The maximum overturning mass flux is for the266
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“true” regions, as expected. Because it is most different from the true region, the 20◦ overturning267

is the weakest, indicated by the largest age differences. All of the different regions have similar268

agreement with the theory in both the seasonally–varying model (red and gray points) and in the269

perpetual–solstice model (blue and teal points). Although the flexibility of the theory is clear from270

this plot,the 20◦ tropics does not capture all the upwelling in the model, as can be seen in panel271

b) of Figure 2. Thus although this method can determine the overturning through two regions, to272

determine the overturning mass flux through the stratosphere, the “true” regions must be used.273

All of the points fall above the one–to–one line, a discrepancy consistent with the neglect of274

diabatic diffusion in the theory. The points on the 800 K isentrope are closest to the theory line,275

which is also consistent with diabatic diffusion as will be discussed in Section 3(e). The re-276

sults from the seasonally–varying model agree as well with the theory as do the results from the277

perpetual–solstice run, demonstrating the success of the time–average theory in recovering the278

steady result.279

d. Time–varying results280

Next we move on to the time–varying theory; consider Figure 4. Panel a) shows three years of281

the total mass divided by the mass flux and panel b) shows the age difference for the same three282

years of the seasonally–varying model run. If the steady–state theory held instantaneously, these283

would be equal at all times. They are obviously not equal; in fact, their seasonal cycles are out of284

phase, with even negative values of age difference when there is polar diabatic upwelling of very285

old air associated with the final warming event each Southern Hemisphere spring.286

We evaluate the time–derivative terms in (26), (MΓs)t and (Γu +Γd)Mt/2. To calculate (MΓs)t ,287

the mass–weighted average age above each pressure surface is calculated and then interpolated to288

the isentropes—the integration is performed in pressure coordinates for improved accuracy. The289
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product of the age and the total mass has substantial high–frequency variability. If the model were290

not run to steady state, long–term changes in the average age of air in the stratosphere would291

also appear in this term. For example, a relatively dramatic mean age change of 0.5 yr/decade292

would make this term about 5% of the size of the total mass above the isentrope. The other term,293

(Γu +Γd)Mt/2, has much less short–term variability.294

The average seasonal cycle over twenty years of the model run for each of the terms in (26)295

is shown for three different levels in Figure 5. At 400 K, shown in panel a), in the very low296

stratosphere, there is very little effect of the seasonal cycle. The product of the overturning strength297

and the age difference, M∆Γ, is at all times less than the total mass, M. This discrepancy will be298

addressed in Section 3(e). The time–derivative terms are small. At 600 K, shown in panel b), the299

seasonal cycle is much more pronounced, and here the difference between M∆Γ and the total mass300

above the isentrope has a stronger variation in time. The time–derivative terms are approximately301

the same magnitude, but the variability in (MΓs)t is much greater—it has been smoothed with a302

binomial filter before contributing to the sum. The sum of M∆Γ+(MΓs)t +−(Γu +Γd)Mt/2 is303

closer to the total mass above the isentrope M(θ), and by including the time–dependent terms, the304

seasonal variation is decreased. Significant discrepancies remain, however. At 800K, shown in305

panel c), the balance holds even more closely, as the sum is quite close to the total mass for most306

of the year.307

Because of the strong temporal variability, it is clear that the steady–state theory cannot be308

applied instantaneously. The contributions of the time–derivative terms are smaller upon long–309

term averaging, however. The magnitude of the annual average of these terms is shown as a310

percentage of the total mass above each isentrope in the solid lines in Figure 6, and the standard311

deviation is shown in the shading. As we already observed from Figure 5, the variability of (MΓs)t ,312

is much greater than of (Γu+Γd)Mt/2, up to 10% of M(θ). The long–term averages of both terms313
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are small. In Figure 7, we compare the annual average of M/M and ∆Γ. The mean of 50 years314

from the seasonally–varying model run are in the red points, with the error bars showing the315

standard deviation of the annual means. The blue and green points are from the variety of model316

runs in perpetual–solstice scenarios, as enumerated in Table 1. These steady–state runs represent317

a wide range of climates, with the mass flux across the 600 K surface varying by a factor of about318

2. As the total mass above each surface does not change much between the simulations, this319

results in factor of 2 in the age difference as well. Examining the blue and green points shows320

that the theory holds across the whole range of climates simulated here. The annual averages from321

the seasonally–varying model run result in as good agreement with the steady–state theory as the322

perpetual–solstice model runs, and so we conclude that the annual average overturning strength323

can be determined by the annual average of the age difference and of the mass above the isentrope.324

e. The role of diabatic diffusion325

As in Figure 3, the points in Figure 7 all fall above the one–to–one line, implying that the actual326

age difference is less than that predicted by the theory by up to about 15%. In the time–average327

case there is nothing to account for this discrepancy, and in Figure 7, the discrepancy is too great328

to be explained by the time average of the transient terms. This must arise from terms missing329

from the theory. Diabatic mixing was neglected at the outset. If we revisit that assumption and330

include a diffusion of age in (4), we obtain331

∫
θ

σθ̇ΓdA−
∫

θ

σKθθ

∂Γ

∂θ
dA =−M, (31)

or332

M∆Γ+
∫

θ

σKθθ

∂Γ

∂θ
dA = M, (32)
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where Kθθ is the diffusivity. Age increases with increasing θ , and Kθθ is positive, so the diffusion333

is a positive term on the left side. In panel a) of Figure 5 we noted that the product of the over-334

turning mass flux and the age difference was always less than the total mass above 400K. Now335

we see that this difference is consistent with the neglect of diffusion. Similarly, the contribution336

from the diffusive term would account for age differences lower than the theory predicts in both337

Figures 3 and 7. To determine whether the diffusivity, Kθθ , necessary to close the age budget is338

reasonable, we assume constant diffusivity and find that at 450 K, Kθθ ≈ 1.7×10−5K2s−1. Given339

the background stratification in the model, this corresponds to about Kzz ' 0.1 m2s−1, a value that340

is consistent with observational studies (Sparling et al. 1997; Legras et al. 2003).341

In the real world, small–scale diffusion will provide a diabatic component of the age flux, but342

the model has no representation of such processes and so they cannot be a factor here. However,343

the large–scale motions are not, as was assumed in the derivation, strictly adiabatic but will exhibit344

“diabatic dispersion” (Sparling et al. 1997; Plumb 2007). We can estimate the diffusivity based on345

Plumb (2007),346

Kθθ ∼ |θ̇ ′|2τmixing, (33)

where τmixing is the time scale for isentropic mixing across the surf zone. For the purposes of347

this estimate, we use the deviation of θ̇ from the zonal mean as an approximation for θ̇ ′ and use348

τmixing ≈ 30 days. Using an average value for |θ̇ ′|2 in Northern Hemisphere midlatitudes at 450349

K from the seasonally–varying model run gives Kθθ ≈ 1×10−5K2s−1. The diabatic dispersion is350

thus close to the diffusivity necessary to close the age budget in this simple model. Now revisiting351

the observation that the points on the 800 K isentrope seem to have better agreement with the352

theory line in Figure 3, we can understand this as the effect of the reduced age gradient higher353

up in the stratosphere. The same diabatic diffusivity will therefore result in less diffusion of age354

because of the smaller gradient and the calculated age difference will better match the theory.355
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4. Summary and Conclusions356

The theoretical developments in this paper have focused on extension of the simple relationship357

between the gross latitudinal age gradient on isentropes and the diabatic circulation, obtained by358

Neu and Plumb (1999) for the “leaky tropical pipe” model. Under their assumptions of steady359

state and no diabatic mixing, but without any “tropical pipe” construct, an essentially identical360

result follows. We then show that the result survives intact when applied to time–averages of an361

unsteady situation, but does not apply locally in time. The predicted age gradient is independent362

of isentropic mixing, and of the structure of the circulation above the level in question.363

Analysis of results from a simplified global model, in both perpetual solstice and fully seasonal364

configurations, shows that the time-averaged result holds quite well, although the predicted age365

difference overestimates the actual value by up to 15 percent, a fact that we ascribe to the neglect366

of large-scale diabatic mixing in the theory. Indeed, estimates of diabatic dispersion in the model367

are sufficient to account for the discrepancy.368

The theory is, of necessity, formulated in entropy (potential temperature) coordinates and con-369

sequently it is the diabatic circulation (rather than, say, the residual circulation) that is related to370

the latitudinal structure of age. While these two measures of the circulation can, at times (es-371

pecially around the equinoxes), be very different, in the long-term average to which this theory372

applies they are essentially identical. The relationship between age gradient and the circulation is373

straightforward, but in order to use age data to deduce the circulation there are some subtleties:374

in order to quantify the mean age difference, in principle one needs to know the geometry of375

the mean upwelling and downwelling regions, and the spatial structure of the circulation (since,376

strictly, it is the mass-flux-weighted mean that is required). The theoretical result is unchanged377

if simpler regions (such as equatorward and poleward of, say, 30◦) are used instead of those of378
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upwelling/downwelling, but of course the mass flux involved is that within each chosen region,379

rather than the total overturning mass flux.380

Despite these caveats, these results offer an avenue for identifying trends in the circulation by381

seeking trends in age data, as done by Haenel et al. (2015); Ploeger et al. (2015b). For one thing,382

they make it clear that it is the gross isentropic age difference, and not the age itself, that is related383

to the strength of the circulation. For another, one needs good data coverage in space and time in384

order to determine the gross gradient and to eliminate short-term variability for which the theory385

is not applicable. Using age data in this way, and separating long-term trends from short-term386

variability, will require the accumulation of a longer time series than is currently available.387

Acknowledgments. We would like to thank S.-J. Lin and Isaac Held for providing the GFDL388

AM3 core. Funding for ML was provided by the National Defense Science and Engineering389

Graduate fellowship and for AS by a Junior Fellow award from the Simons Foundation. This390

work was also supported in part by the National Science Foundation grants AGS-1547733 to MIT391

and AGS-1546585 to NYU.392

References393

Abalos, M., B. Legras, F. Ploeger, and W. J. Randel, 2015: Evaluating the advective Brewer–394

Dobson circulation in three reanalyses for the period 1979-2012. J. Geophys. Res., 120, doi:395

10.1002/2015JD023182.396

Butchart, N., 2014: The Brewer-Dobson circulation. Rev. Geophys., 52, 157–184, doi:10.1002/397

2013RG000448.398

Butchart, N., and Coauthors, 2006: Simulations of anthropogenic change in the strength of the399

Brewer–Dobson circulation. Clim. Dyn., 27, 727–741, doi:10.1007/s00382-006-0162-4.400

20



Butchart, N., and Coauthors, 2011: Multimodel climate and variability of the stratosphere. J.401

Geophys. Res., 116 (D5), D05 102, doi:10.1029/2010JD014995.402

Donner, L. J., and Coauthors, 2011: The Dynamical Core, Physical Parameterizations, and Basic403

Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled404

Model CM3. J. Climate, 24 (13), 3484–3519, doi:10.1175/2011JCLI3955.1.405

Engel, A., and Coauthors, 2009: Age of stratospheric air unchanged within uncertainties over the406

past 30 years. Nature Geoscience, 2, 28–31, doi:10.1038/ngeo388.407

Fu, Q., P. Lin, S. Solomon, and D. L. Hartmann, 2015: Observational evidence of strengthening of408

the brewer–dobson circulation since 1980. J. Geophys. Res., 120, 10,214–10,228, doi:10.1002/409

2015JD023657.410

Garcia, R. R., W. J. Randel, and D. E. Kinnison, 2011: On the Determination of Age of Air Trends411

from Atmospheric Trace Species. J. Atmos. Sci., 68 (1), 139–154, doi:10.1175/2010JAS3527.1.412

Garny, H., T. Birner, H. Bonisch, and F. Bunzel, 2014: The effects of mixing on Age of Air. J.413

Geophys. Res., 119, 7015–7034, doi:10.1002/2013JD021417.414

Gerber, E. P., 2012: Stratospheric versus Tropospheric Control of the Strength and Structure of the415

Brewer–Dobson Circulation. J. Atmos. Sci., 69 (9), 2857–2877, doi:10.1175/JAS-D-11-0341.1.416

Gerber, E. P., and L. M. Polvani, 2009: Stratosphere–Troposphere Coupling in a Relatively Simple417

AGCM: The Importance of Stratospheric Variability. J. Climate, 22 (8), 1920–1933, doi:10.418

1175/2008JCLI2548.1.419

Haenel, F. J., and Coauthors, 2015: Reassessment of MIPAS age of air trends and variability.420

Atmos. Chem. Phys., 15 (15), 13 161?13 176, doi:10.5194/acp-15-13161-2015.421

21



Hall, T. M., and R. A. Plumb, 1994: Age as a diagnostic of stratospheric transport. J. of Geophys.422

Res., 99 (D1), 1059–1070.423

Hall, T. M., D. W. Waugh, K. A. Boering, and R. A. Plumb, 1999: Evaluation of transport in424

stratospheric models. J. Geophys. Res., 104 (D15), 18 815–18 839.425

Hardiman, S. C., N. Butchart, and N. Calvo, 2014: The morphology of the Brewer-Dobson cir-426

culation and its response to climate change in CMIP5 simulations. Quart. J. Roy. Meteor. Soc.,427

140 (683), 1958–1965, doi:10.1002/qj.2258.428

Held, I. M., and M. J. Suarez, 1994: A proposal for the intercomparison of the dynamical cores of429

atmospheric general circulation models. Bull. Amer. Meteor. Soc., 75, 1825–1830.430

Kushner, P. J., and L. M. Polvani, 2006: Stratosphere-troposphere coupling in a relatively simple431

AGCM: Impact of the seasonal cycle. J. Climate, 19 (21), 5721–5727, doi:10.1175/JCLI4007.1.432
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sonal cycle as described in the text and the others are perpetual–solstice with476

varying stratospheric lapse rates (γ , in K/km) and wavenumber–2 topographic477

forcing (h in km) in the one hemisphere only. The winter hemisphere in these478

perpetual–solstice runs is the same as the hemisphere with topography. . . . . 26479

25



configuration γ (K/km) h (km)

1 seasonally–varying 4 4

2 perpetual–solstice 1.5 3

3 perpetual–solstice 4 4

4 perpetual–solstice 4 0

5 perpetual–solstice 5 3

TABLE 1. Summary of setup for the five runs used in this study. One run has a seasonal cycle as de-

scribed in the text and the others are perpetual–solstice with varying stratospheric lapse rates (γ , in K/km)

and wavenumber–2 topographic forcing (h in km) in the one hemisphere only. The winter hemisphere in these

perpetual–solstice runs is the same as the hemisphere with topography.
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