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Abstract—In this paper we will describe a constructive method
to find β-encodings (β-representations) with special properties.
These include simultaneous β-encodings with respect to several
bases and hybrid Σ∆/β-encodings. The main motivation for the
latter scheme is to have bit representations whose robustness to
additive circuit noise is tunable.

I. INTRODUCTION

Consider the standard binary (base-2) representation of a
real number x ∈ [0, 1]:

x =
∞∑

n=1

bn2−n, bn ∈ {0, 1}. (1)

While it is possible to think of each bn = bn(x) as a
separate function on [0, 1], typically these bits are extracted
sequentially, using a recursive operation. One popular method
is successive approximation. Let xN be the approximation at
the N th step, which equals the N -bit truncation of the infinite
series in (1)

xN =
N∑

n=1

bn2−n, N = 1, 2, . . . , (2)

with x0 = 0. By setting

bn =
{

1, if x− xn−1 ≥ 2−n,
0, if x− xn−1 < 2−n,

(3)

the algorithm narrows down the range of x to a sub-interval
whose length is halved after each iteration.

The above algorithm has to work around with an exponen-
tially decreasing sequence of errors and thresholds. Instead,
the following variation keeps all quantities macroscopic at all
times:

Define un := 2n(x − xn) for n ≥ 0. It is easy to see that
the sequence (un)∞0 satisfies the recurrence relation

un = 2un−1 − bn, n = 1, 2, . . . , (4)

and the bits can simply be extracted via the formula

bn = b2un−1c =
{

1, un−1 ≥ 1/2,
0, un−1 < 1/2.

(5)

The relation (4) is the doubling map in disguise; un =
T (un−1), where T : u 7→ 2u (mod 1).

The base-2 representation essentially provides the most
efficient encoding in the rate-distortion sense. Moreover, as
seen above, there is a nice algorithmic circuit implementation

for the purpose of analog-to-digital (A/D) conversion in which
all quantities (the un and the bn) are bounded and macroscopic
(i.e., can be held as measurable electric charges). Hence, the
case appears to be closed, at least in theory. However, in
practice, the successive approximation algorithm (or the base-
2 representation in general) hardly finds itself as the most
popular choice of A/D conversion method. In real life, analog
circuits are never perfect, suffering from arithmetic errors (e.g.,
through nonlinearity) as well as from quantizer errors (e.g.,
threshold offset), while being subject to thermal noise at the
same time. All relations hold approximately, and therefore, all
quantities are approximately equal to their theoretical values
(and in this case, only for a finite number of iterations, given
that dynamics of an expanding map has “sensitive dependence
on initial conditions”). Note that this problem affects analog
circuits mostly, as digital circuits are much more immune to
small variations. Given that this is a central problem in A/D
conversion (as well as in D/A conversion), many alternative bit
representations of numbers (as well as of signals) have been
devised in circuit engineering, such as Σ∆ modulation.

From a theoretical point of view, the imprecision problem
associated to the successive approximation algorithm is not
enough to discard the base-2 representation immediately. After
all, we do not have to use this specific algorithm to extract
the bits, and perhaps there are better (i.e., more resilient)
algorithms for evaluating bn(x) for each x. However, the root
of the real problem lies deeper in the fact that the bits in
the base-2 representation are essentially uniquely determined,
and are ultimately computed by a greedy method. Since
2−n = 2−n−1 + 2−n−2 + . . . , we have no choice other than
to set bn according to (3), except in the equality case, which
happens if and only if x is a dyadic rational at scale n, i.e.,
x = k2−n where k is an odd integer. In this case, we have
the option between choosing bn = 1 followed by an infinite
string of 0s, or bn = 0 followed by an infinite string of 1s. It
is clear that there is no way to recover from an erroneous bit
computation: a 1 assignment for bn when x < xn−1 + 2−n

immediately means an “overshoot” from which there is no
way to “back up” later. Similarly a 0 assignment for bn when
x > xn−1 + 2−n implies a “fall-behind” from which there is
no way to “catch up” later.

Due to this lack of robustness, the base-2 representation
is not the preferred quantization method for A/D conversion.
For similar reasons, it is also generally not the preferred
method for D/A conversion. In practical settings, oversampled
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coarse quantization (Σ∆ modulation) is more popular [1][12],
mostly due to its robustness achieved with the help of the
redundant set of output codes that can represent each source
value [8]. However, standard Σ∆ modulation is suboptimal as
a quantization method (even though exponential accuracy in
the bit rate can be achieved [7]).

A partial remedy comes with fractional base expansions,
called β-expansions (β-representations) [2][4][6][11][13]. Fix
1 < β < 2. It is well known that every x in [0, 1] (in fact, in
[0, (β − 1)−1]) can be represented by an infinite series

x =
∞∑

n=1

bnβ−n, (6)

for appropriate choice of the bit sequence (bn). Clearly, the
N -bit truncated approximations

∑N
n=1 bnβ−n, which we will

again denote by xN , are only accurate to within O(β−N ),
which is inferior to the accuracy of a base-2 representation.
However, there is a crucial difference in that many distinct
β-representations in the form (6) are now available. In fact,
it is known that for any β < 2, almost all numbers (in the
Lebesgue measure sense) have uncountably many distinct β-
representations [14]. Among these, two of them are special
[2][4]:

The greedy selection turns on the bits as soon as possible,
i.e., sets

bn = 1 iff x− xn−1 ≥ β−n. (7)

On the other hand, the lazy selection waits until the last
moment to turn on the bits, i.e., a bit is turned on only if the
remaining bits cannot possibly catch-up later:

bn = 1 iff x− xn−1 > β−n−1 + β−n−2 + . . . , (8)

and in general, these two selections result in different β-
representations because for β < 2 we have

β−n−1 + β−n−2 + · · · > β−n.

This implies that if the greedy selection results in bn = 1
followed by a sufficiently long stretch of 0s, then we have
the option to set bn = 0 as long as we follow it by a
sufficiently long stretch of 1s. (For β = 2, “sufficiently”
means “infinitely.”) This redundancy makes β-representations
an appealing alternative since it is possible to recover from
(certain) incorrect bit computations. In fact, if these mistakes
result from an unknown threshold offset in the quantizer, then
it turns out that an intermediate cautious selection algorithm is
completely robust provided a bound for the offset is known [4].
To make this statement more precise, consider the following
algorithmic (dynamical) implementation:

Similar to before, define un = βn(x − xn). Then we can
extract from (6) the recursive relation

un = βun−1 − bn. (9)

The greedy selection (7) can now be rewritten as

bn =
{

0, un−1 < 1/β,
1, un−1 ≥ 1/β.

(10)

Similarly, the lazy selection (8) is equivalent to

bn =
{

0, un−1 ≤ 1/β(β−1),
1, un−1 > 1/β(β−1), (11)

which differs from the greedy selection in its threshold value
and the specific choice made at the threshold value.

Now, the cautious selection starts with any two values a and
b such that

1/β < a < b < 1/β(β−1), (12)

and sets

bn =

 0, un−1 ≤ a,
0 or 1, un−1 ∈ (a, b),
1, un−1 ≥ b.

(13)

It can be easily seen that the precise values of a and b
as well as the specific choice made in the interval (a, b)
are unimportant in the sense that one always obtains a β-
representation once it is guaranteed that the sequence (un)
remains bounded.1 This is the case even if a and b vary at
each iteration while satisfying (12). Hence perfect encoding is
possible with an imperfect (flaky) quantizer whose threshold
value fluctuates in the interval (1/β, 1/β(β − 1).

The philosophical reason for this robustness is the redun-
dancy of the encoding. Our goal in this paper is to exploit the
redundancy of β-representations further. More specifically, we
will show constructively the existence of
• bit representations that yield multiple decodings (simul-

taneous β-encodings),
• β-representations with tunable asymptotic digit frequency

(hybrid Σ∆/β-encodings).
We note that both of these objectives will be achieved in

the setting of signed digit expansions, i.e., for bn ∈ {−1,+1}
instead. This is mostly for technical convenience rather than
a strict requirement since any {0, 1} digit expansion can be
mapped to a {−1,+1} digit expansion and vice versa, once
the range of x is suitably adjusted via x 7→ 2x− (β − 1)−1.

II. SIMULTANEOUS β-ENCODINGS

Let us ask the following question: given (any) β1 and β2,
is it possible to encode x 7→ (bn)∞1 such that

x =
∞∑

n=1

bnβ−n
1 =

∞∑
n=1

bnβ−n
2 ? (14)

If we were to seek bn ∈ {0, 1}, this task would clearly be
impossible to achieve in this form (i.e., without any adjustment
in the reconstruction formula) since the map t 7→

∑
bntn is

strictly increasing. This obstacle is not present when bn ∈
{−1,+1}, and the answer turns out to be positive:

Theorem 1: There exists c > 0 such that for all 1 <
β1, β2 < 1+c, every x ∈ [−1, 1] has a simultaneous (β1, β2)-
representation, i.e., (14) holds.

Note that redundancy of β-representations increases as β →
1. It turns out that much more is true, in that we can pick
several βi and different xi values:

1Note that since (bn) is bounded, (9) implies that (un) either remains
bounded (when xn → x) or blows up like βn (when xn 6→ x).
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Theorem 2: Given any positive integer M , there exists c =
cM > 0 such that, for all

1 < β1 < β2 < · · · < βM < 1 + c,

there exists δ = δ(β1, ..., βM ) > 0 such that, for all

(x1, x2, . . . , xM ) ∈ [−δ, δ]M ,

there exists (bn)∞1 ∈ {−1,+1}N that simultaneously encodes
all the xi, i.e.,

xi =
∞∑

n=1

bnβ−n
i ; i = 1, ...,M.

Remarks:
1. With regards to the comment following (14), the theorem

continues to hold in the 0/1 world, but for a translated copy
of [−δ, δ]M .

2. Not surprisingly, the result is for βi’s sufficiently close
to 1. A necessary condition on β1, . . . , βM is that

β1β2 · · ·βM ≤ 2, (15)

so that c in the statement must satisfy c ≤ 21/M−1. There is a
simple volume covering argument for this condition. Consider
all N -bit truncated vectors

xN =
N∑

n=1

bn

(
β−n

1 , . . . , β−n
M

)
, (16)

which provide us with at most 2N distinct points in [−δ, δ]M .
Given the N -term error bound β−N

i (βi − 1)−1 in the ith
coordinate, we have that each sub-rectangle in [−δ, δ]M of
dimensions d1×d2×· · ·×dM , where di = 2β−N

i (βi− 1)−1,
must contain such an N -term truncated vector. Hence by the
pigeon-hole principle, we have

2N ≥ 2MδM

d1 · · · dM
≥ δM (β1 − 1)M (β1 · · ·βM )N .

The result follows after taking the N ’th root and letting N →
∞.

3. Theorem 2 does not give precise estimates on the relation
between M and c (which determines the range of the βi). In
Figure 1, we plot all N -bit truncated vectors xN defined in
(16) for N = 12, M = 2, and two pairs of (β1, β2). The
first pair (1.4, 1.8) violates the necessary condition (15) and
it can be seen that there is an open ball around the origin that
appears to not contain any of these vectors. The second pair
(1.2, 1.3) does not violate (15), and the figure suggests that a
neighborhood of the origin is indeed covered.

4. For related results in the context of Iterated Function
Systems with overlaps, see [15].

III. HYBRID Σ∆/β-ENCODINGS

The first order Σ∆ modulation is governed by the difference
equation

un = un−1 + x− bn, (17)

where
bn = Q(un−1, x) (18)
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Fig. 1. Plot of all 12-bit truncated vectors x12 in two dimensions for two
pairs. The first picture has (β1, β2) = (1.4, 1.8) and the second picture has
(β1, β2) = (1.2, 1.3).

for some function Q which makes (un) bounded. Here, bn

takes on values in {−1,+1} when x ∈ [−1, 1]. The standard
example for Q is Q(u, x) = sign(u + x), which amounts to
greedily minimizing un given un−1 and x, subject to (17).

The relation (17) and |un| ≤ C for all n imply that∣∣∣∣∣Nx−
N∑

n=1

bn

∣∣∣∣∣ ≤ 2C; (19)

hence, in particular, x is encoded as the average value of (bn):

x = lim
N→∞

1
N

N∑
n=1

bn. (20)

Our next theorem says that every x can be assigned a bit
sequence which is simultaneously a β-encoding as well as a
Σ∆ encoding.

Theorem 3: There exists c > 0 such that for all 1 < β <
1+ c, every x ∈ [−1, 1] has a hybrid Σ∆/β encoding (bn) in
{−1,+1} in the sense that

x =
∞∑

n=1

bnβ−n
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and ∣∣∣∣∣x− 1
N

N∑
1

bn

∣∣∣∣∣ ≤ C

N
for all N.

Remark: Note that the greedy selection that was mentioned
earlier is generated by the map Tβ : u 7→ βu (mod 1) via

un = Tβ(un−1),

and
bn = bβun−1c.

It is known that Tβ is ergodic with respect to a Tβ-invariant
measure µβ on [0, 1] which is absolutely continuous [13].
Therefore by the Birkhoff ergodic theorem, the digits (bn)
found via the greedy selection would generically have a fixed
asymptotic frequency which is independent of x, i.e., for
(Lebesgue) almost all x,

1
N

N∑
1

bn → cβ =
∫ 1

0

bβucdµβ .

Our result implies that the bits in a general β-representation
can be chosen in such a way that their asymptotic frequency
can be tuned to the number that they represent, thereby pro-
viding an alternative description of the number. This property
is further elaborated below.

IV. APPLICATIONS

Consider Σ∆ modulation of a scalar x and its standard N -
bit decoder defined by

xN :=
1
N

N∑
n=1

bn.

We have |x − xN | = O(N−1), which is highly suboptimal
compared to the exponential accuracy of any β-representation.
However, Σ∆ modulation has other virtues, such as its ro-
bustness against quantizer threshold offset error and variations
in the initial condition [8]. It is also robust against certain
perturbations of its recurrence relation (17). Let us consider
the following noisy form of this relation

un = un−1 + x− bn + ξn, (21)

where (ξn) is an i.i.d. sequence of random variables with zero
mean. We now have

x− xN = − 1
N

N∑
n=1

ξn +
1
N

(uN − u0). (22)

For practical reasons, (un) needs to be kept bounded. For
simplicity, let us also assume that |ξn| ≤ µ for some µ < 1,
and |x| ≤ 1−µ. Under these assumptions, it is easy to verify
by induction that the selection bn = sign(un−1+x) guarantees
that |un| ≤ 1+µ. The law of large numbers now implies that
xN → x almost surely, i.e., the standard decoder recovers x
in the limit with probability 1.

We can also estimate the rate of convergence. It easily
follows from (22) that

E|x− xN |2 = O(N−1). (23)

By the central limit theorem, (x − xN )
√

N converges in
distribution to a Gaussian of variance equal to the noise
variance. Hence we can think of the error being typically
of size O(N−1/2). More precisely, the law of the iterated
logarithm tells us that almost surely, we have

|x− xN | ≤ 2

√
log log N

N
(24)

for all but finitely many N .
Let us consider the same scenario in the setting of β-

encoding. The noisy equation now reads

un = βun−1 − bn + ξn, u0 = x. (25)

Let us assume that the bn are chosen in {−1,+1} (by any
method) such that |un| ≤ C for all n. (Such stable methods
exist. For example, if µ ≤ 2−β, where µ is an absolute bound
on the noise, then it is easy to verify that bn = sign(un−1)
implies |un| ≤ (1− µ)/(β − 1).)

The standard N -bit decoder for β-encoding is given by

xN =
N∑

n=1

bnβ−n.

The stability of (un) in (25) implies that

x− xN = −
N∑

n=1

ξnβ−n + O(β−N ). (26)

Note that in the limit N → ∞, the error is a random series
which converges almost surely to a random variable ξ given
by

ξ = −
∞∑

n=1

ξnβ−n,

which has zero mean, but non-zero variance:

σ2
ξ =

∞∑
n=1

σ2
ξn

β−2n.

Hence, we can conclude that with probability 1, the output of
the decoder will be different from x.

This result is in large contrast with Σ∆ encoding in that it is
impossible to have perfect β-encodings under additive circuit
noise, even though we have superior N -term error decay in
the non-noisy case.

A hybrid Σ∆/β-encoding, on the other hand, would be
able to bring the best of both worlds. It can operate with two
different linear decoders on N bits,

DΣ∆(b1, . . . , bN ) =
1
N

N∑
n=1

bn, and

Dβ(b1, . . . , bN ) =
N∑

n=1

bnβ−n,
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Fig. 2. Error decay rate comparison of the affine decoder (27) with the
standard Σ∆ and β-decoders in a hybrid Σ∆/β-representation. The accuracy
of the β-decoder saturates around the noise level. Here, β = 1.3, and ξn is
uniformly distributed in [−µ, µ], where µ = 0.15.

and therefore with any affine combination of the two:

D = αDΣ∆ + (1− α)Dβ , α ∈ R. (27)

The value of the free parameter α can now be optimized based
on the noise level bound µ and N . For N ≤ | log µ|/ log β, it is
natural to pick Dβ to take advantage of the exponential decay
of error. Once N hits this critical value, then the noise term
dominates in (26), and the accuracy of the β-representation
saturates. When N ≥ 1/µ2 (which would generally happen
later), the accuracy of the Σ∆ representation will reach this
saturated level, and therefore switching to DΣ∆ becomes
advantageous as the error will continue to decrease (though at
a slower rate). In the intermediate range, a careful optimization
in fact can do slightly better than both decoders. This is shown
in Figure 2.

V. DISCUSSION OF THE METHOD

The underlying method for these results is the construction
of appropriate difference equations of the form

un =
L∑

k=1

hkun−k − bn, (28)

or, of the form

un =
L∑

k=1

hkun−k + x− bn, (29)

with the following properties:
(a) The roots of the characteristic polynomial P (z) = zL−∑L

k=1 hkzL−k contain 1, β1, β2, . . . , βM . In addition,
hL 6= 0, and hL−1 = · · · = hL−M = 0.

(b) There exist quantization rules for bn ∈ {−1,+1} such
that (un) remains bounded; in fact |un| ≤ 1.

Let us see how these two properties are used for the
simultaneous (β1, β2)-encoding of a pair of numbers (x1, x2).
Here, M = 2. Consider (28) for n ≥ 1, with initial conditions
u−L+1, . . . , u−1, u0 to be set later. Define h0 = −1, so that
property (a) above implies

L∑
k=0

hkβ−k
1,2 = 0. (30)

Take β ∈ {β1, β2}. Using the boundedness of (un) we find
that

∞∑
n=1

bnβ−n =
∞∑

n=1

L∑
k=0

hkun−kβ−n

=
L∑

k=0

hkβ−k
∞∑

n=−k+1

unβ−n

=
L∑

k=0

hkβ−k
1∑

n=−k+1

unβ−n, (31)

where we have used (30) in the last step. We now set u−L+3 =
· · · = u0 = 0. (Note that by property (a) we necessarily have
L ≥ 3.) This, along with property (a) that hL−1 = hL−2 = 0,
reduces the first sum in (31) to the case k = L and the second
sum to the two terms n = −L+1,−L+2, where the sum over
k corresponding to n = 1 vanishes again due to (30). Hence,
the simultaneous (β1, β2)-representation objective boils down
to solving the system of equations[

x1

x2

]
= hL

[
β−1

1 β−2
1

β−1
2 β−2

2

] [
u−L+1

u−L+2

]
. (32)

Since hL 6= 0, and β1 6= β2, this system of equations can be
solved in the unknown initial conditions (u−L+1, u−L+2) for
any pair (x1, x2) as long as the system remains stable with
these initial conditions. Property (b) says that it suffices to pick
the initial conditions in [−1, 1], therefore the image of [−1, 1]2

under the map defined by the RHS of (32) is precisely the set
of pairs (x1, x2) for which this method succeeds.

Remarks: The method is easily extended to an arbitrary
value of M . The properties (a) and (b) can be achieved for all
M , by a modification of the method used in [7].

The solution for the hybrid Σ∆/β-encodings follow a
similar line, but uses the additional zero at z = 1, as well as
the modified difference equation (29). This method can also
be extended to generalize Theorem 3 to an arbitrary order Σ∆
and arbitrary number of distinct βi’s. Details will be provided
in a separate publication.
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