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Abstract. Sigma-delta quantization is a way of representing bandlimited sig-
nals (functions with compactly supported Fourier transforms) by {0, 1} se-
quences for each sampling density such that convolving these sequences with
appropriately chosen filters produces approximations of the original signals.
Approximations are refined by increasing the sampling density; this is what
makes such a scheme fundamentally different from more conventional quanti-
zation schemes, where the sampling density is not varied. We present various
examples of how tools from analytic number theory are employed in sharpening
the error estimates in sigma-delta systems.

1. Introduction

Consider the problem of representing real numbers in [0, 1] by binary sequences
in the following translation invariant manner: Each x ∈ [0, 1] is mapped to a
sequence q ∈ {0, 1}Z such that for some appropriate sequence h ∈ l1(Z), called the
reconstruction filter, one has

(1.1) q ∗ h = x,

where ∗ denotes the additive convolution of two sequences, and the symbol x also
denotes the constant sequence (. . . , x, x, . . . ). A natural normalization for h is
that

∑

h(n) = 1, so that the number 1 is necessarily represented by the sequence
q = (. . . , 1, 1, . . . ). As we shall show in Section 2, this problem is too strict in
terms of the reconstruction formula (1.1) to be solvable for all x: a solution exists
if and only if x is rational, and the solution q is necessarily periodic. An alternative
approach is to ask for a sequence of filters (hλ)λ>0 such that

(1.2) q ∗ hλ → x,

uniformly, or at least pointwise, as λ → ∞. The normalization condition can also be
relaxed to the weaker form

∑

hλ(n) → 1 as λ → ∞. Clearly, there would not be any
gain in introducing this alternative for a choice of sequence (hλ) that converges in
l1, since the problem would then be immediately reduced to the case (1.1). Indeed,
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2 C. SİNAN GÜNTÜRK

a typical choice is hλ(n) = 1
λχ

[0,1)
(n

λ ), which converges to 0 uniformly as λ → ∞,

but not in l1. It turns out that in this new formulation, the problem has plenty of
solutions for all x. Yet another possibility is to let the binary representation also
vary with λ and ask for

(1.3) qλ ∗ hλ → x.

The last two settings are quite flexible and the main question consists in finding
efficient representations in the sense that (1.2) or (1.3) converges rapidly in λ, where
the filters hλ are scaled versions of an averaging window as in the example we have
just given. It may also be desirable to determine the exact rate of convergence for
particular schemes that have other features of interest.

In this more general context, it is also possible to formulate the problem for
more general functions. Let x(·) be a function on R, taking values in [0, 1]. Given
a sequence u, we define the measure µλ(u) by

(1.4) µλ(u) =
1

λ

∑

n∈Z

u(n)δn/λ,

where δa denotes the Dirac mass at the point a. Then, for each function x in some
appropriate class C, the problem is to find a family (qλ) of binary representations
such that a pre-chosen filter ϕ (or a sequence (ϕλ) of filters) in L1(R) can decode
x in the sense that

(1.5) (µλ(qλ) ∗ ϕ)(·) =
1

λ

∑

n∈Z

qλ(n)ϕ(· − n
λ ) −→ x(·)

in a given functional sense, as λ → ∞. Note that (1.3) is already contained in (1.5)
if we define the discrete filter hλ by hλ(n) = 1

λϕ(n
λ ), and restrict our attention to

constant functions. However, the analogy between (1.3) and (1.5) is not exact due
to the difference between the two settings.

Functions for which there exist solutions to the above problem include bandlim-
ited functions, defined by

(1.6) BΩ = {x : R → R | x̂ is a finite Borel measure supported on [−Ω, Ω]} .

Here, x̂ denotes the Fourier transform of x. Such a function is the restriction to R

of an entire function of exponential type. Perhaps, the most important property
of bandlimited functions is that they can be recovered from their samples taken
at or above the critical density π/Ω, called the Nyquist density. This is called
the sampling theorem. In our discussion, we assume Ω = π to ease the notation;
otherwise, the analysis can be transposed by a rescaling of the argument. In this
case, if the filter ϕ is such that ϕ̂ is a continuous cut-off function satisfying

(1.7) ϕ̂(ξ) =

{

1 if |ξ| ≤ π, and
0 if |ξ| > λπ,

then one has the reconstruction formula

(1.8) x(t) =
1

λ

∑

n∈Z

x(n
λ )ϕ(t − n

λ ),

where we assume λ > 1. The equality holds pointwise, at least for all values
of t for which the right hand side converges, and in general everywhere if the
summation method uses Cesàro means. Typically, ϕ̂ is chosen to be smooth so that
the corresponding fast decay of ϕ enables an almost “local” reconstruction, which
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removes any concern about the method of summation. (The formula holds also in
the L2 sense when x ∈ L2(R), including the case λ = 1. However, in this critical
sampling case, a smooth ϕ̂ cannot be chosen; ϕ̂ = χ[−π,π] is the only candidate.)

We shall search solutions to (1.5) for the class C = {x : R → [0, 1] | x ∈ Bπ}. An
important class of solutions are generated by the so-called Σ∆ quantization (or Σ∆
modulation), which transforms the sequence of samples (x(n

λ )) into the sequence
of output bits (qλ(n)). The first order Σ∆ quantizer operates according to a very
simple principle: Given the sequence of samples (x(n

λ )) taking values in [0, 1], a
binary sequence qλ is constructed such that

(1.9)

n2
∑

n1

x(n
λ ) ∼

n2
∑

n1

qλ(n),

for all n1 and n2. This is done by the following procedure: Define the sequences
Xλ, Qλ and qλ (which we denote by X , Q, and q when x is constant) by

Xλ(n) =

n
∑

m=1

x(m
λ ),(1.10)

Qλ(n) = ⌊Xλ(n)⌋, and(1.11)

qλ(n) = Qλ(n) − Qλ(n − 1).(1.12)

Since x takes values in [0, 1], we have qλ(n) ∈ {0, 1}; and at the same time (1.9)
is satisfied, up to an error less than 1. Xλ can be defined naturally for negative
indices as well, by integrating backwards.

The property (1.9) implies an immediate estimate for constants; if the resulting
sequence q is filtered using a rectangular averaging window of size λ, i.e. hλ(n) =
1
λχ

[0,1)
(n

λ ), then

(1.13) ‖q ∗ hλ − x‖l∞ ≤
1

λ
.

It turns out, as shown in [5], that the same estimate holds (in the sense of (1.5))
for the whole class of bandlimited functions, using a smooth window that satisfies
(1.7). One of the main results we shall present in this paper is that the exponent
of λ in this estimate can be improved using number theoretical tools, both for the
special case of constants and the general case of bandlimited functions. After a
discussion of general considerations in Section 2, we shall present these number
theoretical estimates in Sections 3 and 4.

The summation, truncation and differencing steps in (1.10) to (1.12) explain
the name “Σ∆ quantization”. The reason for the name “first order” is that only first
order sums and differences have been used; a k-th order scheme involves k-th order
sums and differences. The first construction of stable Σ∆ quantization schemes for
all orders is due to Daubechies and DeVore [5]. We shall return to this briefly in
Section 5. Let us also mention the references [1] and [2] which cover the history
as well as recent advances in the theory and applications of Σ∆ quantization in
electrical engineering.

2. General Considerations for Constants

Let us return to the problem (1.1). We claimed that a solution exists if and
only if x is rational. This claim will follow simply as a corollary to a theorem of
Szegö. We first recall the definition of spectral set for bounded sequences.
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Definition 2.1. Let a be a sequence in l∞. Then the spectral set σ(a) is the
set of all ξ ∈ T such that b ∗ a = 0 (b ∈ l1) implies

∑

n b(n)e−inξ = 0.

The spectral set of a sequence a in l1 is precisely the closed support of its
Fourier transform â(ξ) =

∑

n a(n)e−inξ. Definition 2.1 extends this notion for
arbitrary sequences in l∞, whose Fourier transforms in general are not functions.
It is always true that σ(a) is a closed subset of T.

Szegö’s theorem, as stated in the following form in [7, 8] by Helson, deals with
spectral sets of sequences whose terms come from finite sets:

Theorem 2.2 (Szegö-Helson). Let a be a sequence whose terms are all drawn
from a finite set S of complex numbers. Unless the sequence is periodic, its spectral
set fills T.

Let us apply this powerful theorem to the sequence q− x. Certainly, the terms
of this sequence come from the finite set {−x, 1−x}. On the other hand, h∗x = x,
since

∑

h(n) = 1. Thus, (1.1) is a restatement of (q − x) ∗ h = 0. According to
the conclusion of the theorem, a nonperiodic q (hence a nonperiodic q − x) would

mean σ(q − x) = T. This implies ĥ(ξ) =
∑

h(n)e−inξ = 0 for all ξ ∈ T, and hence
h ≡ 0, a contradiction. Hence, only periodic solutions of (1.1) may exist.

Now, consider a periodic solution q, whose period is N . Then q ∗ h is also
periodic and its period divides N . It is a simple calculation to show that

(2.1)

N
∑

n=1

(q ∗ h)(n) =

N
∑

n=1

q(n).

Since the left hand side is Nx and the right hand side is an integer 0 ≤ M ≤ N ,
it follows that x = M/N , i.e., x is rational. This proves the “only if” part of the
assertion. The “if” part follows from a trivial construction. Consider a rational
number x = M/N and let h be the rectangular averaging window of length N . If
q is such that it has period N and exactly M of {q(k) : 1 ≤ k ≤ N} are equal to 1,
then it is clear that q ∗ h = x. In summary:

Theorem 2.3. There is a solution to (1.1) if and only if x is rational. The
solution q is necessarily periodic and its period is a multiple of the denominator of
x in its reduced form.

The rectangular filter of size N would work for all x = M ′/N ′, where N ′

divides N . (So, if the size of the window is chosen to be l.c.m.(1, . . . , N), then all
numbers in the Farey sequence FN can be decoded with it.1) Now, let us consider
the implications of (2.1) on the filter h. If a rational number x = r/s (in its reduced
form) is represented by a sequence q of period N , then s must divide N and precisely
M = Nr/s of {q(k) : k = 1, . . . , N} are equal to 1. Let the corresponding indices

be l1, . . . , lM and define P (ξ) =
∑M

j=1 e−iljξ. Then, a straightforward calculation

shows that q ∗ h = x implies P (ξ)ĥ(ξ) = 0 for all ξ = 2πp/N , p = 1, . . . , N − 1. If

M 6= N (i.e., x 6= 1), then ĥ(ξ) must vanish at least at one of these points. Indeed,

for almost any choice of P , almost all of these roots would belong to ĥ. This leads
us to conjecture the following:

1FN is the set of all rationals in [0, 1] with denominators less than or equal to N .
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Conjecture 2.4. It is impossible to construct a “universal” filter that can
decode all rationals simultaneously. Equivalently, there is no collection of sequences
in {0, 1}Z such that for every x ∈ Q ∩ [0, 1], there is a sequence q in this collection
for which q ∗ h = x, where h is fixed.

Let us consider the alternative formulation (1.2). We have already stated in
the introduction that it is now possible to find solutions for all x ∈ [0, 1]. Even
stronger, universal filter sequences (hλ) can be employed. Before looking at Σ∆
quantization more closely as a scheme that generates such solutions, let us state
the following result which is merely an extension of Theorem 2.3.

Theorem 2.5. A solution q to (1.2) for an irrational x is necessarily non-
periodic.

Proof. Suppose (1.2) is satisfied for some x and a periodic q ∈ {0, 1}Z. Let
N be the period of q. Then, as in (2.1), we have

(2.2)

N
∑

n=1

(q ∗ hλ)(n) →

N
∑

n=1

q(n).

Combined with (1.2), this implies x = 1
N

N
∑

n=1

q(n), i.e. x ∈ Q. �

3. Σ∆ Quantization: Constants

Let us look at the very simple first order Σ∆ system (given in (1.10) to (1.12))
for constant input x ∈ [0, 1]. Define the auxiliary variable u(n) to be X(n)−Q(n).
It is equal to the fractional part of X(n), which we denote by 〈X(n)〉. In practice,
neither X(n) nor Q(n) are computed in an electronic circuit, since these variables
are unbounded. However, the sequence u is bounded and satisfies the recursion
relation

(3.1) u(n) − u(n − 1) = x − q(n), u(0) = 0.

In fact, this recursion is taken as the starting point in practice. One asks for a
bounded solution u of (3.1) such that q ∈ {0, 1}Z. The particular construction of q
we have considered is just one of the solutions of (3.1).

We are now in the setting (1.2). For a given filter hλ, let us derive an estimate
for the error eλ = x − q ∗ hλ, where hλ obeys the scaling relation hλ(n) = 1

λϕ(n
λ )

for some function ϕ. For a ∈ l1, define S(a) =
∑

a(n). The error may be bounded
by a sum of two contributions:

(3.2) |eλ(n)| ≤ |x(1 − S(hλ))| +
∣

∣

∣

∑

k

(x − q(k))hλ(n − k)
∣

∣

∣
.

Let us call the two terms e1
λ and e2

λ. It is possible to choose ϕ such that the first
error term is zero for all λ. For instance, ϕ = χ[0,1] has this property for all integer
λ; on the other hand, ϕ ∈ BV ∩ Bπ with ϕ̂(0) = 1 has it for all real λ > 1 (which
may easily be seen using Poisson’s summation formula). Assume a choice of ϕ with
this property, which leaves us with e2

λ = (x − q) ∗ hλ.

Theorem 3.1. For all λ, ‖eλ‖l∞ ≤ 1
λVar(ϕ).
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Proof. Let ∆ denote the difference operator acting on sequences, defined by
∆u(n) = u(n)−u(n−1). Using the recursion relation (3.1), and that u is bounded
by 1, it follows that

‖eλ‖l∞ = ‖∆u ∗ hλ‖l∞ ,

= ‖u ∗ ∆hλ‖l∞ ,(3.3)

≤ ‖u‖l∞‖∆hλ‖l1 ,

≤
1

λ
Var(ϕ).(3.4)

�

We call this the “basic estimate”, in the sense that only boundedness of u
was used in the derivation. We shall improve the exponent of λ by examining the
expression (3.3) more closely.

First we note that u∗∆hλ = (u−c)∗∆hλ for any constant c. Next, we consider
a particular filter, the triangle function ϕ(t) = (1 − |t|)χ[−1,1](t). Then,

(3.5) (u ∗ ∆hλ)(n) =
1

λ2

λ−1
∑

k=0

(

u(n + k) −
1

2

)

−
1

λ2

λ
∑

k=1

(

u(n − k) −
1

2

)

In the above expression, the value of c was chosen to be 1/2 in order to exploit the
fact that the state variable u(n) = 〈X(n)〉 = 〈nx〉 forms a uniformly distributed
sequence in [0, 1] for all irrational x. Using well known results in the theory of
uniform distribution, we now prove the following improved estimate:

Theorem 3.2. Let ǫ > 0 be given. Then for almost every x ∈ [0, 1], one has
the estimate ‖eλ‖l∞ ≤ Cxλ−2 log2+ǫ λ, using the triangular filter.

Proof. Koksma’s inequality2 reduces the problem to considering the discrep-
ancy values for the two sequences u(n−λ), . . . , u(n−1) and u(n), . . . , u(n+λ−1).
The discrepancy can be bounded using the Erdős-Turán inequality3. In our case,
these two inequalities result in

(3.8)
∣

∣

∣

1

λ

a+λ
∑

k=a+1

u(k) −
1

2

∣

∣

∣
≤ inf

K
C

(

1

K
+

K
∑

k=1

1

k

∣

∣

∣

1

λ

λ
∑

m=1

e2πikmx
∣

∣

∣

)

,

uniformly in a and for all λ. The precise behaviour of this quantity depends on
the behaviour of the continued fraction expansion of x (see, e.g. [11, 12, 13]).
We shall not pursue such a detailed analysis, but rather use a metric result due to
Khinchine, which yields the bound O(λ−1 log2+ǫ λ) for almost every (Lebesgue) x
(see [11, pp. 131]). Let us note that the involved constant in general depends on
x. This, together with (3.5) gives us the desired estimate. �

2For any function f ∈ BV ([0, 1]) and a finite sequence of points x1, . . . , xN in [0, 1],

(3.6)
˛

˛

˛

1

N

N
X

n=1

f(xn) −

Z 1

0
f(t)dt

˛

˛

˛ ≤ Var(f)DN ,

where DN denotes the discrepancy of the sequence x1, . . . , xN and Var(f) is the variation of f .
3The discrepancy DN of any real numbers x1, . . . , xN is bounded by

(3.7) DN ≤ C

 

1

K
+

K
X

k=1

1

k

˛

˛

˛

1

N

N
X

m=1

e2πikxm

˛

˛

˛

!

for any positive integer K, where C is an absolute constant.
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Let us use the notation eλ,x to denote the dependence of the error eλ on the
input value x. We assume that the triangular filter is used, so that (3.5) and (3.8)
are in effect. We have already mentioned above that the precise behaviour of eλ,x

can only be described by means of the continued fraction expansion of x. However,
the mean behaviour is simpler. Let us consider the mean squared error (MSE)

(3.9) MSE(eλ) =

∫ 1

0

‖eλ,x‖
2
l∞dx

A straightforward bound for MSE(eλ) can be found directly from (3.8). Let Pλ,k(x)

denote the trigonometric polynomial λ−1
∑λ

m=1 e2πikmx. Note that ‖Pλ,k‖L2([0,1]) =

λ−1/2. Then,

MSE(eλ) ≤
C

λ2

∫ 1

0

inf
K

( 1

K
+

K
∑

k=1

k−1|Pλ,k(x)|
)2

dx

≤
C′

λ2
inf
K

∫ 1

0

(

1

K2
+
(

K
∑

k=1

k−1|Pλ,k(x)|
)2
)

dx

≤
C′

λ2
inf
K

(

1

K2
+

K
∑

k=1

K
∑

l=1

1

kl

∫ 1

0

|Pλ,k(x)||Pλ,l(x)|dx

)

≤
C′

λ2
inf
K

(

1

K2
+

1

λ
log2 K

)

,

where we have used the Cauchy-Schwarz inequality in the last step. Finally, by
choosing K ∼ λ1/2, we arrive at the bound

(3.10) MSE(eλ) ≤ Cλ−3 log2 λ.

The exponent of λ in this estimate is optimal. Indeed, using number theoretical
tools, it is shown in [14] that

(3.11) C1λ
−3 ≤

∫ 1

0

|eλ,x(0)|2dx ≤ C2λ
−3.

It is natural to conjecture that this is also true for ‖
∫ 1

0
|eλ,x(·)|2dx‖l∞ , a quantity

smaller than MSE(eλ). It is shown in [3] that the quantity

(3.12)

∫ 1

0

1

2N + 1

N
∑

n=−N

|eλ,x(n)|2dx

(which is yet even smaller) also behaves as O(λ−3) as N → ∞.

4. Σ∆ Quantization: Arbitrary Bandlimited Inputs

In this section, we generalize the results of the previous section to arbitrary
bandlimited functions. The difference equation now reads as

(4.1) uλ(n) − uλ(n − 1) = xλ(n) − qλ(n), u(0) = 0;

where xλ(n) and uλ(n) are defined to be x(n
λ ) and Xλ(n) − Qλ(n) = 〈Xλ(n)〉,

respectively. Clearly, uλ takes its values in [0, 1]. Our setting is (1.5), and in
general we allow ϕ to depend on λ, which will be denoted by ϕλ.
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The Basic Estimate. We start with the corresponding “basic estimate” given
in [5], where it is also possible to use a fixed filter ϕ for all λ.

Theorem 4.1 ([5]). Let x ∈ Bπ with 0 ≤ x(t) ≤ 1 for all t, and ϕ ∈ BV (R)
satisfying (1.7) for some fixed λ0 > 1. Then, ‖x − µλ(qλ) ∗ ϕ‖L∞ ≤ 1

λVar(ϕ) for
all λ ≥ λ0.

Proof. The sampling theorem states that x = µλ(xλ) ∗ ϕ for all λ ≥ λ0. Let
∆η be the difference operator whose action on a measure is given by ∆ηµ(·) =
µ(·) − µ(· − η) and let 1 denote the constant sequence of 1’s. Then,

x − µλ(qλ) ∗ ϕ = µλ(xλ − qλ) ∗ ϕ,

= µλ(∆uλ) ∗ ϕ,

= ∆1/λµλ(uλ) ∗ ϕ,

= µλ(uλ) ∗ ∆1/λϕ,(4.2)

so that

‖x − µλ(qλ) ∗ ϕ‖L∞ ≤ ‖µλ(1) ∗ |∆1/λϕ| ‖L∞ ,

≤
1

λ
Var(ϕ).(4.3)

In the last step, we made use of the identity µλ(1) ∗ f = 1
λ

∑

f(· − n
λ ). �

An Improved Estimate. We shall apply the ideas of the previous section to
prove the following theorem, which is an improvement of the above basic estimate:

Theorem 4.2. For all η > 0, there exists a family {ϕλ}λ≥1 of filters such that,
for all x in Theorem 4.1, and all t for which x′(t) does not vanish, we have

(4.4) |x(t) − (µλ(qλ) ∗ ϕλ)(t)| ≤ Cλ−4/3+η

for some constant C = C(η, x′(t)).

Note that bandlimited functions are analytic, so that the derivative x′ of a
non-constant bandlimited function x has at most countably many zeros, with no
accumulation point. It is also possible to carry out a higher order analysis at the
zeros of x′, but we shall not touch upon this here.

Proof. We divide the proof into a number of steps.
1. Fix t (for which x′(t) 6= 0). For each λ, let Nλ = ⌊λt⌋, and define the sequence
Uλ by

(4.5) Uλ(n) − Uλ(n − 1) = uλ(n) −
1

2
, Uλ(Nλ) = 0.

Let also tλ = Nλ/λ and δλ = t − tλ. Note that |δλ| ≤ 1/λ. Now, (4.2) can be
written as

x(t) − (µλ(qλ) ∗ ϕλ))(t) =
1

λ

∑

n

∆Uλ(n)∆1/λϕ(t − n
λ ),

=
1

λ

∑

n

Uλ(n)∆2
1/λϕ(t − n

λ ),

=
1

λ

∑

n

Uλ(Nλ + n)∆2
1/λϕ(−n

λ + δλ),(4.6)

for any ϕ that decays sufficiently fast. Denote the error expression by eλ(t).
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2. Our purpose is to find non-trivial bounds for Uλ(Nλ + n) by accounting for the
cancellations in

(4.7) Uλ(Nλ + n) =
n
∑

m=1

(

uλ(Nλ + m) −
1

2

)

,

where we have assumed n > 0, the other case being essentially the same. Note that
the trivial bound is |n|/2. We shall prove the following estimate:

(4.8) |Uλ(Nλ + n)| ≤ C1

(

λ2/3 +
λ1/2

|x′(t)|1/2

)

,

for all n ≤ C2|x
′(t)|λ and λ > C3|x

′(t)|−1. (4)

The inequalities of Koksma and Erdős-Turán result in the bound

(4.9) |Uλ(Nλ + n)| ≤ inf
K

C

(

n

K
+

K
∑

k=1

1

k

∣

∣

∣

n
∑

m=1

e2πikuλ(Nλ+m)
∣

∣

∣

)

,

which reduces our task to analyzing the behaviour of the exponential sums

(4.10) Sλ,k(n) :=

n
∑

m=1

e2πikXλ(Nλ+m),

since uλ(n) = 〈Xλ(n)〉.
3. We will use the stationary phase methods of van der Corput to estimate the
exponential sums given in (4.10). The following well-known theorems serve well for
this purpose:

Theorem 4.3 (Truncated Poisson, [9]). Let f be a real-valued function and
suppose that f ′ is continuous and increasing on [a, b]. Put α = f ′(a), β = f ′(b).
Then

(4.11)
∑

a≤m≤b

e2πif(m) =
∑

α−1≤ν≤β+1

∫ b

a

e2πi(f(τ)−ντ)dτ + O(log(2 + β − α)).

(If f ′ is decreasing, then by taking the complex conjugate of the above expres-
sion applied to −f , one finds the same expression with α and β switched.)

Theorem 4.4 (van der Corput, [10]). Suppose φ is real-valued and smooth in
(a, b), and that |φ(r)(t)| ≥ µ for all t ∈ (a, b) and for a positive integer r. If r = 1,
suppose additionally that φ′ is monotonic. Then there exists an absolute constant
cr such that

(4.12)
∣

∣

∣

∫ b

a

eiφ(t) dt
∣

∣

∣
≤ crµ

−1/r.

In our case, Xλ is initially only defined on the integers; however, (1.10) imme-
diately yields an (analytic) interpolation of Xλ. We call this new function Xλ as

4As is customary, we shall use the notations C, C′, C1, C2, ... for generic constants that may
change value from one proof to another; constants of different values occurring in the same argu-
ment will be distinguished by different indices.
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well, and show in the Appendix that for λ ≥ C|x′(t)|−1, and all real τ in the range
0 ≤ τ ≤ C3|x

′(t)|λ, one has

(4.13) C1
|x′(t)|

λ
≤ |X ′′

λ(Nλ + τ)| ≤ C2
|x′(t)|

λ
,

where C, C1, C2, and C3 are absolute numerical constants.
In Theorem 4.3, we set f = kXλ, a = Nλ + 1, and b = Nλ + n, and assume

n ≤ C3|x
′(t)|λ. It follows from (4.13) that the number of integral terms in the right

hand side of (4.11) is bounded by

|β − α + 3| ≤ 3 + k(n − 1) sup
1≤τ≤n

|X ′′
λ(Nλ + τ)|

≤ 3 + k(n − 1)C2
|x′(t)|

λ
.(4.14)

On the other hand, using Theorem 4.4 (for r = 2) with (4.13), each exponential
integral term in (4.11) is bounded by C(k|x′(t)|/λ)−1/2. Combining this with the
bound on the number of terms that we have just found, we get

(4.15) |Sλ,k(n)| ≤ C1n
(k

λ

)1/2

+ C2

(k

λ

)−1/2

|x′(t)|−1/2 + O(log(2 + k)),

where in the first term we have made use of the fact that ‖x′‖L∞ ≤ π (which
follows from Bernstein’s inequality5), and in the logarithmic term that |β − α| ≤ k
for the given range of n. Note that, for small k, this bound significantly improves
the trivial bound n. Now, if in (4.9), one chooses K ∼ λ1/3, then (4.15) yields our
desired estimate (4.8).
4. We finish the proof of Theorem 4.4 by bounding (4.6) for a particular family
of filters which we construct next. For this, we fix a filter ϕ such that ϕ̂ is C∞,
supp(ϕ̂) ⊂ [−c0π, c0π] for some small fixed c0 > 1, and ϕ̂(ξ) = 1 on [−π, π]. Then ϕ
is a Schwartz function, i.e., ϕ has rapidly decreasing derivatives: there are constants

C
(l)
N for all N ≥ 0 and l ≥ 0 such that

(4.16) |ϕ(l)(t)| ≤
C

(l)
N

(1 + |t|)N
.

For a small η > 0, we set Ωλ = λη/2 and define ϕλ by

(4.17) ϕλ(t) = Ωλϕ(Ωλt)

for λ ≥ 1. Then ϕ̂λ(ξ) = ϕ̂(ξ/Ωλ) and hence {ϕλ} is an admissible family of
reconstruction filters. We turn back to the expression (4.6). For small n (i.e., for
|n| ≤ c|x′(t)|λ for a sufficiently small constant c), we will use the estimate (4.8) in
the form O(|x′(t)|−1/2λ2/3), and for large n, the trivial estimate |n|/2. Thus,

|eλ(t)| ≤
1

λ

(

O(|x′(t)|−1/2λ2/3)
∑

|n|≤c|x′(t)|λ
|∆2

1/λϕλ(−n
λ + δλ)|

+
∑

|n|>|x′(t)|cλ

|n|

2
|∆2

1/λϕλ(−n
λ + δλ)|

)

(4.18)

The first sum term can easily be bounded by

(4.19) 2λ−1‖ϕ′′
λ‖L1 = 2λ−1+η‖ϕ′′‖L1 ,

5If f ∈ BΩ, then ‖f(s)‖L∞ ≤ Ωs‖f‖L∞ .
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and the second sum term by

(4.20)
∑

|n|>c|x′(t)|λ

|n|

2
·

2

λ2
·

Ω3
λC

(2)
N

(1 + Ωλ|n|λ−1)N
≤ C(N, |x′(t)|)Ω−N+3

λ ,

for all N . We choose N such that (N − 3)η/2 > 1/3. Putting together, this results
in the estimate

(4.21) ǫλ(t) ≤ C(η, |x′(t)|)λ−4/3+η ,

concluding the proof. �

5. Other Results

In the introduction, we mentioned higher order Σ∆ schemes. In a k-th order
Σ∆ scheme, one is interested in solutions q ∈ {0, 1}Z of the difference equation

(5.1) ∆ku = x − q,

with u ∈ l∞ (such a scheme is called stable). Again, we use the notations uλ, xλ

and qλ when x is an arbitrary bandlimited function sampled at the rate λ.
The second order case is best understood among all higher order schemes, and

there are many construction strategies for q that are stable. We shall not get
into any specific details of these schemes, but state only the error estimates. The
basic estimate is now O(λ−2) both for constants and general bandlimited functions.
However, in this case, the exponent can be improved only for constants [15]. A
notable difficulty arises in analyzing a particular family of piecewise affine dynamical
systems in the plane, whose attracting invariant sets turn out to tile the plane with
the action of the integer lattice. Using similar number theoretical techniques (such
as mean values of Gauss sums and higher dimensional versions of discrepancy and
the inequalities of Koksma and Erdős-Turán), the MSE(eλ) is shown to be bounded
by O(λ−4.5). A similar improvement of the exponent for the uniform error is also
found using the corresponding metric results.

The basic estimate for a stable k-th order scheme is O(λ−k), which makes higher
order schemes more interesting in terms of their approximation properties. However
in practice, the first order scheme is widely used for its many attractive features,
such as its robustness to hardware imperfections. There are various (mostly ad
hoc) constructions in the electrical engineering literature of schemes of higher (single
digit) orders ([1, 2]), without proof of stability. A recent mathematical achievement
in this direction has been the construction of a family of arbitrary order stable Σ∆
schemes in [5].

For a given order k, let Ck be the constant hidden in the O(λ−k) estimate.
Then, it is natural to let the order depend on λ and look for the best possible decay

of the error in λ. For the scheme in [5], the authors show that Ck ∼ ck2

, which

results in an O(c− log2 λ) type decay using the optimal choice of order for each λ.
On the other hand, a lower bound can easily shown to be 2−λ using Kolmogorov
entropy. It is an unsolved problem to determine whether exponential decay of error
can be achieved.6 Another step towards this lower bound is taken in [17] for the

6
Note added in October 2003: This problem is now solved. In [16], we construct Σ∆ fam-

ilies which collectively achieve the error bound ‖eλ‖L∞ = O(2−0.07λ) for arbitrary π-bandlimited
functions. The best achievable constant in the exponent is still unknown.
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constant input case, in which a purely number theoretical construction yields an

O(c−
√

λ) type of error decay.

6. Appendix

In this section, we present the construction of the analytic interpolation of the
sequence Xλ, which was stated in the proof of Theorem 4.4. Using the Taylor
expansion of x about the point tλ, we proceed as follows:

Xλ(Nλ + m) = Xλ(Nλ) +

m
∑

l=1

x(tλ + l
λ )

= Xλ(Nλ) +

∞
∑

s=0

x(s)(tλ)

λss!

m
∑

l=1

ls

= Xλ(Nλ) +

∞
∑

s=0

x(s)(tλ)

λss!

s+1
∑

j=1

Ps,jm
j(6.1)

= Xλ(Nλ) +

∞
∑

j=1

mj
∞
∑

s=j−1

x(s)(tλ)

λss!
Ps,j ,(6.2)

where Ps,j are related to Bernoulli numbers. We use this last expression to define

(6.3) Xλ(Nλ + τ) = Xλ(Nλ) +

∞
∑

j=1

ajτ
j

for all τ ≥ 0, where aj is the sum term appearing in (6.2). The simple bound
Ps,j ≤ s!/j! and Bernstein’s inequality easily yields

(6.4) |aj| <
2

j!

(π

λ

)j−1

for λ > 2π. Let us show that

(6.5) X ′
λ(Nλ + τ) = x(tλ + τ

λ ) + Rλ(τ),

where Rλ(τ) is small compared to x(tλ + τ
λ ) for τ = O(λ). We start with noting

that Ps,s+1 = 1/(s + 1) for all s. Then, starting from (6.1),

X ′
λ(Nλ + τ) =

∞
∑

s=0

x(s)(tλ)

λss!

s+1
∑

j=1

Ps,jjτ
j−1

=

∞
∑

s=0

x(s)(tλ)

λss!

(

τs +

s
∑

j=1

Ps,jjτ
j−1
)

= x(tλ + τ
λ) + Rλ(τ),(6.6)
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where

Rλ(τ) =

∞
∑

s=0

x(s)(tλ)

λss!

s
∑

j=1

Ps,jjτ
j−1

=

∞
∑

j=1

jτ j−1
∞
∑

s=j

x(s)(tλ)

λss!
Ps,j

=:

∞
∑

j=1

jτ j−1bj.(6.7)

A similar estimate for bj is

(6.8) |bj| <
2

j!

(π

λ

)j

,

which, through (6.6) and (6.7), provides us the estimate

(6.9) |X ′′
λ(Nλ + τ) − 1

λx′(tλ + τ
λ )| ≤ 2

(

π
λ

)2
eτπ/λ.

Now,

(6.10) |x′(tλ + τ
λ) − x′(t)| ≤

(τ + 1)

λ
π2,

so that

(6.11)
1

2
|x′(t)| ≤ |x′(tλ + τ

λ)| ≤
3

2
|x′(t)|,

for all 0 ≤ τ ≤ Cλ|x′(t)|, where C is a sufficiently small absolute constant. Hence,
from (6.9) and (6.11), it follows that

|X ′′
λ(Nλ + τ)| ≥

1

λ
|x′(tλ + τ

λ)| − 2eπτ/λ
(

π
λ

)2

≥ C1
|x′(t)|

λ
(6.12)

if λ ≥ C′|x′(t)|−1. It follows similarly that

|X ′′
λ(Nλ + τ)| ≤ C2

|x′(t)|

λ
(6.13)

for the same range of λ and τ .
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[15] C.S. Güntürk and N.T. Thao, “Refined Analysis of Error in Second Order Sigma-Delta Modu-
lation with DC Inputs,” submitted to IEEE Transactions on Information Theory, in revision.
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