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Abstract. This paper has two themes that are intertwined: The first is the dynamics of
certain piecewise affine maps on Rm that arise from a class of analog-to-digital conversion
methods called Σ∆ (sigma-delta) quantization. The second is the analysis of reconstruction
error associated to each such method.

Σ∆ quantization generates approximate representations of functions by sequences that
lie in a restricted set of discrete values. These are special sequences in that their local av-
erages track the function values closely, thus enabling simple convolutional reconstruction.
In this paper, we are concerned with the approximation of constant functions only, a basic
case that presents surprisingly complex behavior. An mth order Σ∆ scheme with input
x can be translated into a dynamical system that produces a discrete-valued sequence
(in particular, a 0–1 sequence) q as its output. When the schemes are stable, we show
that the underlying piecewise affine maps possess invariant sets that tile Rm up to a finite
multiplicity. When this multiplicity is one (the single-tile case), the dynamics within the
tile is isomorphic to that of a generalized skew translation on Tm.

The value of x can be approximated using any consecutive M elements in q with in-
creasing accuracy in M . We show that the asymptotical behavior of reconstruction error
depends on the regularity of the invariant sets, the order m, and some arithmetic proper-
ties of x. We determine the behavior in a number of cases of practical interest and provide
good upper bounds in some other cases when exact analysis is not yet available.

1. Introduction

This paper is motivated by the mathematical problems exhibited in and suggested by a
class of real-world practical algorithms that are used to perform analog-to-digital conversion
of signals. There will be two themes in our study of these mathematical problems. The first
theme is the dynamics of certain piecewise affine maps on Rm that are associated with these
algorithms. The second theme is the analysis of the reconstruction error. While the first
theme is somewhat independent of the second and is of great interest on its own, the second
theme turns out to be crucially dependent on the first and is of interest for theoretical as
well as practical reasons.

Let us start with the following abstract algorithm for analog-to-digital encoding: For
each input real number x in some interval I, there is a map Tx on a space S, and a finite
partition Πx = {Ωx,1, . . . ,Ωx,K} of S. For a fixed set of real numbers d1 < · · · < dK , and
a typically fixed (but arbitrary) initial point u0 ∈ S, we define a discrete-valued output
sequence q := qx via

q[n] = di if u[n−1] := T
n−1
x (u0) ∈ Ωx,i. (1.1)
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We would like the mapping x 7→ q to be invertible in a very special way: For an input-

independent family of averaging kernels φM ∈ ℓ1(Z), M = 1, 2, . . . , we require that for all
x ∈ I, as M → ∞,

(q ∗ φM )[n] :=
∑

k

φM [k]q[n− k] −→ x, uniformly in n. (1.2)

For normalization, we ask that the size of the averaging window (i.e., the support of φM )
grow linearly in M ,1 and the weights satisfy

∑
n φM [n] = 1.

Note that such an encoding of real numbers is inherently different from binary-expansion
(or any other expansion in a number system) in that, due to (1.2), equal length segments
of the sequence q are required to be equally good in approximating the value of x. Hence,
there is a “translation-invariance” property in the representation.

This setting is a special case of a more general one in which x = (x[n])n∈Z is a bounded
sequence taking values in I and

q[n] = di if u[n−1] ∈ Ωx[n],i, (1.3)

where we now define u[n] := Tx[n](u[n−1]), and require that

(q − x) ∗ φM −→ 0 uniformly. (1.4)

The basic motivation behind this type of encoding is the following intuitive idea: Let the
elements x[n] be closely and regularly spaced samples of a smooth function X : R → I. Since
local averages of these samples around any point k would approximate x[k], i.e., x∗φM ≈ x
for suitable φM , (1.4) would then imply that the sequence x (and therefore the function X)
can be approximated by the convolution q ∗ φM .

Such analog-to-digital encoding algorithms have been developed and used in electrical
engineering for a few decades now. Most notable examples are the Σ∆ quantization (also
called Σ∆ modulation) of audio signals and the closely related error-diffusion in digital
halftoning of images. There are several sources in the electrical engineering literature on
the theoretical and practical aspects of Σ∆ quantization [6, 10, 22]. Digital halftoning and
its connections to Σ∆ quantization can be found in [1, 2, 4, 20, 26]. Recently, Σ∆ quantiza-
tion has also received interest in the mathematical community, especially in approximation
theory and information theory, since a very important question is the rate of convergence
in (1.4) [5, 9, 13, 14, 16].

We give in Section 2 the original description of an mth order Σ∆ modulation scheme in
terms of difference equations. The underlying specific map Tx, which we then refer to as Mx

(the “modulator map”), is described in Section 4; Mx is the piecewise affine transformation
on S = Rm defined by

Mx(v) = Lv + (x− di)1 if v ∈ Ωx,i, (1.5)

where L := Lm is the m×m lower triangular matrix of 1’s and 1 := 1m := (1, . . . , 1)⊤ ∈ Zm.
Each Σ∆ scheme is therefore characterized by its orderm, the partition Πx, and the numbers
{di}. A scheme is called k-bit if the size K of the partition Πx satisfies 2k−1 < K ≤ 2k. If the
numbers {di} are in an arithmetic progression, this is referred to as uniform quantization.
As a consequence of the normalization

∑
n φM [n] = 1, the input numbers x are chosen in

I ⊂ [d1, dK ]. A scheme is said to be stable if for each x, forward trajectories under the action

1It will be of interest to use infinitely supported kernels as well. We will define the necessary modifications
to handle this situation later.
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of Mx are bounded in Rm. (More refined definitions of stability will be given in Section 4.)
The partition Πx is an essential part of the algorithm for its central role in stability.

It is natural to measure the accuracy of a scheme by how fast the worst case error
‖(x− q)∗φM‖∞ converges to zero. It is known that for an mth order stable scheme, and an
appropriate choice for the family F = {φM} of filters,2 this quantity is O(M−m) [9]. The
hidden constant depends on the scheme as well as the input sequence x. Here, the exponent
m is not sharp; in fact, for m = 1 and m = 2, improvements have been given for various
schemes [13, 15]. We will review the basic approximation properties of Σ∆ quantization in
Section 2.

In applications, it is also common to measure the error in the root mean square norm due
its more robust nature (this norm is defined in Section 3). It is known for a small class of
schemes we call ideal, and a small class of sequences (basically, constants and pure sinusoids)
that this norm, when averaged over a smooth distribution of values of x, has the asymptotic
behavior O(M−m−1/2) [8, 11, 17]. The analyses employed in obtaining these results rely
on very special properties of these ideal schemes, such as employing an (effective) m-bit
uniform quantizer for the mth order scheme. It was not known how to extend these results
to low-bit schemes (in particular, 1-bit schemes) of high order for which experimental results
and simulation suggested similar asymptotical behavior for the root mean square error.

It is the topic of this paper to provide a general framework and methodology to analyze
Σ∆ quantization in an arbitrary setup (in terms of partition and number of bits) when
inputs are constant sequences. With regards to the first theme of this paper, we prove
in Section 5 that the maps Mx have an outstanding property of yielding tiling invariant
sets, up to a multiplicity that is determined by the map. In the particular case of single
tiles being invariant under Mx (which also appears to be systematically satisfied by all
practical Σ∆ quantization schemes), we develop a spectral theory of Σ∆ quantization.
This constitutes the second theme of the paper. The particular consequence of tiling that
enables our spectral analysis is presented in Section 6. The resulting new error analysis for
general and particular cases is presented in the remainder of the paper.

Some notation. The symbols R, Z, and N denote the set of real numbers, the set of
integers and the set of natural numbers, respectively. T denotes the set of real numbers
modulo 1, i.e., T = R/Z. Functions on Rm that are 1-periodic in each dimension are
assumed to be defined on Tm via the identification T = [0, 1), and functions defined on Tm

are extended to Rm by periodization.
Vectors and matrices are denoted in boldface letters. Transpose is denoted by an upper-

script ⊤. The j’th coordinate of a vector v is denoted by vj , unless otherwise specified.
Sequence elements are denoted using brackets, such as in ω =

(
ω[n]

)
n∈Z

. The sequence ω̃

denotes time reversal of ω defined by ω̃[n] := ω[−n], and the symbol ∗ is used to denote the
convolution operation.

We define two types of autocorrelation. For a square integrable real-valued function f ,
we define

Af (t) := (f ∗ f̃)(t) =

∫
f(ξ)f(ξ + t) dξ.

2We shall adopt the electrical engineering terminology “filter” to refer to a sequence (or function) that
acts convolutionally.
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On the other hand, we define the autocorrelation ρω for a bounded (real-valued) sequence
ω by the formula

ρω[k] := lim
N→∞

1

N

N∑

n=1

ω[n]ω[n+ k],

provided the limit exists.
The Fourier series coefficients of a measure µ on T are given by

µ̂[n] :=

∫

T

e−2πinξ dµ(ξ),

and the Fourier transform of a sequence h = (h[n])n∈Z is denoted by the capital letter H,
i.e.,

H(ξ) :=
∑

n∈Z

h[n]e2πinξ.

Hence, when Fourier inversion holds, we have Ĥ[n] = h[n].
The “big oh” f = O(g) and the “small oh” f = o(g) notations will have their usual

meanings. When it matters, we also use the notation f .α g to denote that there exists
a constant C that possibly depends on the parameter (or set of parameters) α such that
f ≤ Cg. We write f ≍ g if f . g and g . f , which is the same as f = Θ(g).

2. Basic theory of Σ∆ quantization

In this section, we describe the principles of Σ∆ quantization (modulation) via a set of
defining difference equations. The description in terms of piecewise affine maps on Rm will
be given in Section 4. Although the schemes representable by these difference equations do
not constitute the whole collection of algorithms called by the name Σ∆ modulation, they
are sufficiently general to cover a large class of algorithms that are used in practice and
many more to be investigated.

Let m be the order of the scheme, and x = (x[n])n∈Z be the input sequence. Then a
sequence of state-vectors, denoted

u[n] =
(
u1[n], . . . , um[n]

)⊤
, n = 0, 1, . . .

and a sequence of output quantized values (or symbols), denoted q[n], n = 1, 2, . . . , are
defined recursively via the set of equations






q[n] = Q(x[n],u[n−1]),
u1[n] = u1[n−1] + x[n] − q[n]
u2[n] = u2[n−1] + u1[n],

... =
...

um[n] = um[n−1] + um−1[n],






(2.1)

where the mapping Q : Rm+1 → {d1, . . . , dK}, called the quantization rule, or simply the
quantizer of the Σ∆ modulator, is specific to the scheme. In circuit theory, these equations
are represented as a feedback-loop system via the block diagram given in Figure 1.

In addition to producing the output sequence q, the role of the quantizer Q of a Σ∆
modulator is to keep the variables uj bounded. A more precise definition of this notion
of stability will be given later. Let us see how boundedness of uj results in a simple
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Figure 1. Block diagram of an mth order Σ∆ modulator.

reconstruction algorithm. It can be seen directly from (2.1) that for each j = 1, . . . ,m, the
state variable uj satisfies

x− q = ∆juj , (2.2)

where ∆ is the difference operator defined by (∆v)[n] = v[n]− v[n−1]. Consider j = 1, and
assume that x is constant. From this, it follows that

∣∣∣∣∣x− 1

M

n+M∑

k=n+1

q[k]

∣∣∣∣∣ =
1

M

∣∣∣∣∣

n+M∑

k=n+1

(x− q[k])

∣∣∣∣∣

=
1

M

∣∣∣∣∣

n+M∑

k=n+1

(u1[k] − u1[k−1])

∣∣∣∣∣

=
1

M

∣∣u1[n+M ] − u1[n]
∣∣

≤ 2

M

∥∥u1

∥∥
∞
. (2.3)

This means that simple averaging of any M consecutive output values q[k] yields a recon-
struction within O(M−1).

This approximation result can be generalized easily. For simplicity of the discussion, let
us assume that the difference equation (2.2) is satisfied on the whole of Z (with some care,
this can be achieved via backwards iteration of (2.1)). For a given averaging filter φ ∈ ℓ1(Z)
with

∑
n
φ[n] = 1, let

ex,φ := x− q ∗ φ (2.4)

be the error sequence. Since x is a constant sequence, we have x = x ∗ φ. Therefore

ex,φ = (x− q) ∗ φ = (∆mum) ∗ φ = um ∗ (∆mφ), (2.5)

where at the last step we have used commutativity of convolutional operators. From this,
we obtain ∥∥ex,φ

∥∥
∞

≤
∥∥um

∥∥
∞

∥∥∆mφ
∥∥

1
. (2.6)

It is not hard to show that there is a family of averaging kernels φM,m (which can be,
for instance, discrete B-splines of degree m) with support size growing linearly in M such
that ‖∆mφM,m‖1 ≤ CmM

−m. Combined with (2.6), this yields the bound O(M−m) on
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the uniform approximation error. A proof of this result in the more general setting of
oversampling of bandlimited functions can be found in [9, 12].

3. Mean square error and its spectral representation

For the rest of this paper, we shall be interested in the mean square error (also called,
the time-averaged square error) of approximation defined by

E(x, φ) := lim
N→∞

1

N

N∑

n=1

∣∣ex,φ[n]
∣∣2, (3.1)

provided the limit exists (otherwise the lim is replaced by a lim sup). The root mean square

error is defined to be
√

E(x, φ). For convenience in the notation, we shall work with E(x, φ).
The mean square error enjoys properties that are desirable from an analytic point of

view. The definition of autocorrelation sequence yields an alternative description given by

E(x, φ) = ρex,φ
[0]. (3.2)

Using the formula (2.5) and the standard relation ρω∗g = ρω ∗ g ∗ g̃ whenever ρω exists and
g ∈ l1, we find that

E(x, φ) = (ρum ∗ (∆mφ) ∗ (̃∆mφ))[0]. (3.3)

We shall abbreviate ρum by ρu.
The computation of E(x, φ) can also be carried out in the spectral domain. Since ρu is

positive-definite, it constitutes, by Herglotz’ theorem [19, p. 38], the Fourier coefficients of
a non-negative measure µ on T (the power spectral measure), i.e.,

ρu[k] =

∫

T

e−2πikξ dµ(ξ). (3.4)

Combining this result with (3.3) and elementary Fourier analysis yields the spectral formula

E(x, φ) =

∫

T

|2 sin(πξ)|2m|Φ(ξ)|2 dµ(ξ), (3.5)

where Φ has the absolutely convergent Fourier series representation

Φ(ξ) =
∑

n

φ[n]e2πinξ .

This computational alternative is effective when the measure µ has a simple description.
On the other hand, it can happen that this measure is too complex to compute with
directly. In our case, as we shall demonstrate, µ will generally have a pure point (discrete)
component µpp, and an absolutely continuous component µac. (There will not be any
continuous singular component.) We will denote the Radon-Nikodym derivative of µac by
Ψ (i.e., dµac(ξ) = Ψ(ξ)dξ, where Ψ ∈ L1(T)), and call it the spectral density of µac. We
shall analyze these two components µpp and µac via their Fourier series coefficients. Under
certain conditions, we will be able to describe both of these components explicitly and
compute the asymptotical behavior of E(x, φM ) as M → ∞.
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4. Piecewise affine maps of Σ∆ quantization

In this section, we study the difference equations of Σ∆ modulation as a dynamical
system arising from the iteration of certain piecewise affine maps on Rm. It easily follows
from the equations in (2.1) that

uj [n] =

j∑

i=1

ui[n−1] + (x[n] − q[n]), 1 ≤ j ≤ m, (4.1)

or in short,
u[n] = Lu[n−1] + (x[n] − q[n])1, (4.2)

where the matrix L and the vector 1 were defined in (1.5). Using the definition of q[n] in
(2.1), we introduce a one-parameter family of maps {Mx}x∈I on Rm defined by

Mx(v) := Lv + (x−Q(x,v))1. (4.3)

Hence, the evolution of the state vector u[n] is given by

u[n] = Mx[n](u[n−1]). (4.4)

According to the formulation presented in the introduction, the elements of the partition Πx

are then given by Ωx,i = {v ∈ Rm : Q(x,v) = di}, and the expression (4.3) is equivalent
to (1.5). For the rest of the paper, we shall assume that x[n] = x is a constant sequence so
that

u[n] = M
n
x(u[0]), (4.5)

and
q[n] = Q

(
x,Mn−1

x (u[0])
)
. (4.6)

A variety of choices for the quantizer Q have been introduced in the practice of Σ∆
modulation. Most of these are designed with circuit implementation in mind, and therefore
necessitate simple arithmetic operations, such as linear combinations and simple threshold-
ing. A canonical example would be

Q0(x,v) = ⌊α0x+ α1v1 + · · · + αmvm + β0⌋ + β1, (4.7)

where the coefficients αi and βi are specific to each scheme. We will call these rules “linear”,
referring to the fact that the sets Ωx,i are separated by translated hyperplanes in Rm. There
has also been recent research on more general quantization rules and their benefits [9, 15, 16].

Typically, an electrical circuit cannot handle arbitrarily large amplitudes, and clips off
quantities that are beyond certain values. This is called overloading. In this case, the
effective mapping Q is given by

Q(x,v) =






Q0(x,v) if Q0(x,v) ∈ {d1, . . . , dK},
d1 if Q0(x,v) < d1,
dK if Q0(x,v) > dK .

(4.8)

For the rest of the paper, we assume that the di form a subset of an arithmetic progression
of spacing 1, such as the case for the rule (4.7). Since we can always subtract a fixed
constant from x and the di, we also assume, without loss of generality, that the di are simply
integers. We shall be most interested in one-bit quantization rules, i.e., rules for which
Ran(Q) = {d1, d2}. Let us mention that one-bit Σ∆ modulators are usually overloaded by
their nature.

Let us emphasize once again that the quantization rule is crucial in the stability of
the system. For a given x, we call a Σ∆ scheme defined by the quantization rule Q(x, ·)
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Figure 2. The decreasing family of nested sets Γk = Mk
x(Γ0) indicated by

decreasing brightness. The limit set Γ is invariant (see Theorem 5.1).

orbit stable, or simply stable, if for every initial condition u[0] in an open set, the forward
trajectory under the map Mx is bounded in Rm, and positively stable, if there exists a
bounded set Γ0 ⊂ Rm with nonempty interior that is positively invariant under Mx, i.e.,
Mx(Γ0) ⊂ Γ0. These two notions are closely related. Clearly, positive stability implies
stability. On the other hand, in a stable scheme, if the forward trajectories of points in
an open set are bounded with a uniform bound, then this would also imply the existence
of a positively invariant bounded set. In practice, it is also desirable that stability holds
uniformly in x. However, we shall not need this kind of uniformity in this paper.

In Figure 2, we depict a positively invariant set Γ0 under the map Mx which is defined
by a one-bit linear rule in R2. The set Γ0 was found by a computer algorithm. In general,
constructing positively invariant sets for these maps is a non-trivial task [24, 27]. Despite
the presence of a vast collection of Σ∆ schemes that are used in hardware, only a small
set of them are proved to be stable. Most of the engineering practice relies on extensive
numerical simulation.

In Figure 2, we also show in decreasing brightness the forward iterates of Γ0 given by
Γk = Mk

x(Γ0). (In this picture, each set Γk is the union of the region in which the label “Γk”
is placed and all the other regions that are shaded in darker colors.) These sets converge to
a limit set Γ, or the attractor, which is shaded in black. These invariant sets are the topic
of discussion of next section.

To avoid heavy and awkward notation, we shall drop the real parameter x from our nota-
tion except when we need it for a specific purpose or for emphasis. It must be understood,
however, that unless noted otherwise, all objects that are derived from these dynamical
systems generally depend on x.
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5. Stability implies tiling invariant sets

In this section we prove a crucial property of the dynamics involved in positively stable
Σ∆ schemes. This is called the tiling property and refers to the fact that there exist trapping
invariant sets that are disjoint unions of a finite collection of disjoint tiles in Rm. Here a tile,
or a Zm-tile, means any subset S of Rm with the property that {S + k}k∈Zm is a partition
of Rm. Later in the paper, this property will lead us to an exact spectral analysis of the
mean square error when the multiplicity of tiling is one.

We consider a slightly more general class of piecewise affine maps M := Mx on Rm, which
are defined by

M(v) = Ax,i(v) := Lv + x1 + di if v ∈ Ωx,i, (5.1)

where L is the lower triangular matrix of all 1’s, and {Ωx,i}K
i=1 is a finite Lebesgue measur-

able partition of Rm, and di ∈ Zm for all i = 1, . . . ,K. When di = −di1, these maps are
the same as those that arise from Σ∆ quantization.

Theorem 5.1. [25] Assume that there exists a bounded set Γ0 ⊂ Rm that is positively
invariant under M, i.e., M(Γ0) ⊂ Γ0. Then, the set Γ ⊂ Γ0 defined by

Γ :=
⋂

k≥0

M
k(Γ0) (5.2)

satisfies the following properties:

(a) M(Γ) = Γ,
(b) if Γ0 contains a tile, then so does Γ.

Proof. This was previously proved in [25]. For completeness of the discussion, we include
the proof here.

(a) Clearly, M(Γ) ⊂ Γ ⊂ Γ0 since Γ0 is positively invariant. We need to show that
Γ ⊂ M(Γ). Let v ∈ Γ be an arbitrary point. Define Γk := Mk(Γ0), k ≥ 0. The sets Γk

form a decreasing sequence, and so is the case for the sets Fk := M−1(v) ∩ Γk. Note that
M−1(v) is always finite since there are only finitely many Ax,i’s in the definition of M, each
of which is 1-1. (Fk would be finite even if there were infinitely many sets Ωx,i because
inverse images under M have to differ by points in Zm and only finitely many of them can
be present in Γk.) On the other hand v ∈ Γk+1 = M(Γk), therefore v has an inverse image
in Γk, i.e., Fk is non-empty. Since Fk form a decreasing sequence of non-empty finite sets,
it follows that M−1(v) ∩ Γ =

⋂
k≥0 Fk 6= ∅, i.e., v ∈ M(Γ). Hence Γ ⊂ M(Γ).

(b) Let Γ0 contain a tile G0, and define Gk = Mk(G0). Each Gk is a tile. To see this,
note that for any given i, Ax,i maps tiles to tiles, and for all v ∈ Rm, M(v)−Ax,i(v) ∈ Zm

so that M maps tiles to tiles as well. For an arbitrary point w ∈ Rm, define the decreasing
sequence of sets Hk = (Zm + w) ∩ Γk. Because Γ0 is bounded, each Hk is finite. On
the other hand, Γk ⊃ Gk implies that each Γk contains a tile, yielding Hk 6= ∅. Hence
(Zm + w) ∩ Γ =

⋂
k≥0Hk 6= ∅. Since w is arbitrary, this means that Γ contains a tile. �

In what follows, measurable means Lebesgue measurable, and m(S) denotes the Lebesgue
measure of a set S.

Theorem 5.2. Under the condition of Theorem 5.1, assume moreover that x is irrational
and that Γ0 is measurable and m(Γ0) 6= 0. Then, the set Γ defined in (5.2) differs from the
union of a finite and non-empty collection of disjoint Zm-tiles at most by a set of measure
zero.
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Proof. Clearly, Γ is measurable since M is piecewise affine. Let us show that Lebesgue
measure on Γ is invariant under M. From now on, we identify M with its restriction on Γ.
From Theorem 5.1, M(Γ) = Γ which implies M−1(Γ) = Γ as well. Let us define A to be the
set of points in Γ with more than one pre-image. A is measurable, simply because

A =
⋃

i6=j

M(Γ ∩ Ωi) ∩ M(Γ ∩ Ωj).

We claim that m(A) = 0. Definition of M implies that M preserves the measure of sets on
which it is 1-1. Since M is 1-1 on M−1(Γ\A), we have m(Γ\A) = m(M−1(Γ\A)). On the
other hand, since each point in A has at least 2 pre-images, we have 2m(A) ≤ m(M−1(A)).
This implies

2m(A) ≤ m(M−1(A)) = m(M−1(Γ)) − m(M−1(Γ\A)) = m(Γ) − m(Γ\A) = m(A).

Therefore m(A) = m(M−1(A)) = 0. Hence, for any measurable subset B of Γ, the disjoint
union B = (B ∩A) ∪ (B\A) yields

m(M−1(B)) = m(M−1(B ∩A)) + m(M−1(B\A)) = m(B\A) = m(B),

i.e., M preserves Lebesgue measure on Γ.
Let π : Γ → Tm be the projection defined by π(v) = 〈v〉. Here we identify [0, 1)m with

Tm. Let ν be the transformation of the measure m|Γ on Tm under the projection π, which
is defined on the Lebesgue measurable subsets of Tm by ν(B) = m(π−1(B)). Let L = Lx

be the generalized skew translation on Tm defined by

Lv := Lv + x1 (mod 1). (5.3)

Note that πM = Lπ. Hence, for any measurable B ⊂ Tm, we have

ν(L−1(B)) = m(π−1
L
−1(B)) = m(M−1π−1(B)) = m(π−1(B)) = ν(B),

i.e., ν is invariant under L.
At this point, we note that when x is irrational, L is uniquely ergodic, i.e., there is a

unique normalized non-trivial measure invariant under L, which, in this case, is the Lebesgue
measure. (See, for example, [7], [23, p.17] for m = 2, and [18, p.159] for general m.3) Hence,
ν = cm for some c ≥ 0; this includes the possibility of the trivial invariant measure ν ≡ 0.

For each j = 0, 1, . . . , define

Tj = {v ∈ Tm : card(π−1(v)) = j}.
{Tj}j≥0 is a finite measurable partition of Tm. The finiteness is due to the fact that Γ is a
bounded set and measurability is simply due to the relation

Tj =

{
v ∈ Rm :

∑

k∈Zm

χ
Γ+k

(v) = j

}
.

Note that

cm(Tj) = ν(Tj) = m(π−1(Tj)) = jm(Tj).

This shows that there cannot exist two such sets Ti and Tj both with non-zero measure.
Hence, there exists a (unique) j, namely, j = c, such that m(Tm\Tj) = 0. This implies that
Γ is the union of j copies of Tm, possibly with the exception of a set of zero measure.

3Here, unique ergodicity is stated for the map (v1, . . . , vm) 7→ (v1 + x, v2 + v1, . . . , vm + vm−1), which is
easily shown to be isomorphic to L.
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Let us now show that j ≥ 1. Consider π on the whole Rm with the same definition.
Note that the relation πM = Lπ continues to hold. Let Σ0 := π(Γ0) ⊂ Tm. Since Γ0 is
positively invariant, we find that L(Σ0) = πM(Γ0) ⊂ π(Γ0) = Σ0. Since L is 1-1, we have
L−1(Σ0) ⊃ Σ0. Hence, L−1(Σ0) △ Σ0 = L−1(Σ0)\Σ0 = L−1(Σ0\L(Σ0)). This implies,
since L is measure-preserving,

m(L−1(Σ0) △ Σ0) = m(L−1(Σ0\L(Σ0)))

= m(Σ0\L(Σ0))

= m(Σ0) − m(L(Σ0))

= 0.

Ergodicity of L implies that m(Σ0) is 0 or 1. The first case is not possible, since each
point in Σ0 has at most finitely many inverse images under π−1 and this would violate
m(Γ0) > 0. Therefore m(Σ0) = 1, implying that m(Γ0) ≥ 1. Define Σk := π(Γk). We then
have L(Σk) = Lπ(Γk) = πM(Γk) = π(Γk+1) = Σk+1, which implies that m(Σk) = 1 and
m(Γk) ≥ 1 for all k ≥ 0. Hence m(Γ) = limk→∞ m(Γk) ≥ 1. �

When x is irrational, Theorem 5.2 improves Theorem 5.1(b) in two respects. First, the
outcome is that Γ not only contains a tile, but in fact is composed of disjoint tiles, up to
a set of measure zero. Second, it suffices to check that Γ0 has positive measure, instead of
the stronger (though equivalent) requirement that Γ0 contain a tile. On the other hand,
Theorem 5.1(b) is still interesting due to its purely algebraic nature: It can be used to test
if Γ contains an exact tile (i.e., π(Γ) = Tm), and it remains valid even when x is rational.

Let us also note as an application of Theorem 5.2 that whenever a positively invariant
set Γ0 of Mx (for irrational x) can be found with 0 < m(Γ0) < 2, the invariant set Γ is a
single tile.

In Figure 3, we show an illustration of an invariant set which is composed of two tiles. In
this example, the Σ∆ scheme is 1-bit 2nd order and the partition is determined by a cubic
curve.

6. The single-tile case and its consequence

Since the initial experimental discovery of the tiling property in [12, 15], we have observed
that the invariant sets Γ resulting from stable second order Σ∆ schemes that are used in
practice systematically appear to be single tiles. We show in Figure 4 experimental examples
of Γ on some of these second order schemes. In Figure 5, we show the set Γ in three cases
where an explicit analytical derivation has been possible [15]. (In these particular cases, Γ
is actually proven to be an exact tile.) A fundamental question is to characterize maps Mx

which yield a single invariant tile. For the rest of this paper, we will simply assume that
this condition is realized. As will be seen, the analysis of the dynamics becomes particularly
simplified. Furthermore, a whole new set of tools for error analysis becomes available.

A tile Γ intrinsically generates a unique projection 〈·〉
Γ

: Rm → Γ such that v−〈v〉
Γ
∈ Zm

for all v ∈ Rm. The restriction of this Zm-periodic projection to the unit cube [0, 1)m (which
we identify with Tm) is a measure preserving bijection (note that the inverse of 〈·〉

Γ
: Tm → Γ

is the map π that was defined in the proof of Theorem 5.2). When Γ is invariant under
M, the map 〈·〉

Γ
: Tm → Γ establishes an isomorphism between M on Γ and the affine

transformation L := Lx on Tm defined by (5.3). Indeed, the definition of L easily yields
L(v)−M(〈v〉

Γ
) ∈ Zm. Hence,

〈L(v)〉
Γ

= M(〈v〉
Γ
) ,



12 C. SİNAN GÜNTÜRK AND NGUYEN T. THAO

Figure 3. Represented in black is the invariant set Γ of a 1-bit 2nd order
scheme whose partition is determined by the cubic curve shown in the fig-
ure. The copies in gray are the translated versions of Γ by (1, 0) and (1, 1),
respectively. In this example, each connected component of Γ is also invari-
ant.

or in other words, the following diagram commutes:

Tm L−−−−→ Tm

〈·〉
Γ

y
y〈·〉

Γ

Γ −−−−→
M

Γ

The first important consequence of single invariant tiles is that it reduces the dynamical
system M to the much simpler L whose n-fold composition can be computed explicitly. It
follows that if u[0] ∈ Γ, then

u[n] = M
n(u[0]) =

〈
L

n(u[0])
〉
Γ

=
〈
Lnu[0] + xs[n]

〉
Γ
, (6.1)

where s[n] := sm[n] := (s1[n], . . . , sm[n])⊤ is defined by

s[n] =

(
n−1∑

k=0

Lk

)
1. (6.2)

It is an easy computation to show that sj[n] =
(j+n−1

j

)
.

The second important consequence is that for irrational values of x the map Mx on Γ
inherits the ergodicity of Lx via the isomorphism generated by 〈·〉

Γ
. Since 〈·〉

Γ
: Tm → Γ

preserves Lebesgue measure, Mx is then ergodic with respect to the restriction of Lebesgue
measure on Γ. Hence the Birkhoff Ergodic Theorem yields
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(a) (b)

(c) (d)

Figure 4. Representation in black of several consecutive state points u[n]
of various second order Σ∆ modulators with the irrational input x ≈ 3/4.
The copies in gray are the translated versions of the state points by (1, 0)
and (1, 1), respectively.

Proposition 6.1. Let x be an irrational number and Γ be a Lebesgue measurable Zm-tile
(up to a set of measure zero) that is invariant under M. Then for any function F ∈ L1(Γ),

lim
N→∞

1

N

N∑

n=1

F (u[n]) =

∫

Γ
F (v) dv =

∫

Tm

F (〈v〉
Γ
) dv (6.3)

for almost every initial condition u[0] ∈ Γ.

This formula will be the fundamental computational tool for the analysis of the autocor-
relation sequence ρu. For the remainder of this paper, we shall assume that we are working
with quantization rules for which the invariant sets are composed of single tiles. This will
save us from repetition in the assumptions of our results. However, it will also be important
to know certain geometric features of these invariant tiles. We will state these explicitly
when needed.
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Figure 5. Three families of quantization rules for which the tiling property
was proven in [15] with parametric explicit expressions for the corresponding
invariant sets.
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7. Analysis of the autocorrelation sequence ρu

Let P(v) = vm be the projection of a vector v ∈ Rm onto its mth coordinate. If we define
the function

Fk(v) = P(v)P(Mk(v)), (7.1)

then it follows that

um[n]um[n+ k] = P(u[n])P(Mk(u[n])) = Fk(u[n]),

and therefore Proposition 6.1 gives an expression for the value of ρu[k]:

ρu[k] =

∫

Γ
Fk(v) dv =

∫

Tm

Fk(〈v〉Γ) dv. (7.2)

A direct evaluation of ρu[k] in either of these forms is not easy, because the k-fold iterated
map Mk as well as the invariant set Γ are implicitly-defined and complex objects. The
problem can be somewhat simplified via the conjugate map Lk. Indeed, one has

Fk ◦ 〈·〉
Γ

=
(
P ◦ 〈·〉

Γ

)(
P ◦ M

k ◦ 〈·〉
Γ

)
=
(
P ◦ 〈·〉

Γ

)(
P ◦ 〈·〉

Γ
◦ L

k
)
,

so that if we define

GΓ = P ◦ 〈·〉
Γ
,

then via (6.1), we obtain the formula

ρu[k] =

∫

Tm

GΓ(v)GΓ(Lk(v)) dv =

∫

Tm

GΓ(v)GΓ(Lkv + xs[k]) dv, (7.3)

which now only depends on Γ.
As it is standard in the spectral theory of dynamical systems (see, e.g., [23]), let U := UL

be the unitary operator on L2(Tm) defined by (Uf)(v) = f(L(v)). Then (7.3) reduces to

ρu[k] =
(
GΓ, UkGΓ

)

L2(Tm)
. (7.4)

For any f ∈ L2(Tm), the inner products
(
f, Ukf

)
L2(Tm)

, k ∈ Z, define a positive-definite

sequence so that there exists a unique non-negative measure νf on T with Fourier coefficients

ν̂f [k] =
(
f, Ukf

)

L2(Tm)
(7.5)

for all k ∈ Z. Note that when f = GΓ, it follows from (7.4) that the corresponding measure
νGΓ

= µ, where µ is the spectral measure that was mentioned in Section 3, with µ̂ = ρu.

7.1. Decomposition of the mixed spectrum: General results. We shall separate the
autocorrelation sequence ρu into two additive components that result from two different
types of spectral behavior. Using the spectral theorem for unitary operators, we decompose
L2(Tm) into two U -invariant, orthogonal subspaces as L2(Tm) = Hpp ⊕ Hc, where

Hpp = {f ∈ L2(Tm) : νf is purely atomic},
which is also equal to the closed linear span of the set of all eigenfunctions of U , and

Hc = H
⊥
pp = {f ∈ L2(Tm) : νf is non-atomic (continuous)}.
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In the particular case of the transformation L, it turns out that every spectrum on H⊥
pp is

absolutely continuous (see Appendix A). Therefore we denote Hc by Hac. Any f ∈ L2(Tm)
can now be uniquely decomposed as

f = fpp + fac,

where fpp ∈ Hpp and fac ∈ Hac. For L, it is known (and as we also show in Appendix A),
that

Hpp = {f ∈ L2(Tm) : f(v) only depends on v1},
and the orthogonal projection of f onto Hpp is given by

fpp(v) =

∫

Tm−1

f(v1,v
′) dv′. (7.6)

In order to avoid double subscripts (e.g., when f = GΓ), we will use the alternative notation

f̊ := fpp and f̆ := fac whenever it will be convenient.
We now consider the decomposition

GΓ = G̊Γ + ĞΓ. (7.7)

Because of orthogonality and U -invariance of Hpp and Hac, (7.4) implies that

ρu[k] =
(
G̊Γ, UkG̊Γ

)

L2(Tm)
+
(
ĞΓ, UkĞΓ

)

L2(Tm)
, (7.8)

providing the decomposition

ρu = ρ̊u + ρ̆u.

Here, using formula (6.1) and the fact that functions in the subspace Hpp depend only on
the first variable, we obtain

ρ̊u[k] =
(
G̊Γ, UkG̊Γ

)

L2(Tm)
=

∫

T

G̊Γ(v1)G̊Γ(v1 + kx) dv1 (7.9)

and

ρ̆u[k] =
(
ĞΓ, UkĞΓ

)

L2(Tm)
=

∫

Tm

ĞΓ(v)ĞΓ(Lkv + xs[k]) dv. (7.10)

This decomposition provides the Fourier coefficients of the pure-point µpp and the absolutely
continuous µac components of the spectral measure, respectively. It also yields an explicit
simple formula for µpp in terms of the Fourier coefficients of G̊Γ. We have

Theorem 7.1.

µpp =
∑

n∈Z

∣∣∣∣
̂̊
GΓ[n]

∣∣∣∣
2

δnx, (7.11)

where δa denotes the unit Dirac mass at a ∈ T.

Proof. Let ν denote the measure given on the right hand side of (7.11). It suffices to verify
that ν̂[k] = ρ̊u[k] for all k ∈ Z. We find by direct evaluation that

ν̂[k] =
∑

n∈Z

∣∣∣∣
̂̊
GΓ[n]

∣∣∣∣
2

e−2πiknx =

∫

T

G̊Γ(v)G̊Γ(v + kx) dv = ρ̊u[k];

hence the result follows. �
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Note: It is easy to see that this result holds for any function f ∈ L2(Tm) in the sense that

(νf )pp =
∑

n∈Z

∣∣∣̂̊f [n]
∣∣∣
2
δnx. (7.12)

On the other hand, the computation of µac is not easy. Since absolute continuity of µac

results in an integrable density Ψ, where dµac(ξ) = Ψ(ξ)dξ, the Riemann-Lebesgue lemma
implies that the Fourier coefficients ρ̆u[k] → 0 as |k| → ∞. However, the rate of decay is
determined by further properties of this measure, which turn out to be intrinsically related
to the geometry of Γ.

7.2. Properties of ρ̆u for the class of vm-connected invariant tiles. In this section,
we derive explicit formulae for ρ̆u[k] when the invariant tile Γ has a certain type of geometric
regularity. For a given tile Γ for Rm, let us define

ΛΓ :=
⋃

k′∈Zm−1

Γ + (k′, 0), (7.13)

and for any v′ ∈ Rm−1,

ΛΓ(v′) := P(ΛΓ ∩ {v′}×R) =
{
vm ∈ R : (v′, vm) ∈ ΛΓ

}
. (7.14)

Proposition 7.2. For each v′ ∈ Rm−1, the set ΛΓ(v′) is a tile in R with respect to Z-
translations, and

GΓ(v′, vm) =
〈
vm

〉
ΛΓ(v′)

. (7.15)

Proof. Since Γ is a tile, the collection of sets {ΛΓ + (0, k) : k ∈ Z} forms a partition of Rm.
Therefore for any v′ ∈ Rm−1, the vm-section of this collection given by {ΛΓ(v′)+k : k ∈ Z},
is a partition of R. This shows that ΛΓ(v′) is a tile. For the second part of the claim, let
v = (v′, vm). The definition of P immediately yields

(v′, GΓ(v)) = (v′,P(〈v〉
Γ
)) = 〈v〉

Γ
+ (k′, 0)

for some k′ ∈ Zm−1. This says that (v′, GΓ(v)) ∈ ΛΓ and therefore GΓ(v) ∈ ΛΓ(v′). The
result follows since GΓ(v′, vm)−vm ∈ Z. �

Definition 7.3. We say that a tile Γ ⊂ Rm is vm-connected if for each v′ ∈ Rm−1, the
one dimensional tile ΛΓ(v′) is a connected set, i.e. a unit-length interval. In this case, we
denote by λΓ(v′) the midpoint of ΛΓ(v′) and call λΓ the midpoint function.

In Figure 6, we display examples of the function ΛΓ for various schemes. The tiles in (a),
(c) and (d) are v2-connected whereas the tile in (b) is not. Note that vm-connectedness of
a tile is different from its vm-sections being connected.

Let us use the shorthand notation 〈α〉
0

:= 〈α〉[− 1

2
, 1
2
) = 〈α + 1

2〉 − 1
2 . For a vm-connected

tile, we have the following simple observation:

Corollary 7.4. If the tile Γ is vm-connected, then for any v′ ∈ Rm−1

GΓ(v′, vm) = 〈vm − λΓ(v′)〉
0
+ λΓ(v′) (7.16)

and

G̊Γ = λ̊Γ. (7.17)
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Proof. If Γ is vm-connected, then ΛΓ(v′) = [λΓ(v′) − 1
2 , λΓ(v′) + 1

2). Now, (7.16) follows
from Proposition 7.2 and the identity 〈β〉[α− 1

2
,α+ 1

2
) = 〈β−α〉

0
+α which holds for any α and

β. Next, (7.17) is a simple consequence of the fact that the first term in (7.16) integrates
to zero over vm. �

Before we state the following proposition, let J := Jm be the “backward identity” per-
mutation matrix defined by (Jm)ij = δi,m+1−j , for 1 ≤ i, j ≤ m. Note that the matrix

Lk := Lk
m can now be decomposed as

Lk
m =




Lk
m−1 0

s⊤m−1[k]Jm−1 1



, (7.18)

which easily follows from (6.2); note that s[k] = Ls[k−1] + 1 with s[0] = 0.

Proposition 7.5. Let the invariant tile Γ be vm-connected. Define for each k ∈ Z, and
v′ ∈ Rm−1,

gk(v
′) = s⊤m−1[k]Jm−1v

′ + xsm[k] − λΓ(Lk
m−1v

′ + xsm−1[k]) + λΓ(v′).

Then

ρ̆u[k] =

∫

Tm−1

A〈·〉
0
(gk(v

′)) dv′ +
(
λ̆Γ, Ukλ̆Γ

)

L2(Tm−1)
. (7.19)

In particular, if m = 2 or if P(Γ) is an interval of unit length, then the second term drops.

Proof. We employ Corollary 7.4 for the evaluation of GΓ(v) and GΓ(Lkv + xs[k]). Let us
again write v = (v′, vm). Note first that from (7.18) we obtain

Lkv + xs[k] = (Lk
m−1v

′ + xsm−1[k], vm + s⊤m−1[k]Jm−1v
′ + xsm[k]).

It follows that
∫

T

GΓ(v)GΓ(Lkv + xs[k]) dvm =

∫

T

〈
vm−λΓ(v′)

〉
0

〈
vm+s⊤m−1[k]Jm−1v

′+xsm[k]−λΓ(Lk
m−1v

′+xsm−1[k])
〉

0
dvm

+ λΓ(v′)λΓ(Lk
m−1v

′ + xsm−1[k]),

where the cross terms have dropped because
∫

T
〈vm + ϕ(v′)〉

0
dvm = 0 for any function ϕ.

The first term above is equal to A〈·〉
0
(gk(v′)), whereas if the second term is integrated over

Tm−1 we find
(
λΓ, UkλΓ

)
L2(Tm−1)

. The result follows since λ̊Γ = G̊Γ.

If m = 2, then moreover λΓ = G̊Γ, so that we have λ̆Γ = 0. If P(Γ) is an interval of
unit length, then it is necessarily the case that ΛΓ = Rm−1 × P(Γ). In this case, λΓ is a

constant function so that λ̊Γ = λΓ and hence λ̆Γ = 0. Hence the second term drops in both
cases. �
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Figure 6. Invariant tiles of various second order modulators: (i) Invariant
tile Γx, (ii) corresponding set ΛΓ.
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7.3. Special case when P(Γ) = [−1
2 ,

1
2). There is a class of quantization rules [8, 11,

17], for which um[n] ∈ [−1
2 ,

1
2 ) for all n (for all x), so that the invariant tile Γ satisfies

P(Γ) = [−1
2 ,

1
2 ). These are the “ideal” rules that were mentioned in Section 1, and represent

essentially the simplest possible situation. It turns out that the spectral measure µ is quite
different in its nature for m = 1 and m ≥ 2.

For m = 1, by definition we have G̊Γ = GΓ = 〈·〉
0
. Hence µ is pure-point, and Theorem

7.1 yields

µ =
∑

n 6=0

1

4π2n2
δnx.

For m ≥ 2, we simply note that λΓ ≡ 0, so that GΓ(v) = 〈vm〉
0

by (7.16). The fact

that
∫

T
〈vm〉

0
dvm = 0 implies G̊Γ ≡ 0. Hence µpp = 0, i.e., µ is absolutely continuous. In

addition, Proposition 7.5 yields

ρu[k] =

∫

Tm−1

A〈·〉
0
(s⊤m−1[k]Jm−1v

′ + xsm[k]) dv′.

For k = 0, the argument of the integrand is identically zero, so we obtain ρu[0] = A〈·〉
0
(0) =

1
12 . On the other hand, for all k 6= 0, we find that ρu[k] = 0 since the integrand is of the
form A〈·〉

0
(kvm−1 + α) which integrates to zero over the variable vm−1. Therefore,

ρu[k] =

{
1
12 if k = 0,
0 if k 6= 0,

and consequently µ is flat, and equal to 1
12 times Lebesgue measure on T, and the spectral

density Ψ is the constant function Ψ(ξ) ≡ 1
12 .

These two results were previously obtained, in the case m = 1 in [11], and in the case
m ≥ 2 in [8, 17].

8. Analysis of the mean square error

We are interested in the asymptotical behavior of E(x, φ) for a given Σ∆ modulation
scheme of order m as the support of φ increases and its Fourier transform Φ localizes
around zero frequency. There will be two standard choices for Φ:

(1) The ideal low-pass filter given by

Φid
M(ξ) := χ[− 1

M
, 1

M
](ξ),

(2) The “sinc” family4 given by

Φsinc
M,p(ξ) :=

(
1

M

M−1∑

n=0

e2πinξ

)p

=

(
sin(πMξ)

M sin(πξ)
eiπ(M−1)ξ

)p

.

Note that Φsinc
M,p has Fourier coefficients given by

φsinc
M,p[n] := r

(p)
M [n] := (rM ∗ rM ∗ · · · ∗ rM︸ ︷︷ ︸

p times

)[n],

4The terminology for this filter is derived from its continuous analog which is related to sinc(x) :=
sin(x)/x.
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where rM denotes the rectangular sequence

rM [n] =

{
1/M, 0 ≤ n < M,
0, otherwise.

It is a standard fact that φsinc
M,p is a discrete B-spline of degree p− 1.

For any filter φ, we decompose the mean square error E(x, φ) as

E(x, φ) = Epp(x, φ) + Eac(x, φ)

which correspond to the additive contributions of µpp and µac, respectively, in the formula
(3.5). Note that both terms are non-negative. Note also that for the above two filter choices
we have

|Φid
M (ξ)| .p |Φsinc

M/2,p(ξ)|, ∀ξ ∈ T; (8.1)

hence it suffices to prove lower bounds for the ideal low-pass filter and upper bounds for
sinc filters.

8.1. The pure-point contribution Epp(x, φ). Our first formula follows directly from
plugging the expression for µpp given by Theorem 7.1 in (3.5):

Epp(x, φ) =
∑

n∈Z

|2 sin(πnx)|2m|Φ(nx)|2
∣∣∣∣
̂̊
GΓ[n]

∣∣∣∣
2

. (8.2)

Before we carry out our analysis of this expression, let us recall some elementary facts
about Diophantine approximation. For α ∈ R, let ‖α‖ denote the distance of α to the
nearest integer, that is ‖α‖ := min(〈α〉, 〈−α〉). We say that α is (Diophantine) of type η if
η is the infimum of all numbers σ for which

‖nα‖ &σ,α |n|−σ ∀n ∈ Z\{0}.
Almost every real number (in the sense of Lebesgue measure) is of type 1, the smallest
attainable type.

The following theorem shows that for almost every x, if the function GΓ has a sufficiently
regular projection G̊Γ, then the pure-point part of the mean square error after filtering with
φsinc

M,m+1 decays faster than M−2m−1.

Theorem 8.1. Let x be Diophantine of type η. If for some β > η/2 the invariant tile
Γ = Γx of an m’th order Σ∆ modulator with input x satisfies

∣∣∣∣
̂̊
GΓ[n]

∣∣∣∣ . |n|−β

for all n ∈ Z\{0}, then

Epp(x, φ
sinc
M,m+1) .x,m,α,β M−2m−1−α (8.3)

for all M , where α is any number satisfying 0 ≤ α < min(1, 2β
η − 1).

Proof. Formula (8.2) reads

Epp(x, φsinc
M,m+1) =

22m

M2m+2

∑

n∈Z\{0}

sin2m+2(πMnx)

sin2(πnx)

∣∣∣∣
̂̊
GΓ[n]

∣∣∣∣
2

. (8.4)
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Since | sin(πθ)| ≍ ‖θ‖, 1 − α ≤ 2m+ 2, and ‖Mnx‖ ≤ min(1,M‖nx‖), we have

sin2m+2(πMnx)

sin2(πnx)
.m

‖Mnx‖2m+2

‖nx‖2
≤ ‖Mnx‖1−α

‖nx‖2
≤ M1−α

‖nx‖1+α
.

Given the decay of | ̂̊GΓ[n]|, we then obtain

Epp(x, φ
sinc
M,m+1) .m

1

M2m+1+α

∞∑

n=1

1

n2β‖nx‖1+α
. (8.5)

Since 1 + α ≥ 1, it suffices to show the convergence of the sum

∞∑

n=1

1

n2β/(1+α)‖nx‖ .

Let λ := 2β/(1 + α). Since 1 + α < 2β/η, we have λ > η. Now, summation by parts shows
that

∞∑

n=1

1

nλ‖nx‖ .λ

∞∑

n=1

1

nλ+1

(
n∑

k=1

1

‖kx‖

)
, (8.6)

and furthermore it is well-known [21, Ex. 3.11] that

n∑

k=1

1

‖kx‖ .x,σ nσ

for any σ > η. Choosing σ such that λ > σ > η, we obtain the convergence of (8.6) with a
sum depending on x and λ. Combining this result with (8.5) the result follows. �

Note: The Diophantine condition on x can be removed if G̊Γ is a trigonometric polyno-
mial. In this case, (8.4) reduces to a finite sum, and therefore it is always convergent.

On the other hand, our next result shows that if G̊Γ does not have enough regularity in
a certain sense as specified in the following theorem, then the result of Theorem 8.1 is the
best one can get in the following sense: There is a dense set of exceptional values of x for
which the exponent of the error decay rate is never better than 2m, even for the ideal low
pass filter.

Theorem 8.2. Given a Σ∆ modulator of order m, let φM , M = 1, 2, . . . , be a sequence
of averaging filters such that |ΦM (ξ)| ≥ c1 on the interval |ξ| ≤ c2/M , where c1 and c2
are positive constants that do not depend on M . There exists a dense set E of irrational
numbers with the following property: For any x ∈ E, if we can find positive constants βx

and Cx such that the invariant tile Γ = Γx satisfies
∣∣∣∣
̂̊
GΓ[n]

∣∣∣∣ ≥ Cx|n|−βx

for all but finitely many n ∈ Z, then for all δ > 0,

lim sup
M→∞

Epp(x, φM )M2m+δ = ∞. (8.7)

Proof. It suffices to find, for any open interval J , a point x ∈ J with the property (8.7) for
all δ > 0. Given an open interval J , let x0 ∈ J be a dyadic rational. Let l = max(b, d)
for the minimum b and d such that b! − 1 is an upper bound for the length of the binary
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expansion of x0 and 2−d!+1 is a lower bound for the distance of x0 to the boundary of J .
Set

x = x0 +
∑

k≥l

2−k!.

Then clearly x ∈ J . It is also a standard fact that x is irrational, in fact x is a Liouville
number.

Note that for q ≥ l, we have

〈2q!x〉 =

∞∑

k=q+1

2−k!+q! = 2−q·q! +

∞∑

k=q+2

2−k!+q!.

For q = 1, 2, . . . , let nq = 2q! andMq = 2q·q!−r where r is a fixed integer such that 2−r+1 ≤ c2.
Note that Mq = 2−rnq

q is integer valued for all sufficiently large values of q. We also have

2−r

Mq
= 2−q·q! < ‖nqx‖ < 2−q·q!+1 ≤ c2

Mq
. (8.8)

The right side of this chain of inequalities implies |ΦMq(nqx)| ≥ c1 by our assumption

on {φM}. On the other hand, the left side implies |2 sin(πnqx)| ≥ 4‖nqx‖ > 2−r+2/Mq.
Therefore

Epp(x, φMq) ≥ |2 sin(πnqx)|2m|ΦMq(nqx)|2
∣∣∣∣
̂̊
GΓ[nq]

∣∣∣∣
2

≥ C2
xc

2
12

2m(−r+2)2−2rβx/q M−2m
q M−2βx/q

q . (8.9)

The result of the theorem follows by letting q → ∞ and therefore exhibiting the subsequence
Mq → ∞ for which (8.7) holds for any δ > 0. �

8.2. The absolutely continuous contribution Eac(x, φ). Let us denote by Ψ the Radon-
Nikodym derivative of the absolutely continuous spectral measure µac, i.e., dµac = Ψ(ξ)dξ.
A priori, we only know that Ψ ∈ L1(T), which is somewhat weak for what we would like
to achieve in terms of understanding the decay of Eac(x, φ). Our first theorem concerns the
decay rate of

Eac(x, φ
sinc
M,m+1) =

∫

T

|2 sin(πξ)|2m|Φsinc
M,m+1(ξ)|2Ψ(ξ) dξ

when it is known that Ψ belongs to a smaller Lp space .

Theorem 8.3. If the measure µac has density Ψ ∈ Lp(T) for some 1 ≤ p ≤ ∞, then

Eac(x, φ
sinc
M,m+1) .m,p ‖Ψ‖Lp(T)M

−2m−1+1/p. (8.10)

Proof. Let p′ be the dual index of p, i.e., 1/p + 1/p′ = 1. Note that

|2 sin(πξ)|2m|Φsinc
M,m+1(ξ)|2 = |2 sin(πMξ)|2m|Φsinc

M,2(ξ)|M−2m (8.11)

.m |Φsinc
M,2(ξ)|M−2m, (8.12)

so that Hölder’s inequality yields

Eac(x, φ
sinc
M,m+1) .m

∥∥Ψ
∥∥

Lp(T)

∥∥Φsinc
M,2

∥∥
Lp′(T)

M−2m.

Furthermore, the simple bound |Φsinc
M,1(ξ)| ≤ min

(
1, (2M |ξ|)−1

)
implies

∥∥Φsinc
M,2

∥∥
Lp′ (T)

.p′ M
−1/p′ , (8.13)

hence the theorem follows. �
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On the other hand, it turns out that if Ψ is continuous at 0, then one can calculate the
exact asymptotics of Eac(x, φ

sinc
M,m+1) without additional assumptions.

Theorem 8.4. If the spectral density Ψ is continuous at 0, then

Eac(x, φ
sinc
M,m+1) =

(
2m

m

)
Ψ(0)M−2m−1 + o(M−2m−1). (8.14)

Proof. The proof has two parts. First part is the easy calculation
∫

T

|2 sin(πξ)|2m|Φsinc
M,m+1(ξ)|2 dξ =

(
2m

m

)
M−2m−1. (8.15)

To see this, note that (8.11) and the definition of Φsinc
M,m+1 imply

|2 sin(πξ)|2m|Φsinc
M,m+1(ξ)|2 =

(
eiπMξ − e−iπMξ

i

)2m M−1∑

k=0

M−1∑

j=0

e2πi(k−j)ξM−2m−2.

The right hand side is the product of two trigonometric polynomials; the first polynomial
has frequencies only at integer multiples of 2πM and the second polynomial has frequencies
between −2π(M − 1) and 2π(M − 1). The zero frequency term of the product is therefore
given only by the product of the zero frequency terms of each factor, which is equal to

(
2m

m

)
(−1)mi−2m

(
M−1∑

k=0

1

)
M−2m−2 =

(
2m

m

)
M−2m−1,

hence the result.
The second part of the proof concerns the residual term

∣∣∣∣
∫

T

∣∣2 sin(πξ)
∣∣2m∣∣Φsinc

M,m+1(ξ)
∣∣2(Ψ(ξ) − Ψ(0)

)
dξ

∣∣∣∣ ,

which is bounded, using (8.11), by

22mM−2m

∫

T

Φsinc
M,2(ξ)|Ψ(ξ) − Ψ(0)|dξ = 22mM−2m−1

∫

T

KM−1(ξ)|Ψ(ξ) − Ψ(0)|dξ,

where

KM−1(ξ) =
1

M

(
sin(πMξ)

sin(πξ)

)2

is the Fejér kernel. The limit

lim
M→∞

∫

T

KM−1(ξ)|Ψ(ξ) − Ψ(0)|dξ

is the Cesàro sum of the Fourier series of the function f(t) = |Ψ(−t) − Ψ(0)| evaluated at
t = 0. Since f is continuous at 0, the Cesàro sum converges to f(0) = 0, and therefore the
limit is 0. This concludes the proof. �

Notes:

(1) A similar calculation shows that for the ideal filter φid
M , the error has the asymptotics

given by

Eac(x, φ
id
M ) =

(2π)2m+1

m+ 1/2
Ψ(0)M−2m−1 +O(M−2m−3) (8.16)

again assuming that Ψ is continuous at 0.
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(2) The value of Ψ(0) is equal to the sum of its Fourier coefficients ρ̆u[k].

9. Estimates for second order schemes with v2-connected invariant tiles

Second order Σ∆ modulators with v2-connected invariant tiles are interesting because
the value of x and the midpoint function λΓ = G̊Γ completely describe the MSE behavior
via the theorems we have stated in the previous sections. In particular, Proposition 7.5
provides us with the formula

ρ̆u[k] =

∫

T

A〈·〉
0

(
kv1 + k(k+1)

2 x− λΓ(v1 + kx) + λΓ(v1)
)

dv1

=

∫

T

A〈·〉
0

(
kv − λΓ(v − x

2 + k x
2 ) + λΓ(v − x

2 − k x
2 )
)

dv, (9.1)

where we have used the change of variable v = v1 + (k + 1)x/2 to obtain the second
representation.

By Riemann-Lebesgue lemma, we already know that ρ̆u[k] must converge to zero as

|k| → ∞ since ρ̆u[k] = Ψ̂[k], where Ψ ∈ L1(T) is the spectral density. However, we would
like to quantify the rate of decay in |k| as this would then allow us to draw conclusions
about Ψ. Intuitively speaking, it is not hard to see from this formula that the smoother λΓ

is, the faster ρ̆u[k] must decay in |k| as |k| → ∞, since A〈·〉
0

is a zero mean function on T.

Our objective in this section is to study this relation rigorously.
Let BV(T) denote the space of functions on T that have bounded variation, where ‖·‖TV

denotes the total variation semi-norm, and let A(T) denote the space of functions on T with

absolutely convergent Fourier series with the norm ‖f‖A(T) given by
∑ |f̂ [n]|. We have the

following lemma, whose proof is given in the Appendix.

Lemma 9.1. Let f ∈ A(T) and ϕ be two real valued functions on T, where f has zero
mean. Consider the integrals

c[k] =

∫

T

f(kv + ϕ(v)) dv. (9.2)

The following bounds hold:

(1) If ϕ ∈ BV(T), then for all k ∈ Z\{0},
∣∣c[k]

∣∣ ≤ 1

|k| ‖f‖A(T)‖ϕ‖TV . (9.3)

(2) If ϕ is differentiable almost everywhere and ϕ′ ∈ BV(T), then for all k ∈ Z\{0},
∣∣c[k]

∣∣ ≤ 1

k2

(
1√
12

‖f‖L2(T)‖ϕ′‖TV + ‖f‖L∞(T)‖ϕ′‖2
L2(T)

)
. (9.4)

Theorem 9.2. Let x be given and Γ be the invariant tile corresponding to a second order
Σ∆ modulator. Then we have the following:

(1) If the midpoint function λΓ has bounded variation on T, then

∣∣ρ̆u[k]
∣∣ ≤ 1

6|k|
∥∥λΓ

∥∥
TV
. (9.5)

Consequently, one has

Eac(x, φ
sinc
M,3) .x,ǫ M−5+ǫ (9.6)
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for any ǫ > 0. If the type η of x is strictly less than 2, then

Epp(x, φ
sinc
M,3) .x,δ M−5−δ (9.7)

for any 0 ≤ δ < (2 − η)/η.
(2) If the midpoint function λΓ has a derivative that has bounded variation on T, then

∣∣ρ̆u[k]
∣∣ ≤ 1

k2

(
1

12
√

15
‖λ′Γ‖TV +

1

3
‖λ′Γ‖2

L2(T)

)
. (9.8)

In particular, the spectral density Ψ is continuous. Consequently, one has

Eac(x, φ
sinc
M,3) = 6Ψ(0)M−5 + o(M−5), (9.9)

where

Ψ(0) ≤ 1

12
+
π2

3

(
1

12
√

15
‖λ′Γ‖TV +

1

3
‖λ′Γ‖2

L2(T)

)
. (9.10)

If the type η of x is strictly less than 4, then

Epp(x, φ
sinc
M,3) .x,δ M−5−δ (9.11)

for any 0 ≤ δ < min
(
1, (4 − η)/η

)
.

Proof. Let

f(v) := A〈·〉
0
(v) =

∑

n 6=0

1

4π2n2
e2πinv.

For each k, define

ϕk(v) := −λΓ(v − x
2 + k x

2 ) + λΓ(v − x
2 − k x

2 ).

For these functions, we have the following exact formulas and bounds:

‖f‖A(T) =
1

12
(9.12)

‖f‖L∞(T) =
1

12
(9.13)

‖f‖L2(T) =
1

12
√

5
(9.14)

‖ϕk‖TV ≤ 2 ‖λΓ‖TV (9.15)

‖ϕ′
k‖TV ≤ 2 ‖λ′Γ‖TV (9.16)

‖ϕ′
k‖2

L2(T) ≤ 4 ‖λ′Γ‖2
L2(T). (9.17)

(1) In this case we only know that λΓ is of bounded variation.
The decay estimate (9.5) simply follows from the bound (9.3) coupled with (9.12)

and (9.15).

Given that the Fourier coefficients ρ̆u[k] = Ψ̂[k] decay like 1/k, it follows from
Riesz-Thorin interpolation theorem that the spectral density Ψ ∈ Lp(T) for any
p <∞. Therefore Theorem 8.3 implies, with m = 2 and ǫ = 1/p, the bound (9.6).

For the pure-point estimate, we use Theorem 8.1 with β = 1 and m = 2. If we
define δ = α, where α is as defined in Theorem 8.1, then the result follows as stated.

(2) In this case we know that λΓ has a derivative that is of bounded variation.
The decay estimate (9.8) follows from the bound (9.4) coupled with (9.13), (9.14),

(9.16) and (9.17).
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Since ρ̆u is summable, it follows that Ψ is continuous. We therefore apply Theorem
8.4 to compute the exact asymptotics of Eac(x, φ

sinc
M,3). In this case, the nonnegative

number Ψ(0) will be bounded by
∑ |ρ̆u[k]|. We simply, add up the bounds given

by (9.8), including the trivial case |ρ̆u[0]| ≤ ‖f‖L∞(T). This computation yields the
bound (9.10).

For the pure-point estimate, we again use Theorem 8.1, but now with β = 2. We
define δ = α, where α is as defined in Theorem 8.1, and note that the condition
α ≤ 1 must be imposed, which was automatically satisfied in case (1). Then the
result follows as stated.

�

10. Further remarks

In this paper, we have covered only a portion of the mathematical problems that con-
cern Σ∆ quantization. We believe that the following currently unresolved problems are
interesting both from the dynamical systems standpoint and the engineering perspective:

1. Which maps M are stable? Satisfactory answers of this question would include non-
trivial sufficient conditions in terms of the quantization rule Q, or in terms of the partition
Πx and the quantization levels {di}.

2. Which stable maps M yield single invariant tiles? One can include in this the case
when Γ is composed of tiles each of which is invariant under M. In principle, each of these
invariant tiles would represent a different “mode of operation”.

3. What is an appropriate generalization of our spectral analysis of mean square error
when Γ is composed of more than one tile?

4. Given the quantization rule, what can be said about the geometric regularity of Γ?
We used two types of geometric information about Γ in deriving our analytical results
on the mean square error asymptotics. The first type concerned “shape” (such as vm-
connectedness), and the second concerned “regularity” (such as the decay of Fourier coeffi-

cients of G̊Γ). At this stage, the relation between the quantization rule and these two issues
is highly unclear, although we have partial understanding in some cases. Even for “linear”
rules, there seems to be a wide range of possibilities.

5. What are the universal principles behind tiling? Tiling invariant sets are found even
when x is rational. In addition, trajectories seem to remain within exact tiles, and not just
tiles “up to sets of measure zero”.

Appendix A. On the spectral theory of the map L

In this section, we will review some basic facts about the spectral theory of the map
L = Lx on Tm, where Lxv = Lv + x1, and x is an irrational number. Most of what
follows below can be derived or generalized from Anzai’s work on ergodic skew product
transformation [3].

The eigenfunctions of UL. We start by showing that the set of all eigenfunctions of
U = UL, where ULf := f ◦ UL, is precisely given by the collection of complex exponentials
fn, where

fn(v) = e2πinv1 , n ∈ Z.
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To see this, let f ∈ L2(Tm) be an eigenfunction of U with eigenvalue λ. Since U is unitary,
|λ| = 1. Consider the Fourier series expansion of f given by

f(v) =
∑

n∈Zm

c[n]e2πin·v.

Since f = 1
λ

(
Uf
)
, we have the relation

∑

n∈Zm

c[n]e2πin·v =
1

λ

∑

n∈Zm

c[n]e2πixn·1e2πin·(Lv)

=
1

λ

∑

n∈Zm

c[Kn]e2πix(Kn)·1e2πin·v,

where K = (L−1)⊤. Comparing the coefficients, we obtain the equality
∣∣c[n]

∣∣ =
∣∣c[Kn]

∣∣, ∀n ∈ Zm.

Since f ∈ L2(Tm), we can conclude that c[n] = 0 for any n that is not preserved under Kj

for some positive integer j, for otherwise we would have the infinite sequence of coefficients
c[n], c[Kn], c[K2n], . . . of equal and strictly positive magnitude.

On the other hand, it is a simple exercise to show that the only vectors that satisfy
n = Kjn for some power j ≥ 1 are those of the form n = (n1, 0, . . . , 0). Hence, any
eigenfunction of U depends only on the first variable v1. On the first coordinate v1 of v, L

reduces to the irrational rotation by x, and hence as it is well-known, these eigenfunctions
are nothing but the given complex exponentials {fn}n∈Z. These eigenfunctions span the
subspace Hpp of L2(Tm).

The absolutely continuous spectrum. We shall next show that continuous part of the
spectrum is in fact absolutely continuous. This is in fact a consequence of the fact that
there exists an orthonormal basis {ψj,k : j ∈ Z, k ∈ N} of H⊥

pp with the property that

Uψj,k = ψj+1,k for all j and k. (I.e., L has countable Lebesgue spectrum on H⊥
pp.) First we

will construct such a basis, and then we shall prove the statement on the absolute continuity.
From the discussion above on the eigenfunctions of U , we know that the complex expo-

nentials
fn(v) = e2πin·v, n ∈ Zm\

(
Z × {0}m−1

)
,

form an orthonormal complete set in H⊥
pp. Note also that

Ufn = e2πixn·1fL⊤n.

Therefore we consider the orbit of each n ∈ Zm under L⊤, given by

O(n) =

{(
L⊤
)j

n

}

j∈Z

.

It is easy to see that each n ∈ Z × {0}m−1 is a fixed point of L⊤ and every other n is such
that the orbit is an infinite sequence of distinct points in Zm\

(
Z × {0}m−1

)
. Since L⊤ is

invertible, orbits do not intersect. Hence we can divide Zm\
(
Z × {0}m−1

)
into equivalence

classes of orbits O(nk), k ∈ N, and define

ψ0,k = fnk
, ψj,k = U jψ0,k, j ∈ Z, k ∈ N.

Each ψj,k is equal to some complex exponential fn multiplied by a complex number of unit
magnitude. The collection of ψj,k is distinct, and all frequencies n ∈ Zm\

(
Z × {0}m−1

)
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appear, hence {ψj,k}j∈Z,k∈N form an orthonormal basis of H⊥
pp with the property that

Uψj,k = ψj+1,k.

Let us show that every spectral measure is absolutely continuous on H⊥
pp. Let g and h

be arbitrary functions in L2(Tm) with representations g =
∑
aj,kψj,k and h =

∑
bj,kψj,k.

Let the functions Ak and Bk be defined on T for each k with Fourier coefficients (aj,k)j∈Z

and (bj,k)j∈Z, respectively. From orthogonality, we have

‖g‖2 =
∑

k

∫

T

|Ak(ξ)|2dξ <∞,

and similarly for h and Bk.
Now, we have Unh =

∑
bj,kψj+n,k, so that

(g,Unh)L2(Tm) =
∑

k

∑

j

aj+n,kbj,k

=
∑

k

∫

T

∑

j

aj+n,ke
2πijξBk(ξ) dξ

=

∫

T

e−2πinξ

(
∑

k

Ak(ξ)Bk(ξ)

)
dξ,

the nth Fourier coefficient of the function
∑

k Ak(ξ)Bk(ξ). On the other hand, applying
Cauchy-Schwarz inequality twice, we have

∫

T

∣∣∣∣∣
∑

k

Ak(ξ)Bk(ξ)

∣∣∣∣∣dξ ≤
∫

T

(
∑

k

|Ak(ξ)|2
)1/2(∑

k

|Bk(ξ)|2
)1/2

dξ

≤
(∫

T

∑

k

|Ak(ξ)|2dξ
)1/2(∫

T

∑

k

|Bk(ξ)|2dξ
)1/2

= ‖g‖L2‖h‖L2

< ∞.

Hence the inner products (g,Unh)L2(Tm) are in fact the Fourier coefficients of an L1 function.
This shows that the measure associated to these inner products is absolutely continuous.

Appendix B. Proof of Lemma 9.1

Let us start by writing f(t) =
∑
n 6=0

f̂ [n]e2πint so that we have

c[k] =
∑

n 6=0

f̂ [n]

∫

T

e2πin(kv+ϕ(v))dv, (B.1)

where we have changed the order of summation and integration. Applying integration by
parts we obtain

∫

T

e2πinϕ(v)e2πinkvdv = − 1

2πink

∫

T

e2πinkvd
[
e2πinϕ(v)

]

= −1

k

∫

T

e2πinkve2πinϕ(v)dϕ(v). (B.2)



30 C. SİNAN GÜNTÜRK AND NGUYEN T. THAO

Part (1). For the integral in (B.2), we use the bound
∣∣∣∣−

1

k

∫

T

e2πinkve2πinϕ(v)dϕ(v)

∣∣∣∣ ≤
1

|k|

∫

T

|dϕ(v)| =
1

|k| ‖ϕ‖TV ,

and we simply get
∣∣c[k]

∣∣ ≤
∑

n 6=0

1

|k| ‖ϕ‖TV |f̂ [n]| ≤ 1

|k| ‖ϕ‖TV ‖f‖A(T).

Part (2). Let ϕ be differentiable and ϕ′ ∈ BV(T). Substitute dϕ(v) = ϕ′(v)dv and apply
another integration by parts to (B.2) obtain

−1

k

∫

T

ϕ′(v)e2πinϕ(v)e2πinkvdv =
1

k(2πink)

∫

T

e2πinkvd
[
ϕ′(v)e2πinϕ(v)

]
.

Now,

d
[
ϕ′(v)e2πinϕ(v)

]
= e2πinϕ(v)dϕ′(v) + (ϕ′(v))2(2πin)e2πinϕ(v) dv,

so that substituting the above two formulas together with (B.2) in (B.1), we get

c[k] =
1

k2




∑

n 6=0

f̂ [n]

2πin

∫

T

e2πin(kv+ϕ(v)) dϕ′(v) +
∑

n 6=0

f̂ [n]

∫

T

(ϕ′(v))2e2πin(kv+ϕ(v)) dv



 (B.3)

For the first part of this sum we use∣∣∣∣
∫

T

e2πin(kv+ϕ(v)) dϕ′(v)

∣∣∣∣ ≤
∫

T

|dϕ′(v)| = ‖ϕ′‖TV ,

and

∑

n 6=0

|f̂ [n]|
2π|n| ≤




∑

n 6=0

1

(2πn)2




1/2(

∑

n

|f̂ [n]|2
)1/2

=
1√
12

‖f‖L2(T),

so that ∣∣∣∣∣∣

∑

n 6=0

f̂ [n]

2πin

∫

T

e2πin(kv+ϕ(v)) dϕ′(v)

∣∣∣∣∣∣
≤ 1√

12
‖f‖L2(T)‖ϕ′‖TV .

On the other hand, the second term reduces to
∑

n 6=0

f̂ [n]

∫

T

(ϕ′(v))2e2πin(kv+ϕ(v)) dv =

∫

T

(ϕ′(v))2
∑

n 6=0

f̂ [n]e2πin(kv+ϕ(v)) dv

=

∫

T

(ϕ′(v))2f(kv + ϕ(v)) dv.

We bound this integral by ‖f‖L∞(T)‖ϕ′‖2
L2(T). Combining these, the expression of (B.3) can

now be bounded from above in absolute value as
∣∣c[k]

∣∣ ≤ 1

k2

(
1√
12

‖f‖L2(T)‖ϕ′‖TV + ‖f‖L∞(T)‖ϕ′‖2
L2(T)

)
,

concluding the proof. �
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