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Abstract

For problems with piecewise smooth solutions, spectral element methods hold great promise. They
combine the exponential convergence of spectral methods with the geometric flexibility of finite
elements. Spectral elements are well-established for scalar elliptic problems and problems of fluid
dynamics, and recently the first methods for problems inH(curl) andH(div) were proposed. In this
dissertation we study spectral element methods for a model problem. We first consider Maxwell’s
equation and derive the model problem inH(curl). Then we introduce anisotropic spectral Néd́elec
element discretizations with variable numerical integration for the model problem. We discuss their
structure, and their convergence and approximation properties. We also obtain results on the norm of
the Ńed́elec interpolants between Néd́elec and Raviart-Thomas spaces of different degree, needed
for the computation of the splitting constant for the domain decomposition preconditioner and the
numerical analysis of nonlinear equations. We also prove a Friedrichs-like inequality for the model
problem for the spectral case.

We present fast direct solvers for the model problem on separable domains, taking advantage of the
tensor product discretization and fast diagonalization methods. We use those fast solvers as local
solvers in domain decomposition methods for problems that are too large to be solved directly, or
posed on non-separable domains, and use them to compute and subassemble the Schur comple-
ment system corresponding to the interface. We also apply them in the direct solution of the Schur
complement system for general domains.

As an example for the domain decomposition methods that can be implemented with these tools,
we introduce overlapping Schwarz methods, both one-level and two-level versions.

We extend the theory for overlapping Schwarz methods to the spectral Néd́elec element case. We re-
duce the proof of the condition number estimate to three basic estimates, and present theoretical and
numerical results on those estimates. The technique of the proof works in both the two-dimensional
and three-dimensional case.

We also present numerical results for one-level and two-level methods in two dimensions.
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Chapter 1

Introduction

Computational electromagnetics concerns the numerical approximation of Maxwell’s equa-
tions. Maxwell’s equations describe the interaction of electromagnetic waves and matter,
and form a vector system of time-dependent partial differential equations. There is an in-
creasing need for optimal solvers for Maxwell’s equation since devices such as optical de-
vices in integrated optics or photonic crystals have been proposed and need to be modeled.
Since for some of those devices the production of prototypes is very expensive and compli-
cated, an accurate numerical model has to be designed and solved, and the solution has to
be fast, since it will possibly be used in design optimizations. In the last ten years, compu-
tational electromagnetics has become a very important research area in numerical analysis.
Besides the design problem mentioned above, areas of interest are also the simulation of
antennas, the scattering by complicated objects; used for instance in one of the approaches
to inverse scattering – which also needs a very fast direct solver – and the calculation of
eddy currents in electric conductors.

The main focus of this thesis is the spectral element discretization of Maxwell’s equa-
tion, the construction of fast direct solvers for such discretizations, and the construction
and analysis of domain decomposition preconditioners for iterative methods for such dis-
cretizations.

For the analysis of Maxwell’s equations, suitable Sobolev spaces have to be introduced:
H(curl) andH(div) are the graph spaces ofcurl anddiv overL2. Suitable finite element
spaces conforming in those continuous spaces were introduced in the late 1970’s, in partic-
ular the Ńed́elec or edge element spaces, conforming inH(curl), and the Raviart-Thomas
spaces, conforming inH(div). In those approximation spaces only some of the compo-
nents are forced to be continuous across the interface. We introduce the continuous spaces
in chapter 2, and we discuss thehN -extension of the Ńed́elec and Raviart-Thomas-Néd́elec
spaces in chapter 7. We discuss the commuting diagram properties which they share with
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the continuous setting, the approximation properties, and the properties of the interpolation
operators when used as mappings between Néd́elec or Raviart-Thomas-Ńed́elec spaces
of different degrees. We also prove a discrete Friedrichs’ inequality. To the best of our
knowledge, the use of spectral element degrees of freedom for the Raviart-Thomas-Néd́elec
spaces is new, and so is the study of the mapping properties of the Néd́elec interpolation
between spaces of different order.

We introduce a standard model problem inH(curl), which we derive from the implicit
time-integration of the time-dependent Maxwell’s equations in chapter 3, and we present
spectral Ńed́elec element discretizations of the model problem in chapter 8. We only know
of one group working on spectral elements for Maxwell’s equations, around Ben Belgacem
(see, e.g., Ben Belgacem and Bernardi [15]), which seems to use mainly mortar elements.
We do not know of any experimental work on spectral elements for the model problem.

We derive the discretization for arbitrary degrees, possibly different in different directions,
and arbitrary degrees of numerical integration. We present subassembly procedures on rect-
angular domains forH1-,H(curl)-, andH(div)-conforming discretizations.

We study fast direct solvers on rectangular domains, and direct solvers for the Schur com-
plement system on the element interfaces for non-separable domains in chapter 9.

For systems too large to fit into the memory of a single machine, or so large that direct
solvers are not competitive in terms of storage or computing time, we consider iterative
methods. Recently, efficient preconditioners for the finite element method for the model
problem have become the subject of extensive research. Some of the most promising meth-
ods are domain decomposition and multigrid solvers and preconditioners. In a domain de-
composition approach, a problem on a large domain is solved approximately by solving
problems over smaller subregions and combining the local solutions appropriately. One can
easily design iterative schemes which start from an initial guess, and solve local problems,
in parallel or in sequence, in each step. These basic iterative methods can also be used to
construct preconditioners for the discretizations, that are then accelerated by Krylov sub-
space methods. When problems with a large number of subdomains are to be solved, a
coarse problem has to be added to improve convergence, especially to make the conver-
gence independent of the number of subregions. Domain decomposition methods are by
design parallel methods, and can be easily implemented on parallel computers and have
been shown to lead to scalable preconditioners.

Many domain decomposition methods can be viewed in terms of the abstract Schwarz
framework, see chapter 5. A Schwarz preconditioner is defined by a collection of subspaces
with exact or inexact solver provided for each of them, where the union of the collection
of the subspaces equals the original space. The algorithms we consider here are two-level
algorithms, where we work with discretizations on a fine mesh of elements and a coarse
mesh of subregions.
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We study the model problem

a(u,v) := η1(u,v)L2 + η2(curl u, curl v)L2 = f(v)

on H(curl). The domainΩ is a bounded connected polygon or polyhedron. Essential,
natural, and Silver-M̈uller boundary conditions can be considered.

The study and analysis of preconditioners for Néd́elec and Raviart-Thomas-Néd́elec dis-
cretization started only recently, even for theh−version of the elements. Two-level overlap-
ping Schwarz preconditioners forH(div) were developed by Arnold, Falk and Winther [6],
They were further investigated by Toselli in theH(curl) case in [96, 98] and by Hiptmair
and Toselli [60] for bothH(div) andH(curl).

Multigrid and multilevel methods forH(div) andH(curl) were considered in Arnold,
Falk and Winther [8, 7], Hiptmair and Toselli [60] and Hiptmair [59, 58, 57]. Iterative
substructuring methods are treated in Alonso and Valli [4]; Toselli [96]; Toselli, Widlund,
and Wohlmuth [101]; and Wohlmuth, Toselli, and Widlund [104], a Neumann-Neumann
solver is considered in Toselli [97] and FETI preconditioners are proposed in Toselli and
Rapetti [100], and Toselli and Klawonn [99]. We are not aware of any work on domain
decomposition preconditioners for spectral element discretizations for Maxwell’s equations
or the model problem.

We present an implementation of a two-level additive overlapping method in chapter
10, and a proof of a condition number estimate for this method for the two- and three-
dimensional case in chapter 11.

In the following, we will denote byA the representation of the bilinear forma(·, ·) on the
spectral element space, and byB the additive Schwarz preconditioner. Denoting byh the
size of the small elements, byH the size of the subregions, byδ the size of the overlap, by
NC the number of colors needed to color the subregions so that no two regions of the same
color overlap, and byN the degree of the spectral Néd́elec elements, we prove a condition
number estimate of the form

κ(BA)) ≤ C(Nc + 1)
max(η1, η2)

min(η1, η2)

(
1 +Nc

(
1 +

(
H

δ

)2
))

for generous or fixed overlap, and of the form

κ(BA) ≤ C(Nc + 1)N
max(η1, η2)

min(η1, η2)

(
1 +Nc

(
1 +

(
H

δ

)2
))

for minimal overlap. Both the power ofH
δ

and ofN can most probably be improved; for
the first one would have to extend the small overlap type of proof of Dryja and Widlund
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[44] to H(curl); for the second we present a different treatment of the partition of unity
that could improve the estimate.

The proof is an extension of Toselli’s proof in [98] to the spectral case. We have reduced it
to the proof of three required estimates, for which we present both numerical and theoretical
results.

In the course of the work on this thesis, we have also developed direct solvers for the
model problem using a computational Helmholtz decomposition to reduce the solution
of the model problem to scalar and vector Helmholtz and Laplace solves, and we have
worked on a generalization of the restricted additive Schwarz method for the Poisson and
the Helmholtz equation. Unfortunately we lack both space and time to present the results
in the context of this thesis. We hope to present this work in future publications.
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Chapter 2

Function spaces and regularity results

In this chapter we present the function spaces and regularity results that we will need later
in this thesis. In the first subsection, we introduce the standard Sobolev spacesHs andW s,p

and some of their properties. The next three sections are dedicated to a short introduction
to the graph spacesH(div,Ω), H(curl,Ω) in two dimensions andH(curl,Ω) in three di-
mensions. In the fifth section we present orthogonal decompositions of(L2(Ω))n and of
the graph spaces that generalize the Helmholtz decomposition of smooth vector fields into
divergence-free and curl-free parts. In the next section, we present some regularity results
for the Laplace operator that are needed later in the chapter. Section 7 presents a discussion
of imbedding theorems for the intersection ofH(div) andH(curl). We end the chapter
with a discussion of the regularity ofcurl potentials in the last section.

For a general theory of the classical Sobolev spaces see Adams [1], Nečas [73], or Grisvard
[52]. For a theory ofH(div) andH(curl) we refer to Dautray and Lions [34], and Girault
and Raviart [48]. For an introduction to the case of non-smooth domains see Grisvard [52],
and Amrouche, Bernardi, Dauge, and Girault [5] and references therein.

Let Ω ⊂ Rn be an open, bounded and connected set, with a Lipschitz continuous boundary
∂Ω and exterior normaln. Given a generic vectoru ∈ Rn, we denote its Cartesian compo-
nents byui, i = 1, · · · , n. Any definition of inner products or norms can be extended from
the scalar case to the vector case in a straightforward way, i.e., forXn we use

(u,v)Xn :=
n∑

i=1

(ui, vi)X

||u||2Xn :=
n∑

i=1

||ui||2X
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2.1 Sobolev spaces

Lp(Ω) is the space of Lebesgue measurable functionsu with ||u||Lp(Ω) = ||u||0,p,Ω < ∞
where

||u||p0,p,Ω =

∫
Ω

|u|p

||u||0,∞,Ω = ess supΩ|u|

Lp(Ω) is a Banach space, and forp = 2 it is a Hilbert space with the inner product

(u, v)0,Ω = (u, v)0 :=

∫
Ω

uv

Lp
0(Ω) is the subspace ofLp(Ω) of functions with mean zero, i.e.,

∫
Ω
u = 0.

The Sobolev spaceW k,p(Ω) for k integer consists of all locally summable functionsu such
that for each multi-indexα with |α| ≤ k,Dαu ∈ Lp(Ω). Its norm is defined by

||u||W k,p(Ω) = ||u||k,p,Ω :=

∑
|α|≤k

||Dαu||p0,p,Ω

1/p

||u||k,∞,Ω := max
|α|≤k

||Dαu||0,∞,Ω

The spacesHk(Ω) := W k,2(Ω) are Hilbert spaces, their norm is denoted
|| · ||Hk(Ω) = || · ||k,Ω.

For s nonnegative and not an integer, we writes = bsc + σ with σ ∈ (0, 1), andu ∈
W s,p(Ω) if and only if u ∈ W bsc,p(Ω) and, for|α| = bsc, [u]σ,p,α,Ω <∞, where

[u]pσ,p,α,Ω :=

∫
Ω

∫
Ω

|Dαu(x)−Dαu(y)|p

|x− y|n+σp
dxdy

[u]σ,∞,α,Ω := ess supx,y∈Ω,x 6=y

|Dαu(x)−Dαu(y)|
|x− y|σ

The norm inW s,p(Ω) is then defined as

||u||s,p,Ω =

||u||pbsc,p,Ω +
∑

|α|=bsc

[u]pσ,p,α,Ω

1/p
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||u||s,∞,Ω = ||u||bsc,∞,Ω + max
|α|=bsc

[u]σ,∞,α,Ω

The spacesHs(Ω) := W s,2(Ω) are Hilbert spaces fors ≥ 0. There are instrinsic definitions
of the scalar product(u, v)s, or it can also be defined by polarization of||u||s.
Fork integer, one definesW k,p(Ω) semi-norms as follows:

|u|pk,p,Ω =
∑
|α|=k

||Dαu||p0,p,Ω

|u|k,∞,Ω =
∑
|α|=k

||Dαu||0,∞,Ω

The semi-norms on the spacesHk are denoted|u|k.

For the solution of essential boundary value problems we also need spaces of functions with
imposed boundary conditions. In the standard way, one definesW s,p

0 (Ω) as the closure of
the space of infinitely differentiable functions with compact support inΩ with respect to
the|| · ||s,p,Ω-norm. As before,Hs

0(Ω) := W s,2
0 (Ω).

The spaces with negatives are defined by duality. Since the dual space ofHs(Ω) would not
be a space of distributions,Hs

0 is chosen. That means

H−s(Ω) = (Hs
0(Ω))′

W−s,p(Ω) = (W
s, p

p−1

0 (Ω))′

with the standard definition of the dual operator norm.

There are Sobolev imbedding theorems stating inclusion relationships between different
W s,p spaces. We will present one of the versions in the following.

Theorem 2.1 (Sobolev imbedding theorem)Letp ∈ [1,∞], s < t. The following imbed-
dings hold algebraically and topologically

W s,p(Ω) ⊂


W t,q(Ω) if 1

q
= 1

p
− s−t

n
> 0

W t,q
loc(Ω) ∀q ∈ [1,∞) if 1

p
= s−t

n

Cbtc(Ω) if 1
p
< s−btc

n

The first imbedding is compact for allq ∈ [1, np
n−(s−t)p

), if n > (s− t)p.

See, for instance, Girault and Raviart [48, Theorem I.1.3].

To give an intrinsic characterization ofW s,p
0 (Ω), and to discuss boundary behavior of func-

tions inW s,p, we need to introduce trace operators and the trace theorem. Denote byγ0 the
operator that maps a function inC(Ω) to its boundary values inC(∂Ω).
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Theorem 2.2 (Trace theorem)Assume thatΩ has a boundary of classCk,1, that p ≥ 1,
s ≥ 0 ands ≤ k + 1, s− 1

p
= l + σ with l a non-negative integer andσ ∈ (0, 1). Then the

mappingγ0 has a continuous extension as an operator

W s,p(Ω) 7→ W s− 1
p
,p(∂Ω)

In the case thatΩ has a piecewiseCk,1 boundary, with theCk,1 pieces∂Ωi, γ0 can be
extended to an operator

W s,p(Ω) 7→
∏

i

W s− 1
p
,p(∂Ωi)

Its range is a subspace of
∏

iW
s− 1

p
,p(∂Ωi) characterized by additional conditions associ-

ated with the intersection between∂Ωi and∂Ωj.

For theW s,p-case, see, e.g., Grisvard [52, section 1.5.2], and for theHs-case, see, e.g.,
Bernardi and Maday [17, section 1].

Until now we have assumed thatΩ is a domain of sizeO(1). For domains of diameterHΩ,
we will work with the standard scaled norms, for instance, forp = 2 ands = 1 we have

||u||21,Ω := |u|21,Ω +
1

H2
Ω

||u||20,Ω

In the Sobolev spaces, many useful inequalities are known. We refer, e.g., to the discussions
in Nečas [73] and in Dautray and Lions [32, chapter IV,§7].

We will only give the Friedrichs’ inequality, needed in the proof that theH1-semi-norm is
equivalent to theH1-norm onH1

0 :

∀u ∈ H1
0 (Ω) : ||u||0,Ω ≤ CHΩ|u|1,Ω

Spaces or norms without explicitly stated domainΩ are understood to be defined on the
appropriate global domainΩ.

2.2 The spaceH(div,Ω)

Thedivergenceof a vector fieldu ∈ Rn is defined as

div u :=
n∑

i=1

∂xi
ui
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H(div,Ω) is the graph space ofdiv overL2, i.e.,

H(div,Ω) = {u ∈ (L2(Ω))n| div u ∈ L2(Ω)}.

It is a Hilbert space under the graph norm

(u,v)div,Ω = (u,v)0 + (div u, div v)0 ||u||2div,Ω = (u,u)div,Ω

We also need a space with more regularity for the discussion of the approximation proper-
ties of the Ńed́elec interpolant in chapter 7:

Hs(div,Ω) = {u ∈ (Hs+1(Ω))n| div u ∈ Hs(Ω)}

The trace operatorγn that maps a vector field to its normal component on the boundary,
and is, e.g., well-defined on the restriction toΩ of the infinitely differentiable functions
with compact support inRn, can be extended to a continuous (and surjective) operator1

γn : H(div,Ω) 7→ H− 1
2 (∂Ω)

Foru ∈ H(div,Ω) andq ∈ H1(Ω) we have the following Green’s formula:

(u,grad q)0,Ω + (div u, q)0,Ω = 〈γn(u), q〉 1
2
,∂Ω

where here and in the following〈·, ·〉 1
2
,∂Ω denotes the duality pairing betweenH− 1

2 (∂Ω)

andH
1
2 (∂Ω).

Finally, we also need the subspaces

H0(div,Ω) = {u ∈ H(div,Ω)|γn(u) = 0}

H(div 0,Ω) = {u ∈ H(div,Ω)| div u = 0}

H0(div 0,Ω) = {u ∈ H0(div,Ω)| div u = 0}

2.3 The spaceH(curl) in two dimensions

Given a two-dimensional vector fieldu and a scalar functionq of two variables, the follow-
ing two curl operators can be defined

curl q = (∂x2q,−∂x1q)

1Recall that we use scaled norms forH(div,Ω) andH− 1
2 (∂Ω) if HΩ is notO(1).
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curlu = ∂x1u2 − ∂x2u1

H(curl,Ω) is defined as the graph space ofcurl overL2(Ω), and is a Hilbert space:

H(curl,Ω) = {u ∈ (L2(Ω))2| curlu ∈ L2(Ω)},

(u,v)curl,Ω = (u,v)0 + (curlu, curlv)0 ||u||2curl,Ω = (u,u)curl,Ω

We also need a space with more regularity for the discussion of the approximation proper-
ties of the Ńed́elec interpolant in chapter 7:

Hs(curl,Ω) = {u ∈ (Hs+1(Ω))2| curlu ∈ Hs(Ω)}

A vector u = (u1, u2) belongs toH(curl,Ω) if and only if v = (−u2, u1) belongs to
H(div,Ω). Denoting the unit tangent vector on∂Ω with t, we havev · n = −u · t and
curlu = div v. Therefore we can use the results of the previous section to show that
γt(u) = u · t|∂Ω can be extended to a continuous (and surjective) operator

γt : H(curl,Ω) 7→ H− 1
2 (∂Ω)

A Green’s formula can be proven foru ∈ H(curl,Ω) andq ∈ H1(Ω)

(curlu, q)0,Ω + (u, curl q)0,Ω = 〈γt(u), q〉 1
2
,∂Ω

To allow us to state some results concisely for the two-dimensional and three-dimensional
case in the same formula, we denotecurl

2
:= curl.

2.4 The spaceH(curl) in three dimensions

The curl vector operator is defined for a three-dimensional vector fieldu as

curl u := (∂x2u3 − ∂x3u2, ∂x3u1 − ∂x1u3, ∂x1u2 − ∂x2u1)
T

H(curl) is a Hilbert space with the graph norm and inner product:

H(curl,Ω) = {u ∈ (L2(Ω))3| curl u ∈ (L2(Ω))3},

(u,v)curl,Ω = (u,v)0 + (curl u, curl v)0 ||u||2curl,Ω = (u,u)curl,Ω

We also need a space with more regularity for the discussion of the approximation proper-
ties of the Ńed́elec interpolant in chapter 7:

Hs(curl,Ω) = {u ∈ (Hs+1(Ω))3| curlu ∈ (Hs(Ω))3}
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In the treatment of Maxwell’s equations on non-convex Lipschitz domains, the following
space plays a role (see the comments in section 7.1.2 and at the end of chapter 7):

Xp(Ω) := {u ∈ (Lp(Ω))3, curl u ∈ (Lp(Ω))3,u× n ∈ (Lp(∂Ω))3} (d = 3).

The tangential components on the boundary∂Ω can be defined as

γt(u) = u− (u · n)n = (n× u)× n

We will also sometimes calln × u the tangential components even though we have only
|n× u| = |γt(u)|.
By extending the tangential trace operatorγt, which certainly is well-defined and continu-
ous for smooth enoughu, we can find a continuous operator

γt : H(curl,Ω) 7→ (H− 1
2 (∂Ω))3

which is not surjective. Its range has been fully characterized (see, for instance, Alonso and
Valli [ 3]).

A Green’s formula can be proven foru,v ∈ H(curl,Ω):

(curl u,v)0,Ω + (u, curl v)0,Ω = 〈γt(u), q〉 1
2
,∂Ω

To allow us to state some results concisely for the two-dimensional and three-dimensional
case in the same formula, we denotecurl

3
:= curl.

We define the subspaces

H0(curl
n
,Ω) = {u ∈ H(curl

n
,Ω)|γt(u) = 0}

H(curl
n

0,Ω) = {u ∈ H(curl
n
,Ω)| curl

n
u = 0}

H0(curl
n

0,Ω) = {u ∈ H0(curl
n
,Ω)| curl

n
u = 0}

2.5 Helmholtz decompositions

Theorem 2.3 (Orthogonal decompositions in(L2(Ω))n) The space(L2(Ω))n allows the
following orthogonal decompositions

(L2(Ω))n = H(div 0,Ω)⊕ gradH1
0 (Ω)

(L2(Ω))n = H0(div 0,Ω)⊕ gradH1(Ω)

(L2(Ω))n = H0(div 0,Ω)⊕ gradH1(Ω)⊕ gradH1
0 (Ω)

whereH1(Ω) is the space of harmonic functions inH1(Ω).
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Proof: Dautray and Lions [34, Proposition 1 on page 215].

This theorem implies similar theorems inH(div,Ω) andH(curl
n
,Ω), which we give below:

Theorem 2.4 (Orthogonal decompositions inH(div,Ω)) Thediv graph spaces allow the
following orthogonal decompositions

H(div,Ω) = H(div 0,Ω)⊕H⊥(div,Ω)

H0(div,Ω) = H0(div 0,Ω)⊕H⊥
0 (div,Ω)

with
H⊥(div,Ω) = H(div,Ω) ∩ gradH1

0 (Ω)

H⊥
0 (div,Ω) = H0(div,Ω) ∩ gradH1(Ω)

The two decompositions are orthogonal in both(·, ·)0,Ω and(·, ·)div,Ω, and this implies

∀H⊥(div,Ω) ∪H⊥
0 (div,Ω) : ||u||0,Ω ≤ CHΩ|| div u||0,Ω

Theorem 2.5 (Orthogonal decompositions inH(curl
n
,Ω)) H(curl

n
,Ω) allows the fol-

lowing orthogonal decompositions

H(curl
n
,Ω) = gradH1

0 (Ω)⊕H⊥(curl
n
,Ω)

H0(curl
n
,Ω) = gradH1(Ω)⊕H⊥

0 (curl
n
,Ω)

with
H⊥(curl

n
,Ω) = H(div,Ω) ∩H0(curl

n
,Ω)

H⊥
0 (curl

n
,Ω) = H0(div,Ω) ∩H(curl

n
,Ω)

The two decompositions are orthogonal in both(·, ·)0,Ω and(·, ·)curl,Ω.

For simply connectedΩ we have

H(curl
n

0,Ω) = gradH1(Ω)

For multiply connectedΩ this hold with a⊂, and the complement has been characterized
(see, e.g., Dautray and Lions [34]).

We end this section with
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Theorem 2.6 (Friedrichs’ inequality for H⊥(curl,Ω)) If Ω is simply connected, then the
following inequality holds:

∀u ∈ H⊥(curl
n
,Ω) : ||u||0,Ω ≤ CHΩ|| curl

n
u||0,Ω

If, in addition, ∂Ω is connected, the same inequality holds for the space with vanishing
tangential components:

∀u ∈ H⊥
0 (curl

n
,Ω) : ||u||0,Ω ≤ CHΩ|| curl

n
u||0,Ω

For some extensions to multiply connected domains and to domains with boundaries con-
sisting of several connected components, see Dautray and Lions [34] and Amrouche,
Bernardi, Dauge, and Girault [5].

2.6 Regularity of the Laplace operator

In this section we will present several regularity results for the Dirichlet and Neuman prob-
lem for the Laplace operator. We will need them in the proof of the regularity of thecurl
potentials in the last section.

We will first discuss the case of Dirichlet boundary conditions. The Dirichlet problem is

−∆u = f in Ω
u = g on∂Ω

(2.1)

The following regularity results are well-known:

Theorem 2.7 Assume thatΩ is a bounded, open subset ofRn with a Ck+1,1 boundary.
Then forp ∈ (1,∞), the solution operator(f, g) → u for (2.1) is continuous on

W k,p(Ω)×W k+2− 1
p
,p(Ω) 7→ W k+2,p(Ω)

Proof: See Girault and Raviart [48, theorem I.1.8,1)].

Theorem 2.8 Assume thatΩ is a two-dimensional, bounded polygon with no reentrant
corner. Then there exists a realpΩ depending on the greatest inner angle of∂Ω such that
u ∈ W 2,p(Ω) for p ∈ (1, pΩ) wheneverf ∈ Lp(Ω) andg ∈ γ0(W

2,p(Ω)). The result is still
true forg = 0 for any convex bounded polyhedron in the three-dimensional case.
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Proof: See Girault and Raviart [48, theorem I.1.8,2) and 3)].

For the three-dimensional homogenous case (g = 0) andHs spaces we have more infor-
mation about the exact regularity, see Dauge [31, Corollary 18.18]:

Theorem 2.9 SupposeΩ is a three-dimensional, bounded Lipschitz polyhedron withω be-
ing the largest angle between its faces. Fors 6= −1

2
and

s < min

{
3

2
,
π

ω
− 1

}
,

the Laplace operator is an isomorphism:

∆ : H2+s(Ω) ∩H1
0 (Ω) ↔ Hs(Ω)

The Neumann problem is

−∆u = f in Ω
∂nu = g on∂Ω

(2.2)

The dataf andg have to satisfy the compatibility condition∫
Ω

f +

∫
∂Ω

g = 0

if (2.2) is to have a solution.

Since (2.2) only involves derivatives ofu, it will never be uniquely solvable. Therefore we
work in the quotient spaces overR using the standard quotient norm . We remark that the
quotient norm inH1/R is equivalent to theH1-seminorm.

We state the analogues of the first two theorems above, and note that exact regularity results
for the Neumann problem are known. We skip their statement for reasons of space and refer
to the literature.

Theorem 2.10 Assume thatΩ is a bounded, open subset ofRn with a Ck+1,1 boundary.
Then the solution operator(f, g) → u for (2.2) is continuous on

W k,p(Ω)×W k+1− 1
p
,p(Ω) 7→ W k+2,p(Ω)/R

Proof: See Girault and Raviart [48, theorem I.1.10,1)].

Theorem 2.11 Assume thatΩ is a two-dimensional, bounded polygon with no reentrant
corner. Then there exists a realpΩ depending on the greatest inner angle of∂Ω such that
u ∈ W 2,p(Ω)/R for p ∈ (1, pΩ) wheneverf ∈ Lp(Ω) andg ∈ γ0(W

1,p(Ω)). The result is
still true for g = 0 for any convex bounded polyhedron in the three-dimensional case.

Proof: See Girault and Raviart [48, theorem I.1.10,2) and 3)].
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2.7 Imbedding theorems

In this section, we will discuss under which circumstances we can infer thatu ∈ Hs(Ω)
from u ∈ H(curl

n
,Ω) andu ∈ H(div,Ω). In some sense,div andcurl already cover all the

directional derivatives, and so, locally, we should obtain the result withs = 1. We will see
that this suspicion is correct and also thats will depend strongly on the imposed boundary
conditions and on the convexity (or the measure of the reentrant corners) ofΩ. All the
results stated in this section are proven or referenced in Amrouche, Bernardi, Dauge, and
Girault [5], and we refer to this article for the proofs and further comments. We state all the
results for the three-dimensional case. The two-dimensional case is discussed in Girault and
Raviart [48, section 3.2] and complete results could be obtained combining their methods
and regularity results for non-convex polygons.

First, we need to introduce some spaces:

H(Ω) = H(curl,Ω) ∩H(div,Ω)

with the norm
||u||2H(Ω) := ||u||20,Ω + || curl u||20,Ω + || div u||20,Ω

and the following spaces with different boundary behavior:

HT (Ω) = {u ∈ H(Ω)|γt(u) = 0}

HN(Ω) = {u ∈ H(Ω)|γn(u) = 0}
H0(Ω) = HT (Ω) ∩HN(Ω)

The following results are known:

Theorem 2.12 (Vanishing boundary components)H0(Ω) coincides with(H1
0 (Ω))3.

Theorem 2.13 (Imbeddings in(L2(Ω))n) The imbedding ofH(Ω) into (L2(Ω))n is not
compact. The imbeddings ofHT (Ω) andHN(Ω) into (L2(Ω))n are compact.

Theorem 2.14 (Smooth boundaries or convex domains)If ∂Ω is of classC1,1 or if Ω is
convex, thenHT (Ω) andHN(Ω) are continuously imbedded in(H1

0 (Ω))3. This also holds
for inhomogenous boundary components in(H

1
2 (∂Ω))3 or H

1
2 (∂Ω), respectively, and in

the two-dimensional case.

Counterexamples to this theorem are known for Lipschitz domains.

Theorem 2.15 (Lipschitz boundaries)If ∂Ω is Lipschitz, then there exists a real number
s > 1

2
such thatHT (Ω) andHN(Ω) are continuously imbedded in(Hs(Ω))3. This also

holds for inhomgenous boundary components in(L2(Ω))3 or L2(Ω), respectively.
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2.8 Regularity of curl potentials

In this section we will give some regularity results for thediv-curl problem and forcurl
potentials.

First we discuss thediv-curl problem in three dimensions. Improved and exact results
could be obtained for the two-dimensional case using the Laplace problems for thediv-
andcurl-potential and applying the known regularity results on polygons.

Theorem 2.16 (div-curl in Hs) Assume thatΩ is a bounded convex polyhedron. Then
there exists asΩ ∈ (0, 1

2
) such that for alls ∈ [0, sΩ) andv ∈ HN(Ω) with

curl v ∈ (Hs(Ω))3 div v ∈ Hs(Ω)

we have the added regularityv ∈ (Hs+1(Ω))3.

Proof: See Toselli [96, Theorem 2.1.1].sΩ is the maximals for which the Dirichlet problem
is regular inHs → H2+s, see (2.1) and theorem2.9.

Theorem 2.17 (div-curl in Lp) Assume thatΩ is a bounded convex polyhedron. Then
there exist apΩ > 2 such that for allp ∈ [2, pΩ) andv ∈ HN(Ω) or v ∈ HT (Ω) with

curl v ∈ (Lp(Ω))3 div v ∈ Lp(Ω)

we have the added regularityv ∈ (W 1,p(Ω))3.

Proof: See Amrouche, Bernardi, Dauge, and Girault [5, Remark 2.19].pΩ is the maximalp
for which the Dirichlet respective Neumann problem is regular inLp, see (2.1) and theorem
2.8; or (2.2) and theorem2.11, respectively.

We give nowfour regularity results for thecurl
n

-potential. We assume for simplicity that

Ω is simply connected, and, in the three-dimensional case, that∂Ω is connected. For ex-
tensions of the results to more general cases, see Girault and Raviart [48] and Amrouche,
Bernardi, Dauge, and Girault [5].

Theorem 2.18 (Hs, two dimensions) If u ∈ (Hs(Ω))2 for s > 0 and div u = 0, then
u = curl v with v ∈ Hs+1(Ω).

Proof: The result is given fors integer on Girault and Raviart [48, page 39]. We use (Hilbert
space) interpolation betweenbsc anddse to extend it to the case of generals.
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Theorem 2.19 (Lp, two dimensions) If u ∈ (Lp(Ω))2 for p ≥ 2 and div u = 0, then
u = curl v with v ∈ W 1,p(Ω).

Proof: See Girault and Raviart [48, page 39].

Theorem 2.20 (Hs, three dimensions) If u ∈ (Hs(Ω))3 for s ∈ [0, 1] anddiv u = 0, then
u = curl v with v ∈ (Hs+1(Ω))3.

Proof: See Girault and Raviart [48, Remark I.3.12].

Theorem 2.21 (Lp, three dimensions)AssumeΩ is a bounded, convex polyhedron. Ifu ∈
(Lp(Ω))3 for somep > 2, div u = 0 andγn(u) = 0, thenu = curl v with v ∈ (W 1,r(Ω))3

for r ∈ (2, p].

Proof: See Girault and Raviart [48, Remark I.3.14].
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Chapter 3

The model problem

In this chapter we will explain how one can obtain a problem of the form

?u ∈ V : ∀v ∈ V : (αu,v) + (β curl u, curl v) + b.t. = f(v) (MP )

in the solution of electromagnetic problems. (b.t. stands for boundary terms)

3.1 Maxwell’s equations, reformulations

Maxwell’s equations model the behavior of electromangetic waves and their interaction
with matter.1 They read in a linear material with dielectric permittivityε, magnetic perme-
ability µ and electric conductivityσ:

curlH = j + ∂tD (3.1)

curlE = −∂tB (3.2)

div D = ρ (3.3)

div B = 0 (3.4)

D = εE (3.5)

B = µH (3.6)

j = σE + ji (3.7)

1For a mathematical treatment of several problems connected with Maxwell’s equation see Dautray and
Lions [33, 32, 34, 35, 36, 37]
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whereE(x, t) is the electric field,B(x, t) is the magnetic induction,D(x, t) is the elec-
tric flux density,H(x, t) is the magnetic field,j(x, t) is the electric current,ji(x, t) is an
intrinsic current, andρ(x, t) is the space charge density.

Equations (3.1) is the Maxwell-Amp̀ere law, equation (3.2) is Faraday’s law, equation (3.3)
is Gauss’ electrical law, and equation (3.4) is Gauss’ magnetic law. (3.5), (3.6) and (3.7) are
material laws, also known as constitutive relations. In the general case those material laws
could be nonlinear, where nonlinear magnetic effects are more common and occur under
normal circumstances, while nonlinear electric effects often occur in the very high energy
case, for instance in second-harmonic generation with lasers in nonlinear optics. Even with
linear material laws, the propagation of electromagnetic waves could be different in dif-
ferent directions, as it happens in a crystal, where the material propertiesε(x), µ(x) and
σ(x) are tensors.ε, µ andσ are nonnegative because of their physical interpretation. In our
work we will only work with isotropic materials, so thatε, µ andσ are only scalar func-
tions of the spatial variablex. We will restrict ourselves mostly to homogeneous materials
and to nonhomogeneous materials with piecewise constant or piecewise separable material
properties, but we could model in a similar way piecewise smooth material properties. The
electromagnetic properties of the material can change with time, like the conductivity in
microwave heating, and we would need some other model, maybe in form of a partial dif-
ferential equation to take those effects into account. For instance in microwave heating we
would have to couple the Maxwell system with a nonlinear heat equation and a model how
the temperature affects the conductivity (see Yin [105]), but we will not treat such models
here.

In general we can assume that the permitivity and the permeability are positive functions,
bounded from below away from zero with uniform constant lower boundsε0 andµ0, re-
spectively; but in general we can only assumeσ ≥ 0 almost everywhere.

Usually the Maxwell system is written in two fields; we will write it inB andE. In certain
circumstances, like nonlinear or more complicated material laws, it may be preferable to
formulate the Maxwell system in all four fields.

We can pose an initial value problem or an initial and boundary value problem. Then we
will enforce initial conditions at timet = 0 and possibly some boundary conditions. It is
also possible to pose stationary (i.e., problems that do not contain time derivatives) prob-
lems in frequency space or to look for solutions with certain behavior at infinity.

If both Gauss’ laws (3.3) and (3.4) hold at the initial time, they continue to hold at any
later time. Therefore those two equations are not needed for the evolution in the continuous
formulation. If it is necessary that the numerical solutions obey Gauss’ laws exactly, we
have to make sure that the numerical schemes satisfy the divergence constraints exactly, so
that in that case the laws may be not redundant. Assuming the solution procedures conserve
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the divergences, we have to integrate

− ε∂tE− σE + curl
1

µ
B = ji (3.8)

∂tB + curlE = 0 (3.9)

for instance under the initial conditions

B|t=0 = B0 (3.10)

E|t=0 = E0 (3.11)

The conditions on the divergences could be explicitly enforced by the introduction of La-
grangian multipliers. Since this requires the introduction of more fields, and leads to saddle
point problems with several fields, and not to a problem of type (MP), we will not consider
such methods here.

For ε = µ = 1, σ = 0, Maxwell’s equations are a first order symmetric hyperbolic sys-
tem (see for instance Garabedian [46, pg. 100], Feng [45], and Dautray and Lions [33, pg.
95-96]). For constantε andµ and assumingσ = 0 we can introduce a change of variables
to obtain the system forε = µ = 1 (see for instance Feng [45]). In general Maxwell’s
equations will show both hyperbolic and parabolic properties, we can obtain both hyper-
bolic and parabolic equations for certain choices forε, µ andσ, possibly interpreted as limit
cases.

A priori the Maxwell equations are posed over the entire spaceR3, but we can impose exact
or approximative boundary conditions on interfaces with perfect conductors or other bod-
ies with idealized electromagnetic properties; radiation, absorbing, symmetry or reflecting
boundary conditions to truncate the a priori infinite domains; or boundary conditions to
enforce known physical conditions, like ambient illumination, light being guided into a
coupler between optical fibers, or laser light pumped into the system.

An alternative to the use of boundary conditions to truncate the domain would be to dis-
cretize the infinite exterior domain by infinite elements or by an integral equation or bound-
ary elements on the boundary, but we will not consider such approaches in this work.

At an interface inside the domain we have that the tangential components ofE andH and
the normal components ofD andB are continuous, if we assume that there are no surface
electric current densities and surface charge densities present on the interface. Should there
be a surface electric current densityjs and a surface charge densityρs, we will have a
jump of sizejs in the tangential components ofH and a jump of sizeρs in the normal
component ofD, while the tangential components ofE, and the normal component ofB
are still continuous.
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A perfect conductor is an idealized material that cannot sustain an electric field, i.e., elec-
trical charges move instantaneous so that they are always in equilibrium with a zero electric
field inside the material, so that we obtain the following two boundary conditions on the
boundaryΓ of the perfect conductor,

B · n|Γ = 0 (3.12)

E× n|Γ = 0 (3.13)

enforcing a zero normal component of the inductionB and zero tangential components of
the electric fieldE.

Similar to Gauss’ laws above, the interface conditions or perfect conductor boundary con-
ditions continue to hold if they hold at an initial time.

If we know the electric and magnetic field inside one of the domains, the interface condi-
tions give boundary conditions for the other domain, enforcing a nonhomogeneous normal
component on the induction and nonhomogeneous tangential components on the electric
field. A special case is if we use that to model the reaction of the system to an ”incoming”
electric field from infinity by enforcing it on a boundary ”far” from the origin.

In a very similar way we can also treat a boundary condition where we know the induction
in a non-tangential direction or the electric field in two directions.

If we formulate the system as a second order system in only one of the two fields, boundary
conditions on the other field turn into boundary conditions on the curl of the considered
field, taking the appropriate time derivatives, and using (3.1) and (3.2).

There are also (approximate) radiation boundary conditions that force fields to be either
outgoing or incoming (or absorbing boundary conditions that absorb outgoing radiation).

One example is the Silver-M̈uller boundary condition(
E− 1

√
µε

B× n

)
× n = 0 (3.14)

If we want to compute a scattering problem we could use this condition to enforce that the
part of the electromagnetic fields that is not the incoming wave is outgoing on the piece
of the boundary where Silver-M̈uller conditions are enforced, by substitutingE− Einc for
E, or equivalently changing the right hand side of the condition from0 to Einc × n. Some
implementations also allow forE to be multiplied by some real or complex constant, but
we will not do that for the sake of simplicity. The extension to that case is straightforward.

In certain circumstances one of the two fieldsE or B is of more importance than the other
field, and it is possible to reformulate Maxwell’s system to obtain a second order evolution
equation only in one of the fields.
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If we are only interested inE, we obtain:

ε∂2
t E + σ∂tE + curl

1

µ
curlE = ∂tji (3.15)

with the initial conditions

E|t=0 = E0 (3.16)

∂tE|t=0 =
1

ε
curl

1

µ
B0 − σE0 − ji|t=0 (3.17)

To recoverB, we have to integrate

∂tB = − curlE (3.18)

B|t=0 = B0 (3.19)

Perfect conductor boundary conditions turn into conditions on the tangential components
of E or alternatively into conditions on the normal component ofcurlE if we assume
that the initial data satisfies the boundary condition, i.e., on a piece of the boundary with a
perfect conductorΓc we obtain

E× n|Γc = 0 (3.20)

curlE · n|Γc = 0 (3.21)

If we know the electromagnetic fields in the material on the other side of the boundary to
beEi andBi, those conditions change into

E× n|Γi
= Ei × n|Γi

(3.22)

curlE · n|Γi
= −∂tBi · n|Γi

(3.23)

The Silver-M̈uller conditions are equivalent (if they hold at the initial time) to(
∂tE +

1
√
µε

curlE× n

)
× n = 0 (3.24)

If we are only interested inB, we obtain similarly a second order wave equation inB for
two special cases. First, if we assume constantε andσ, we get:2

2Dautray and Lions [33, pg. 85] give

∂tB + curl
1
σ

curl
1
µ
B = 0 div B = 0

as a model of magnetic induction in a plasma. This equation can be treated similarly to the equations we treat
here.
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ε∂2
t B + σ∂tB + curl curl

1

µ
B = curl ji (3.25)

In the other case, assumingσ = 0 and a general, time-independentε, we obtain:

∂2
t B + curl

1

ε
curl

1

µ
B = curl

1

ε
ji (3.26)

Both of these formulations have to be solved with the initial conditions

B|t=0 = E0 (3.27)

∂tB|t=0 = − curlE0 (3.28)

To recoverE we have to integrate

∂tE +
σ

ε
E =

1

ε
curl

1

µ
B− 1

ε
ji (3.29)

E|t=0 = E0 (3.30)

Perfect conductor boundary conditions give a condition on the normal component ofB,
or alternatively, a condition on the tangential components ofcurl 1

µ
B, if the condition is

satisfied for the initial data:

B · n|Γc = 0 (3.31)

curl
1

µ
B× n|Γc = 0 (3.32)

If we know B andE on the other side of the boundary to beEi andBi, the boundary
conditions read

B · n|Γi
= Bi · n|Γi

(3.33)

curl
1

µ
B× n|Γi

= curl
1

µ
Bi × n|Γi

(3.34)

The Silver-M̈uller boundary conditions correspond to the following boundary conditions
onB (

curl
1

µ
B− 1

√
µε

(ε∂tB− σB)× n

)
× n = (ji × n) (3.35)

Another large area of applications for Maxwell’s equations is in the design of devices with
certain frequency-dependent behaviors, like waveguides or cavities. For those applications
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it makes sense to consider the Maxwell system in the frequency domain on one mode of
angular frequencyω, the so-called time-harmonic Maxwell equations.

Substituting a sinusoidal time dependence

E(x, t) = Ê(x) exp(iωt) (3.36)

B(x, r) = B̂(x) exp(iωt) (3.37)

we obtain the time-harmonic Maxwell system:

− (εiω + σ) Ê + curl
1

µ
B̂ = ĵi (3.38)

iωB̂ + curl Ê = 0 (3.39)

We can also formulate the time-harmonic version of the second order system forE:(
σiω − εω2

)
Ê + curl

1

µ
curl Ê = f̂ (3.40)

Similarly we obtain the time-harmonic equation inB:(
σiω − εω2

)
B̂ + curl curl

1

µ
B̂ = f̂ (3.41)

In both caseŝf represents a forcing term derived from the right hand side of the original
equation. The coefficient of̂B andÊ is also sometimes written(

σiω − εω2
)

= −ω2ε′ with ε′ = ε− σi

ω
(3.42)

On those systems we can impose the boundary conditions of the original system, only
adapted to the frequency domain. There are also more and other absorbing and radiation
boundary conditions for the time-harmonic case.

Under certain circumstances we can assume that we have loss-less materials, i.e.,σ = 0
which introduces several simplifications in the above equations, and concentrates on the
wave propagation part.

If we have to model the behavior of some electromagnetic system under the influence
of slowly varying fields and considerable dissipation (i.e.,σ > C > 0), it is a sensible
approximation to omit the wave propagation part, i.e., to omit the∂2

t term. We obtain a
parabolic equation.
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It could also be of interest to compute stationary solutions of Maxwell’s equations. Also the
integration of the time-harmonic equations can be interpreted as the computation of a pe-
riodic solution that the system will tend to under certain circumstances. (See, for instance,
Dautray and Lions [36, XII.§4 Remark 8].)

Sometimes it is also interesting to consider problems in two dimensions. Two ways to
obtain such problems are to consider axisymmetric domains or infinite cylinders homo-
geneous in one direction, the later as possible models for waveguides. If we do the later,
inserting the special form of the fields gives us with the two two-dimensional curl operators
equations like (3.15) and (3.25), but with the operatorcurl curl (curl here operating on a
scalar function) instead of the operatorcurl curl.

3.2 Discretization

Now we have derived several time-dependent partial differential equations from Maxwell’s
equations. To solve them numerically, we have to discretize the partial differential equations
both in time and space. Since we work with finite element/spectral element discretizations
in space, we need a variational formulation of our equations first. We will obtain such
formulations in the first subsection.

There are two conceptual approaches to integrating such time-dependent partial differential
equations. The first approach consists in discretizing in space first, obtaining a large sys-
tem of ordinary differential equations, which then will be integrated by a general purpose
ordinary differential equation solver. (This is also called ”method of lines”.) If we choose
an explicit method, we will have to contend with severe restrictions of the time step. If
we choose an implicit method, we have to solve a large system of equations that a priori
does not correspond to any discretized partial differential equation, but we can use larger
timesteps. We will not use such an approach in this work.

The second approach consists in discretizing in time first. If we use an implicit scheme
we obtain time-independent partial differential equations which can then be solved by any
spatial approximation, in our case by spectral element methods. To derive such partial dif-
ferential equations, we consider the time-dependent partial differential equation as an ordi-
nary differential equation in a function space which we solve approximately with numerical
methods for ordinary differential equations. This we will do in the second subsection.

The second approach can also be used with adaptive solvers and with adaptive time-
stepping, following Bornemann who advocated this approach for parabolic equations and
the wave equation (See for instance [20, 88]). We would have to solve two time-step equa-
tions for two time-discretizations (like Backward-Euler and Crank-Nicholson) and could
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use error estimators to choose the appropriate time-step and accuracy in a virtual ordinary
differential equation integrator for the function space ordinary differential equation.

The time-harmonic equations are already in a time-independent form. We will derive a
variational formulation in the next section and identify it as an instance of (MP).

Of course, to obtain a completely discrete scheme, we will have to specify the discretization
in space. Spectral element discretizations for the model problem will be presented in the
next chapter.

3.2.1 Variational formulations

We have two second order time-harmonic problems (3.40),(3.41); three time-dependent
second order problems (3.15), (3.25) and (3.26) and two first order systems (3.8), (3.9) and
(3.38), (3.39).

We will first consider variational formulations for the first order system (3.8), (3.9). The
system (3.38), (3.39) can be treated in the same way.

We multiply both equations with test functions:

(ε∂tE + σE, ψ)− (curlµ−1B, ψ) = −(ji, ψ) (3.43)

(∂tB, φ) + (curlE, φ) = 0 (3.44)

and use the appropriate Green’s formulae (see sections 2.3 and 2.4):

(curlµ−1B, ψ) = (µ−1B, curlψ) + 〈γt(µ
−1B), ψ〉 1

2
,∂Ω (3.45)

(curlE, φ) = (E, curlφ) + 〈γt(E), φ〉 1
2
,∂Ω (3.46)

To obtain a symmetric formulation (with identical test and trial spaces) we have to choose
in which of the two equations we will use Green’s formula.

The first equation is chosen for instance in Monk [70] (the constrained spaceH0(curl)
enforces the boundary conditions and makes the boundary terms vanish)

?E(t),H(t) : ∀ψ ∈ H0(curl),∀φ ∈ (L2(Ω))3

(ε∂tE + σE, ψ)− (µ−1B, curlψ) = −(ji, ψ) (3.47)

(∂tB, φ) + (curlE, φ) = 0 (3.48)

The second equation is chosen for instance in Lin and Yan [66]:

?E(t),H(t) : ∀ψ ∈ (L2(Ω))3,∀φ ∈ H0(curl)

26



(ε∂tE + σE, ψ)− (curlµ−1B, ψ) = −(ji, ψ) (3.49)

(∂tB, φ) + (E, curlφ) = 0 (3.50)

The second order equations are all of the form:

P (∂t)u + curl(γ curl(δu)) = f (3.51)

with the following substitutions:

Equation P (x) γ δ f
(3.15) εx2 + σx 1

µ
1 ∂tji

(3.25) εx2 + σx 1 1
µ

curl ji
(3.26) x2 1

ε
1
µ

curl(1
ε
ji)

(3.40) σiω − εω2 1
µ

1 f̂

(3.41) σiω − εω2 1 1
µ

f̂

Multiplying the last equation by a test function and using Green’s formula we obtain:

(P (∂t)u,v) + (γ curl(δu), curl v) + 〈γt(γ curl(δu)),v〉 1
2
,∂Ω = (f ,v) (3.52)

We change variablesδu 7→ u to match (MP) (and for the equations withδ 6= 1, δu will have
continuous tangential components across interfaces, so that it makes sense to discretizeδu):(

1

δ
P (∂t)u,v

)
+ (γ curl(u), curl v) + 〈γt(γ curl u),v〉 1

2
,∂Ω = (f ,v) (3.53)

For the time-harmonic examples this is already of the form (MP) with:α = σiω−εω2

δ
and

β = γ, i.e.,α = σiω − εω2 andβ = 1
µ

for (3.40), andα = µω(σi − εω) andβ = 1 for
(3.41).

For the time-dependent problems we put the time-derivative parts on the left side and the
rest on the right hand side:(

1

δ
P (∂t)u,v

)
= (f ,v)− (γ curl(u), curl v)− b.t. (3.54)

This will be the form to which we will apply time-stepping.

Some theory for such variational second order time-dependent problems is developed in
Dautray and Lions [36, Chapter XVIII, pg. 467-679] and Showalter [90, Chapter 5].

27



3.2.2 Time-stepping schemes

We will consider the functionsu andf at discrete timestn = n∆t and denote the functions
so obtainedun andfn.

The standard way (at least the textbook way) is to transform the second order equation into
a first-order system, and then to use approaches for first-order equations. One advantage of
that point of view is that one can see one step of the evolution as the approximation of an
exponential function, as in semi-group theory, and that there are many different approaches
to solve such partial differential equations. In addition, if one is willing to store the function
and its derivatives, there are only few second-order methods for specificP (∂t) that seem to
be advantageous (see Hairer, Nørsett and Wanner [55]). In our case we do not want to solve
a first-order system, and we are only interested in either the electric or magnetic field at
each timestep, so that we will use methods for second-order equations. (For such a method,
but in a fully discrete approach, see Ciarlet Jr. and Zhou [26].)

We will only demonstrate the time discretization with linear multistep methods. Similarly,
we could obtain problems of type (MP) for other implicit methods like implicit Runge-
Kutta methods. (There are special methods forP (x) = cx2, so-called Nystrom and Störmer
methods, see Hairer, Nørsett and Wanner [55], the implicit version of which will lead to
similar problems, but we will not treat them here. For such methods it would also be nec-
essary to either haveσ = 0 or transform the equation so that the first order time-derivatives
disappear.)

We will approximate∂2
t u and∂tu by linear combinations ofun−i:

(∂2
t u)n ≈

k∑
i=0

w
(2)
i un−i (∂tu)n ≈

l∑
i=0

w
(1)
i un−i

There are many approximations for second and first derivatives, we will list some possibil-
ities for (∂2

t u)n:

Central k = 2 w
(2)
0 = 1

∆t2
, w(2)

1 = − 2
∆t2

, w(2)
2 = 1

∆t2

Second order k = 3 w
(2)
0 = 2

∆t2
, w(2)

1 = − 5
∆t2

, w(2)
2 = 4

∆t2
, w(2)

3 = − 1
∆t2

and for(∂tu)
n:

First order, backward l = 1 w
(1)
0 = 1

∆t
, w(1)

1 = − 1
∆t

First order, leap-frog l = 2 w
(1)
0 = 1

2∆t
, w(1)

1 = 0, w(1)
2 = − 1

2∆t

Second order l = 2 w
(1)
0 = 3

2∆t
, w(1)

1 = − 2
∆t

, w(1)
2 = 1

2∆t
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The right hand sider(u, f) = (f ,v) − (γ curl u, curl v)3 has also to be evaluated and
taken into account. We use a linear scheme here as well:

(r(u, f))n ≈
m∑

i=0

wr
i r(u

n−i, fn−i)

Some examples of such schemes are:4

Backward Euler m = 0 wr
0 = 1

Crank-Nicholson m = 1 wr
0 = 1

2
, wr

1 = 1
2

Damped Crank-Nicholsonm = 1 wr
0 = 1

2
+ η∆t, wr

1 = 1
2
− η∆t

θ-method m = 1 wr
0 = θ, wr

1 = 1− θ

Centered Schemem = 2 wr
0 = θ, wr

1 = 1− 2θ, wr
2 = θ

Third-order Adams-Moulton m = 2 wr
0 = 5

12
, wr

1 = 2
3
, wr

2 = − 1
12

Substituting the form ofr(u, f), and splitting the expression into a part containingun and
the rest (known from the data or from previous time-steps), we obtain:

m∑
i=0

wr
i r(u

n−i, fn−i) = −wr
0(curl un, curl v) +

m∑
i=0

wr
i (f

n−i,v)

−
m∑

i=1

wr
i (curl un−i, curl v) (3.55)

With 1
δ
P (∂t) = a∂2

t + b∂t and substituting all the discretizations into the equation, we
obtain as time-discretized system:(

a
k∑

i=0

w
(2)
i un−i + b

l∑
i=0

w
(1)
i un−i,v

)
(3.56)

= wr
0(curl un, curl v) +

m∑
i=0

wr
i (f

n−i,v)−
m∑

i=1

wr
i (curl un−i, curl v)

Collecting terms withun on the left hand side gives(
aw

(2)
0 un + bw

(1)
0 un,v

)
+ (wr

0γ curl un, curl v) = (f(1),v) + (f(2), curl v) (3.57)

3We will ignore the boundary terms here, i.e., treat the problem with natural boundary conditions, or in
case ofH0(curl) with homogeneous essential boundary conditions.

4η is a small positive constant
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using the following expressions on the right hand side

f(1) =
m∑

i=0

wr
i f

n−i − a
k∑

i=1

w
(2)
i un−i − b

l∑
i=1

w
(1)
i un−i (3.58)

f(2) =
m∑

i=1

wr
i curl un−i (3.59)

With
α = aw

(2)
0 + bw

(1)
0 β = wr

0γ

this is of the form (MP) withf(v) = (f(1),v) + (f(2), curl v) being a linear form on
H(curl).

As an example we list the discretization that we obtain for the second order equation for
the electric field if we choose to discretize the first derivative with the leap-frog scheme,
the second derivative with the first-order central difference, and the right hand side with
Backward Euler (f(2) = 0)

α =
ε

∆t2
+

σ

2∆t
β =

1

µ
f(1) = fn +

2ε

∆t2
un−1 − ε

∆t2
un−2 +

σ

2∆t
un−2

Since we will work with small time-steps, we should rescale (by multiplying with∆t2) the
system so that we do not divide by∆t, that is, we will work with the following coefficients:

α = ε+
σ

2
∆t β =

1

µ
∆t2 f(1) = ∆t2fn + 2εun−1 +

(σ
2
∆t− ε

)
un−2 (3.60)

3.2.3 Boundary conditions

If we pose the model problem without boundary terms, inH0(curl), we enforce zero tan-
gential components of the solution.

If we pose the model problem without boundary terms, inH(curl), we obtain the natural
boundary conditions, which are that the tangential components of theγ curl of the solution
are zero on the boundary. (See the Green’s formula for the second-order equation.)

If we pose Silver-M̈uller boundary conditions onΓA in the model problem, we have to add
a boundary term of the form

b.t. = (ρu× n,v × n)(L2(ΓA))3
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to the time-step problem. (This term comes from the boundary term in Green’s formula,
which gives us aγ curl term onΓA, which we can transform into a boundary term of the
stated form by using the Silver-M̈uller boundary conditions. The time-derivative occurring
in the continuous version is discretized as above.)

For nonhomogeneous versions of the essential problem, we can find a lifting of the bound-
ary values and subtract it off, to obtain a homogeneous problem. For the natural boundary
condition, we have to add a boundary integral. Inhomogeneous Silver-Müller conditions
also give an additional boundary integral onΓA.
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Chapter 4

Polynomial approximation, quadrature
and differentation

In this chapter, we will present the approximation of functions and of operations on them
in spaces of polynomials. We will use polynomial spaces associated with tensor product
meshes made out of one-dimensional Gauss-Legendre or Gauss-Lobatto-Legendre meshes.
First we define the polynomial spaces, and, in the first section, we discuss some of the
properties of the Legendre polynomials and their derivatives.

To discretize partial differential equations, we need to be able to interpolate, differentiate
and integrate functions. We present algorithms and estimates for these operations on poly-
nomials in the second and third section. For the theoretical analysis of the discretizations,
we need approximation results and inverse inequalities, which we treat in the next two
sections. In the last section we indicate how to extend the methods and results from the
one-dimensional case to tensorized domains in an arbitrary number of dimensions.

As general references for this chapter we refer to Bernardi and Maday [17] and Canuto,
Hussaini, Quarteroni, and Zang [24].

We work withQ-type polynomial spaces. We denote byPN(S) = QN(S) the polynomials
of degreeN of one variable defined on the one-dimensional setS ⊂ R. In our applications,
S is an interval, most often the reference interval,Λ =] − 1, 1[. We defineQM,N(S) as
the space of polynomials on the two-dimensional setS that have maximal degreeM in
x1 andN in x2. ForM = N , we also writeQM(S). QL,M,N(S) is the analogue for three
dimensions, having maximal degreeL in x1,M in x2 andN in x3. For an arbitrary number
of dimensions we denote byQ{mi}(×i[ai, bi]) the space of polynomials on the Cartesian
product of intervals[ai, bi] that have maximal degreemi in xi.
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4.1 Legendre polynomials

The sequence of Legendre polynomials{Ln} is the family of orthogonal polynomials on
Λ in L2(Λ, dx) chosen so thatLn(1) = 1 and thatLn is a polynomial of degreen.

Ln satifies the differential equation

∂x((1− x2)L′
n(x)) + n(n+ 1)Ln = 0.

It follows immediately that∫ 1

−1

L′
n(x)L′

k(x)(1− x2)dx = n(n+ 1)

∫ 1

−1

Ln(x)Lk(x)dx,

implying that{L′
n} is a family of orthogonal polynomials inL2(Λ, (1− x2)dx).

TheLn can be computed by the induction formula

L0(x) = 1 L1(x) = x

Ln+1(x) =
2n+ 1

n+ 1
xLn(x)− n

n+ 1
Ln−1(x) for n ≥ 1

A similar induction formula holds forL′
n:

L′
0(x) = 0 L′

1(x) = 1

L′
n+1(x) =

2n+ 1

n
xL′

n(x)− n+ 1

n
L′

n−1(x) for n ≥ 1

We denote the zeros ofLN by ζN
i . The set of all zeros ofLN will be denoted GLN . They

can be found by either an appropriately tuned root finding algorithm, or as eigenvalues of
a special tridiagonal matrix1

ZG = diag((βi)
N−1
i=1 ,−1) + diag((βi)

N−1
i=1 , 1)

with

βi =
i√

4i2 − 1

ξN
i are the zeros of(1 − x2)L′

N . The set of all these zeros is denoted GLLN . They can be
computed also either by a tuned root finding algorithm, or as the eigenvalues of a simple
symmetric tridiagonal matrixZGLL together withξN

0 = −1 andξN
N = 1

ZGLL = diag((γi)
N−2
i=1 ,−1) + diag((γi)

N−2
i=1 , 1)

1We use MATLAB notation for the matrices,diag(v,±1) is the matrix that has the vectorv above respec-
tive below the diagonal, anddiag(v) is the diagonal matrix with diagonalv.
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with

γi =

√
i(i+ 2)(

i+ 1
2

) (
i+ 3

2

)
Legendre polynomial have many useful properties, see, for instance, Szegö [94], or for
a short introduction in the context of spectral methods, Bernardi and Maday [17, section
3]. They are special cases of Jacobi polynomials [17, section 19] which are orthogonal
polynomials for more general weights. These are used, e.g., in some discretizations for
axisymmetric domains.

4.2 Gauss-Lobatto-Legendre interpolation and differenti-
ation

We can associate to the Gauss-Legendre or Gauss-Lobatto-Legendre points Legendre nodal
basis functions, i.e., functions that are one at one point and zero at all others. The basis
functions for the Gauss-Legendre case are

ψN
i (x) =

1

L′
N(ζi)

LN(x)

x− ζi
for i = 1, · · · , N

In the Gauss-Lobatto basis the basis functions associated to the endpoints have a slightly
simpler form

φN
0 = (−1)N−1 (1− x)L′

N(x)

N(N + 1)
φN

N = −(x+ 1)L′
N(x)

N(N + 1)

than the basis functions for the interior of the interval

φN
i = − 1

N(N + 1)LN(ξi)

(1− x2)L′
N(x)

x− ξi

but the last formula also holds fori = 0 andi = N .

We use a fast implementation of the evaluation of these basis functions with matrix op-
erations to compute the interpolation matricesIM

N , which take the values of a function on
GLLN and give as the result of the matrix-vector multiplication the values of the interpolant
on GLLM . The entries of the matrix are

IM
N (i, j) = φN

i (ξM
j )

It is important in the analysis of spectral methods to estimate the interpolation error. Here,
we only present the results for the interpolation on the Gauss-Lobatto-Legendre points.
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Similar, but worse and not optimal, results hold for the Gauss-Legendre nodes; see Bernardi
and Maday [17, section 13].

DefineiNu for any functionu ∈ C(Λ) as the only function inPN(Λ) that interpolatesu on
GLLN .

We have the following three theorems (for proofs and discussion, see [17, section 13]):

Theorem 4.1 (Interpolation inHs) For any realr and s with s > 1+r
2

and r ∈ [0, 1],
there exists aC only depending ons such that

∀u ∈ HS(Λ) : ||u− iNu||r,Λ ≤ CN r−s||u||s,Λ

Theorem 4.2 (Stability inH1) For all u ∈ H1(Λ) we have the stability estimate

||iNu||1,Λ ≤ C||u||1,Λ

Theorem 4.3 (Interpolation between polynomial spaces)TheL2-norm ofiN as a map-
ping fromPM to PN is bounded linearly inM

N
, i.e.,

∀uM ∈ PM : ||iNuM ||0,Λ ≤ C

(
1 +

M

N

)
||uM ||0,Λ

On PN differentiation can be computed exactly; the following theorem gives the differen-
tiation matrix in the GLL nodal basis.

Theorem 4.4 (Spectral differentiation matrix) The differentiation matrixDN onPN has
the following entries

DN(k, j) =



LN (ξk)
(ξk−ξj)LN (ξj)

k 6= j

N(N+1)
4

k = j = 0

−N(N+1)
4

k = j = N

0 else

and satisfies
∀uN ∈ PN : DNuN = ∂xuN

The explicit form ofDN on the Gauss-Legendre basis is known. Estimates for|∂xu−DNu|
for u ∈ Hs oru ∈ Lp are also known, we refer for all that to the literature, see, for instance,
Canuto, Hussaini, Quarteroni, and Zang [24].
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4.3 Gauss- and Gauss-Lobatto quadrature

Zeros and extrema of orthogonal polynomials can be used to define very accurate quadra-
ture formulae, see, e.g., Davis and Rabinowitz [38] or Szeg̈o [94].

The standard Gauss-Legendre formula is exact forP2N−1(Λ) and reads∫ 1

−1

f(x)dx ≈
N∑

i=1

f(ζi)ωi

Theωi can be computed as soon as theζi are found, by the formula:

ωi =
2

(1− ζ2
i )L′2

N(ζ)

The Gauss-Lobatto-Legendre formula is also exact forP2N−1(Λ) (but note that it uses one
more quadrature point) and reads∫ 1

−1

f(x)dx ≈
N∑

i=0

f(ξi)ρi

The integration weightsρi are

ρi =
2

N(N + 1)L2
N(ξi)

We can discretize theL2 inner product onL2(Λ) using Gauss-Lobatto-Legendre quadra-
ture:

(u, v)0,Λ ≈ (u, v)N :=
N∑

i=0

u(ξi)v(ξi)ρi = vTMNu

with MN = diag(ρi) andv andu being the vectors of the values ofv andu onGLLN .

If an integration of a different order is needed, we interpolateu andv to a differentGLLM

and use Gauss-Lobatto-Legendre quadrature there:

(u, v)0,Λ ≈ (u, v)N ;M := vT IM,T
N MMI

M
N u = vTMM

N u

with MM
N := IM,T

N MMI
M
N . (IM

N has been defined in the previous section.)

The error in the integration can be estimated, see, e.g., Canuto, Hussaini, Quarteroni, and
Zang [24] or Bernardi and Maday [17].
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4.4 Approximation results

We will list some approximation results forL2,Hs,Hs
0 , andH(curl). We refer to chapter

7 for the definition of the polynomial spacesNDI
N andNDII

N .

To prove the approximation results, we exhibit one element in the polynomial space that
satisfies the estimates. That element is usually defined as an orthogonal projection of the
function that is to be approximated. Therefore we will start with the definition of several
projections.

Let πN be the orthogonal projection fromL2(Ω) ontoPN , i.e.,

∀vN ∈ PN : (u− πNu, vN)0,Λ = 0

For positivek andN ≤ 2k − 1 we defineP k,0
N (Ω) : PN(Λ) ∩ Hk

0 (Λ) and define the
projectionπk,0

N u by

∀vN ∈ Pk,0
N : (∂k

xu− ∂k
x π

k,0
N u, ∂k

xvN)0,Λ = 0

Defineπk
N as the orthogonal projection fromHk(Λ) ontoPN . Let πc,II

N be the orthogonal
projection fromH(curl,Ω) ontoNDII

N .

Then the following estimates hold (see Bernardi and Maday [17, section 6] ) :

If s ≥ 0: ∀u ∈ Hs(Λ) : ||u− πNu||0,Λ ≤ CN−s||u||s,Λ

If 0 ≤ r ≤ k ≤ s: ∀u ∈ Hs(Λ) ∩Hk
0 (Λ) : ||u− πk,0

N u||0,Λ ≤ CN r−s||u||s,Λ
If 0 ≤ r ≤ k ≤ s: ∀u ∈ Hs(Λ) : ||u− πk

Nu||0,Λ ≤ CN r−s||u||s,Λ
These are the best possible approximation results with respect to their exponents. There are
versions ofπk,0

N that preserve some or all the values of the function and its derivatives at the
end points, see [17, section 6].

For the approximation inH(curl,Λ3), the following estimates can be proven (see Ben
Belgacem and Bernardi [15]):

If s > 0: ∀u ∈ Hs(curl,Λ3) : inf
uN∈NDI

N

|| curlu− curluN ||0 ≤ CN−s|| curlu||s

If s ≥ 0: ∀u ∈ Hs(curl,Λ3) : ||u− πc,II
N u||curl ≤ CN−s

√
||u||2s+1 + || curlu||2s
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4.5 Inverse inequalities

We will give three inverse inequalities, one forHs, one forLp, and one that allows us to
estimate the maximum norm over the entire interval given only the maximum over GLLN .

Theorem 4.5 (Inverse inequality inHs) Letm be integer andr be real with0 ≤ m ≤ r.
Then, for any polynomialuN ∈ PN(Λ) we have (with optimal exponent)

||uN ||r,Λ ≤ CN2(r−m)||uN ||m,Λ

Proof: See Bernardi and Maday [17, Theorem 5.2]. The extension to realm is also dis-
cussed there.

Theorem 4.6 (Inverse inequality inLp) For any realp andq with 1 ≤ p ≤ q ≤ ∞ there
exists a positive constantC such that for any polynomialuN ∈ PN(Λ)

||uN ||0,q,Λ ≤ CN
2
p
− 2

q ||uN ||0,p,Λ

Proof: See Timan [95, page 236]. For a discussion of such inequalities, see also Canuto,
Hussaini, Quarteroni, and Zang [24, chapter 9].

Theorem 4.7 (Inverse inequality forL∞) The following norm equivalence holds with
δN ∼ logN for all uN ∈ PN(Λ)

1

δN
||uN ||∞ ≤ max

i=0,···,N
|uN(ξi)| ≤ ||uN ||∞

Proof: See Quateroni and Valli [85, Remark 4.4.1 on page 119].

4.6 Extension to tensorized domains

We use rectangular elements with tensor basis functions, i.e.,φj1,j2,···,jn(x1, x2, · · · , xn) =∏n
i=1 φji

(xi). The interpolation on such a tensor basis can be built from the one-
dimensional interpolations on the one-dimensional meshes that span the tensor product
mesh.

The elements of the mass matrices are integrals of products of basis functions over the
domain. Since the basis functions have tensor form and we work on rectangular elements,
the integral can be factored inton one-dimensional integrals, and the mass matrix for the
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domain is therefore the tensor product of the one-dimensional mass matrices on the one-
dimensional meshes. (See chapter 9 for an introduction to tensor product matrices.)

Partial differentiation only acts along one direction. Therefore it can be written as the tensor
product of the differentiation matrix in the differentiated direction and identity matrices in
the other directions.

The projection operators that we discussed in the fourth section can also be defined for the
multidimensional case, and it turns out that both theL2- andHk-projections are constructed
as a tensor product of one-dimensionalL2- andHk-projections, respectively.

Finally, the estimates for one-dimensional projection and interpolation operators generalize
to the case of arbitrary many dimensions, see Bernardi and Maday [17, sections 7 and 14].
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Chapter 5

Domain decomposition and iterative
methods

5.1 Domain decomposition methods

The fundamental idea of domain decomposition methods is to reduce the solution of a
problem {

Lu = f in Ω
u = g on∂Ω

to the solution of problems on parts of the domain (or easier problems on the entire domain)
of a similar form: {

Liui = fi in Ω′
i

ui = gi on∂Ω′
i

The first such method was proposed by Hermann Amandus Schwarz in 1869 as a theoretical
device to deduce the existence and uniqueness of the boundary value problem for Poisson’s
equation for domains with a general boundary from the same result on simple domains.
(For a presentation of the method in this context, see, e.g., Courant and Hilbert [30, Kapitel
4,§4,2] or Dautray and Lions [33, chapter II,§7,2].) This method is known as thealternating
Schwarz method. For two subregions it can be described as follows: given two overlapping
subregionsΩ′

1 andΩ′
2 (Ω = Ω′

1 ∪ Ω′
2), and an initial guessu0 that assumes the correct

boundary values on∂Ω, approximationsun+1 are constructed fromun in two sequential
steps: {

Lun+ 1
2 = f in Ω′

1

un+ 1
2 = un on∂Ω′

1
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{
Lun+1 = f in Ω′

2

un+1 = un+ 1
2 on∂Ω′

2

The convergence of the method has first been proven by Schwarz using a maximum princi-
ple, but it can also be proven by Hilbert space methods. The latter way is the most successful
since much of the work relies on the classical calculus of variations and finite or spectral
elements.

We can write the method in a variational form, using the bilinear forma(·, ·) associated
with the operatorL, i.e., in the case of Poisson’s equationL = −∆, a(u, v) =

∫
Ω
∇u · ∇v,

as follows:

Solve
?δun+ 1

2 ∈ V1 := H1
0 (Ω′

1) : ∀v ∈ V1 : a(δun+ 1
2 , v) = a(u− un, v)

Setun+ 1
2 = un + δun+ 1

2 .

Solve
?δun+1 ∈ V2 := H1

0 (Ω′
2) : ∀v ∈ V1 : a(δun+1, v) = a(u− un+ 1

2 , v)

Setun+1 = un+ 1
2 + δun+1.

If we define the projectionsPi : V → Vi by

?Piu ∈ Vi : ∀v ∈ Vi : a(Piu, v) = a(u, v)

and denote byen the error in stepn, i.e.,en = u− un, then we obtain

en+1 = (I − P2)(I − P1)e
n

Domain decomposition methods are extensions of this algorithm in several ways. First one
can solve the subproblems with different types of boundary conditions, yielding Neumann-
Neumann methods or Robin-Robin methods, among others. Second, instead of sequential
updates, one could solve several problems in parallel and update the solution in parallel,
leading to additive methods. Very often, domain decomposition methods are used as pre-
conditioners for the original system. In this way, it is no longer important to construct a
domain decomposition method that converges when used on its own. Instead one looks for
a good spectral approximation of the problem, and the convergence and robustness of the
method is improved by accelerators such as Krylov subspace methods.

The fundamental idea of multigrid methods has been discovered several times, and it first
found wide acceptance in the early 1980s. Later it was noted that one could unify the
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theory of both ”standard” domain decomposition methods and multigrid methods in one
framework, if the different spacesVi in the variational formulation do not only correspond
to different subdomains, but also to discretizations on the same domain, but at different
resolutions. For a development of this framework, but for the analysis of multigrid methods,
see Bramble [21].

In the next section we will describe a general framework for Schwarz methods and their
analysis, and some results that we will use in the last chapter. For an introduction to
Schwarz methods we refer to Smith, Bjørstad, and Gropp [91]; Widlund [102]; Dryja and
Widlund [44]; Dryja, Smith, and Widlund [43]; and references therein.

5.2 The Schwarz framework

We will restrict ourselves to the symmetric coercive case. There are more general settings
for Schwarz methods, such as for nonsymmetric and indefinite problems, and mixed prob-
lems, for which we refer to the literature.

Let V be a finite dimensional space and leta(·, ·) be a symmetric coercive bilinear form on
V . The following problem is considered:

?u ∈ V : ∀v ∈ V : a(u, v) = f(v)

with f ∈ V ′, V ′ denoting the dual ofV .

Assume that a decompositionV =
∑J

i=0 Vi andJ + 1 symmetric positive-definite bilinear
formsai(u, v) (for u, v ∈ Vi) are given. Then we can define approximate projectionsTi :
V → Vi ⊂ V by

?Tiu : ∀v ∈ Vi : ai(Tiu, v) = a(u, v)

Using these approximate projections, we can define many domain decomposition operators,
among them theadditive Schwarz method

TASM =
J∑

i=0

Ti,

themultiplicative Schwarz method

TMSM = I −
J∏

i=0

(I − Ti)
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with its error propagation operator

EMSM = I − TMSM =
J∏

i=0

(I − Ti),

its symmetrized version

TSMSM = I −
J∏

i=0

(I − Ti)
J∏

i=0

(I − TJ−i),

or hybrid methods such as

THY 1 = T0 + I −
J∏

i=1

(I − Ti).

These methods can be used as preconditionersB within the preconditioned conjugate gra-
dient method or GMRES with the building blocksBi = RT

i (RiAR
T
i )−1Ri with A being

the stiffness matrix corresponding toa(·, ·) andRi being the restriction fromΩ to Ω′
i. (See,

e.g., Smith, Bjørstad, and Gropp [91, pages 151–152].)

One can also use these methods to write the original problem in the formTu = g, where
T is a polynomialP (T0, T1, . . . , TJ) in the operatorsTi satisfyingP (0, 0, . . . , 0) = 0. (All
methods listed above have this property.) Theng can be computed without knowing the
exact solution by solving problems on the subspaces, see [91, page 150]. The operator
equationTu = g can then be solved without further preconditioning by the conjugate
gradient method with inner producta(·, ·) (for symmetric positive definite operatorsT ) or
by GMRES.

In the analysis of these methods, the following assumptions are common (||u||2a := a(u, u)):

Assumption 1 (Stable decomposition): There is a minimal constantC0 such that for all
u ∈ V there exists a representationu =

∑
i ui with ui ∈ Vi satisfying∑

i

ai(ui, ui) ≤ C2
0a(u, u)

Assumption 2 (Strengthened Cauchy-Schwarz inequalities): Defineεij ∈ [0, 1] as the
smallest constant such that (fori, j ≥ 1)

∀ui ∈ Vi : ∀uj ∈ Vj : a(ui, uj) ≤ εij||ui||a||uj||a

Denote the spectral radius of the matrixε = (εij)
J
i,j=1 by ρ(ε).
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Note that the coarse space is excluded in Assumption 2.

Assumption 3 (Local solvers): Assume thatω ∈ [1, 2) is the smallest constant such that

∀u ∈ Vi, i = 0, · · · , J : a(u, u) ≤ ωai(u, u)

A bound forρ(ε) in assumption 2 can be obtained from a

Assumption 4 (Coloring assumption): The overlapping subregionsΩ′
i, i = 1, · · · , J can

be colored withNC colors so that subregions with the same color do not intersect.

The coloring assumption implies thatρ(ε) ≤ NC in assumption 2.

Under the above assumptions the following statements can be proven:

Lemma 5.1 (Lower bound forTASM ) C−2
0 with C0 from assumption 1 is a lower bound

on the spectrum ofTASM .

Proof: See Smith, Bjørstad, and Gropp [91, Lemma 1 on page 154].

Lemma 5.2 (Upper bound forTASM ) If assumptions 2 and 3 hold,ω(1+ρ(ε)) is an upper
bound for the largest eigenvalue ofTASM .

Proof: See the proof of Lemma 3 on page 157 in [91].

Theorem 5.3 (Bound onκ(TASM)) Given assumptions 1, 2, and 3, the following bound
on the condition number of the additive Schwarz method holds:

κ(TASM) ≤ ω(1 + ρ(ε))C2
0

Proof: Combine lemmata5.1and5.2.

Theorem 5.4 (Bound onκ(TSMSM)) Given assumptions 1, 2, and 3, the condition num-
ber of the symmetrized multiplicative Schwarz method allows the following bound:

κ(TSMSM) ≤ (1 + 2ω2ρ(ε)2)C2
0

2− ω

Proof: Lemma 4 on page 158 of [91].
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Theorem 5.5 (Bound on||EMSM ||) Given assumptions 1, 2, and 3, the norm of the error
propagation operator for the multiplicative Schwarz method is bounded by:

||EMSM ||a ≤

√
1− 2− ω

(2ω2ρ(ε)2 + 1)C2
0

Proof: See Theorem 2 in Dryja and Widlund [44] and references therein.

There are some results on hybrid methods, comparison theorems between methods (see,
e.g., Mandel [69]), and sharper results for the multiplicative versions (see, for instance,
Griebel and Oswald [51]). We refer to the literature for these results and extensions.

5.3 Iterative methods

After the discretization, the numerical solution of the (linear) partial differential equation
is reduced to the solution of a large linear system of equations (A being aM ×M matrix)

Ax = b. (5.1)

Special structure of the partial differential equation and of the discretization usually leads
to special properties ofA. For instance, in the spectral element discretization of Poisson’s
equation,A is symmetric, positive definite and relatively (block-wise) sparse; on a rectan-
gular domain with a rectangular mesh of elements, it is a sum of tensor products.

Equation (5.1) can be solved directly or iteratively. Direct methods have certain advantages:
they deliver exact solutions (up to rounding errors in the computation) at a predictable
cost and this cost only depends on the algebraic structure of the problem. In most of the
algorithms most of the computations are spent on computing some kind of factorization of
A which then is used to solve the problem for a givenb. In this way, the computation of
solutions of equation (5.1) with different b but the sameA is much cheaper. On the other
hand, the solution time of Gaussian elimination, for denseA without any special structure,
grows likeO(M3) and the storage grows likeO(M2). Also, the parallelization of direct
methods is not an easy undertaking and requires new algorithmic ideas. Still, in the case of
special structure, like separable partial differential equations on separable domains, direct
solvers are competitive even in time and storage. For some examples, see chapters 6 and 9.

Iterative methods have advantages in that they are usually much lower in storage, optimal
methods might need onlyO(M) time for a given accuracy, and that an important class of
them does not need the elements of the matrixA, but only the result ofAv for a given vector
v. This can result in faster algorithms using less storage if the action ofA is much easier to
compute than its matrix representation. Some of the handicaps for an iterative method are
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that the solution is only approximate, that the performance may depend on the numerical
values and the geometry, and that usually the entire process has to be repeated if the right
hand side has changed.

We will describe three methods out of the many that could be used. For more methods and
discussions about implementation and when to choose which, see, for instance, Barrett et
al [12].

The simplest iterative method is Richardson’s method. IfB is the matrix form of the pre-
conditioner, the iteration is

un+1 = un + τB(f − Aun)

The optimal choice forτ is

τopt =
2

λmax(BA) + λmin(BA)
,

and with this choice the following error estimate holds (with|| · ||2 being thel2-norm of a
vector):

||en||2 ≤
(
κ(BA)− 1

κ(BA) + 1

)n

||e0||2

This method is almost never used in practice since other methods usually perform better and
do not need a well-chosen parameter that depends on a priori knowledge of the spectrum
of BA.

The second method – the method of choice for symmetric, positive definite problems –
is the (preconditioned) conjugate gradient method. It does not need a parameter and only
stores five vectors of lengthM in the iteration. IfBA has a low condition number or has
clustered eigenvalues, the conjugate gradient method performs very well, the convergence
often even improves with the number of iterations.

The method is given in figure5.1, with system matrixA, preconditionerB and inner prod-
uct 〈·, ·〉.
For the preconditioned conjugate gradient method, the following error estimate can be
proven (with||v||2A = vTAv):

||en||A ≤ 2

(√
κ(BA)− 1√
κ(BA) + 1

)n

||e0||A

The conjugate gradient method is closely related to the Lanczos process, one of the methods
to compute eigenvalues. Because of this connection, the extremal eigenvalues and therefore
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Given:x0.
r0 := b− Ax0

n = 0
Until stopping criterion satisfieddo

zn = Brn

ρn = 〈rn, zn〉
if n > 1 then

βn = ρn/ρn−1

pn = zn + βnpn

else
pn = zn

qn = Apn

αn = ρn/〈pn, qn〉
xn+1 = xn + αnpn

rn+1 = rn − αnqn

n = n+ 1
xn contains the approximate solution

Figure 5.1: The preconditioned conjugate gradient method

the condition number ofBA can be estimated from the values of theαn andβn : the ex-
tremal eigenvalues ofBA are approximated by the extremal eigenvalues of the tridiagonal
matrix (see, for instance, Golub and Van Loan [49, section 10.2.5 on page 528] and O’Leary
and Widlund [77]):

1/α0 −
√
β1/α0

−
√
β1/α0 1/α1 + β1/α0 −

√
β2/α1

−
√
β2/α1 .. . ...

.. . ...


The third and last method is the GMRES method, which is the standard method for non-
symmetric systems. We will not give its form or discuss its derivation or implementation;
we refer to the literature (see, e.g., Barrett et al [12, especially section 2.3.4], and Saad
and Schultz [87]). Both the preconditioned conjugate gradient method and GMRES are
implemented in several packages of Krylov subspace methods, such as the KSP compo-
nent of PETSc (Balay, Gropp, McInnes, and Smith [11] and Balay et al [10]). Reference
implementations are also available [12].
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The convergence of GMRES can be characterized by the two quantities

cA = inf
x 6=0

(x,Ax)

(x, x)
CA = sup

x 6=0

||Ax||
||x||

with the estimate of the norm of the residual

||rn|| ≤
(

1− c2A
C2

A

)n/2

||r0||

One of the disadvantages of the GMRES iteration is that all the iterates have to be stored,
and that in iteration stepk both the time and the storage needed are of orderO(kM). In
practice, therefore, one usually works with the restarted version GMRES(k), in which k
steps of GMRES are executed and the iteration is then restarted.

There are sharper and different error bounds possible for the different iterative methods,
some explicating the dependence of the convergence on the distribution of the eigenvalues
or the pseudo-spectrum. We will not discuss such estimates here. We note that all the error
estimates (and, in the case of Richardson’s method and other iterative methods, the optimal
parameters) depend on the condition number or extremal eigenvalues of the operator, or of
parts of it. Therefore bounds of the extremal eigenvalues proved for domain decomposition
methods imply error estimates for the various iterative methods presented.

For more information and a deeper introduction to iterative methods see the many books
available, for instance, Hackbusch [53, 54], Greenbaum [50], Saad [86], or Barrett et al
[12].
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Chapter 6

Spectral elements for Poisson and
Helmholtz equations

6.1 The discretization

We discretize the Poisson and Helmholtz equation to obtain some insight and experience
towards the discetization of the model problem. Poisson and Helmholtz equations also
need to be solved in solvers or preconditioners that take computational advantage of the
Helmholtz decomposition, i.e., treat curl-free and divergence-free part separately. They are
also interesting as model problems in their own right.

Here we discretize (withn denoting the outward normal)

−∆u+ αu = f ∂nu = 0

in d dimensions on rectangular elements (i.e., on Cartesian products of intervals). This
corresponds, forα = 0, to the Laplace equation, forα > 0, to a positive definite problem,
and forα ≤ 0, to the Helmholtz equation.

We use the variational formulation:

?u ∈ H1(Ω) : ∀v ∈ H1(Ω) : a(u, v) = f(v) (6.1)

with
a(u, v) = (gradu,grad v)0 + α(u, v)0

f(v) = (f, v)0
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or written out

a(u, v) =
d∑

i=1

(∂xi
u, ∂xi

v)0 + α(u, v)0

First we will discretize this formulation on one element, and afterwards, we will discuss
how to subassemble the system for a rectangular arrangements of elements.

On an elementK = ×d
i=1[ai, bi] we use polynomials with maximal degreemi in variable

xi. Thus the local space, denotedQ{mi}, is:

Qm1,m2,···,md
(K) =: Q{mi}d

i=1
(K)

We can choose the nodal values on a grid of size(mi + 1)d
i=1 as degrees of freedom.

The gradient of a function from the local space lies in the Cartesian product

gradu ∈ ×d
i=1Q{mj−δij}d

j=1

In the ith term of the sum constituting the bilinear form both of the factors have the same
degree, so that the integrand is inQ{2mj−2δij}d

j=1
. To compute the integrals exactly, we will

have to use Gauss-Lobatto-Legendre quadrature with degreesMij withMij ≥ mj−δij +1.
(In the case of Gauss-Legendre quadrature we obtain the same result without the+1.)

Therefore, in the direction of differentiation we integrate exactly on the original grid. In
the directions in which we do not differentiate we need one grid point more to integrate
exactly. Using the quadrature associated with the original grid we obtain diagonal matrices
in the tensor product in these directions.

The integrand of the last term is inQ{2mj}d
j=1

. We will use Gauss-Legendre-Lobatto quadra-
ture of degreeMj here. We also assume that the functionf on the right hand side of the
partial differential equation is given or approximated on the same grid asu andv and that it
is therefore also given as a function inQ{mj}d

j=1
. In this case the term(f, v)0 has the same

form as the term(u, v)0, and it will be integrated exactly in the same way.

In what follows, we use the notationu for the point values ofu on the Gauss-Legendre-
Lobatto mesh. Whenever we will use it, we will assume thatu is regular enough so that we
can define point values. We useu as a shorthand for the standard nodal interpolant of the
array of point valuesu on the Gauss-Legendre-Lobatto mesh. We also refer to chapter 4
where the following matrices are defined:Im

n is the matrix that interpolates from a Gauss-
Legendre-Lobatto mesh of sizen to one of sizem, Mm

n is the mass matrix of sizen that
we obtain by interpolating to a grid of sizem and using Gauss-Legendre-Lobatto quadra-
ture there.Dm is the one-dimensional spectral differentiation matrix on a Gauss-Legendre-
Lobatto mesh of sizem. Those matrices are derived from the appropriate matricesÎ, M̂
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andD̂ on [−1, 1] by scaling, to wit, in directionxi we obtainI ·· = Î ·· , D· = 2
bi−ai

D̂· and

M ·
· = bi−ai

2
M̂ ·

· .

A general term in the expression for(grad ·,grad ·) is

(∂xi
u, ∂xi

v)0 ≈ (∂xi
u, ∂xi

v){Mij}d
j=1

=
(
((⊗i−1

j=1Imj
)⊗Dmi

⊗ (⊗d
j=i+1Imj

))u

, ((⊗i−1
j=1Imj

)⊗Dmi
⊗ (⊗d

j=i+1Imj
)v
)
{Mij}d

j=1

= vT ((⊗i−1
j=1M

Mij
mj

)⊗ (DT
mi
MMii

mi
Dmi

)⊗ (⊗d
j=i+1M

Mij
mj

))u

= vT ((⊗i−1
j=1M

Mij
mj

)⊗KMii
mi

⊗ (⊗d
j=i+1M

Mij
mj

))u

there,KMii
mi

is the one-dimensional Laplace operator.

Combining all the terms, we obtain:

vT

(
d∑

i=1

((⊗i−1
j=1M

Mij
mj

)⊗KMii
mi

⊗ (⊗d
j=i+1M

Mij
mj

)) + α(⊗d
j=1M

Mij
mj

)

)
u =

vT (⊗d
j=1M

Mj
mj

)f

Since this has to hold for all vectorsv, we obtain the same equation without thevT :(
d∑

i=1

((⊗i−1
j=1M

Mij
mj

)⊗KMii
mi

⊗ (⊗d
j=i+1M

Mij
mj

)) + α(⊗d
j=1M

Mij
mj

)

)
u =

(⊗d
j=1M

Mj
mj

)f (6.2)

There is a lot of freedom choosing the degrees of quadrature. We will choose degrees for
groups of directions as follows: directions in which we do not differentiate are integrated
with a degree ofMj (if that degree ismj, we obtain diagonal mass matrices, with degree
mj + 1 we integrate exactly; these are the two main choices we will consider), directions
in which we differentiate are integrated with degreeSi (which is usually chosen to bemi

corresponding to exact integration).1 In brief

Mij = Mj for i 6= j Mii = Si (stiffness matrix) Mii = Mi (mass matrix) (6.3)

1Over-integration of the stiffness matrix may make sense for(αu, v)+(β gradu,grad v) with variableα
andβ, in our case it will not give any different result than exact integration. Under-integration is not advised,
since we would work with a less exact and worse behaved stiffness matrix of the same size and structure.
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SinceMMj
mj is non-singular, being a mass matrix, we can multiply by the tensor product

matrix
(⊗d

j=1(M
Mj
mj

)−1)

and obtain

d∑
i=1

((⊗i−1
j=1Imj

)⊗ ((MMi
mi

)−1KSi
mi

)⊗ (⊗d
j=i+1Imj

)) + α(⊗d
j=1Imj

) = f (6.4)

This is a form amenable to the fast diagonalization method of section 9.2.

Next, we consider how to subassemble elements in a (hyper-)rectangular arrangement. Let
us assume that each direction of the global arrangment is split intoNi parts, letRi

j denote
the restriction in directioni to thejth part,1 ≤ j ≤ Ni. Assume that the parts have degree
mij and that they are covered with a Gauss-Lobatto-Legendre mesh. The solution on the
arrangement is represented by ad-dimensional array of size(1+

∑Ni

j=1mij)
d
i=1. We enforce

continuity between the local spacesQ{mij} and obtain a piecewise continuous polynomial
global space which we will denote byV{mij}. The element corresponding to the position
(ji)

d
i=1 in the arrangement is obtained by applying the tensor product matrix⊗d

i=1R
i
ji

to the
vector form of the array and the extension from the element to its corresponding place in
the array is⊗d

i=1R
i,T
ji

.

Assumingmij = mi, i.e., equal degrees in the parts in each direction, to avoid more indices,
and using the quadrature degreesMj andSi as above, we have contributions as in equation
(6.2) on each of the elements:

A(ji)d
i=1

:=

(
d∑

i=1

((⊗i−1
j=1M

Mj
mj

)⊗KSi
mi
⊗ (⊗d

j=i+1M
Mj
mj

)) + α(⊗d
j=1M

Mj
mj

)

)

If we allow varying degreesmij, then these contributions will depend on their index(ji)
d
i=1.

In the uniform case treated here they are actually all the same and independent of the index.
The following manipulations do not exploit this fact, so that they will also hold for the
nonuniform case, giving the result stated below.

To subassemble the system, we have to add up the contributions from all the elements:

∑
jk,k=1,...,d

(⊗d
i=1R

i,T
jk

) A(ji)d
i=1

(⊗d
i=1R

i
jk

) u =

∑
jk,k=1,...,d (⊗d

i=1R
i,T
jk

)(⊗d
j=1M

Mj
mj

)(⊗d
i=1R

i
jk

)f
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After some algebraic manipulations one obtains the following form:(
d∑

i=1

((⊗i−1
j=1M̃j)⊗ K̃i ⊗ (⊗d

j=i+1M̃j)) + α(⊗d
j=1M̃j)

)
u = (⊗d

j=1M̃j)f (6.5)

whereM̃· andK̃· are defined as:

M̃j =

Nj∑
jj=1

Rj,T
jj
MMj

mj
Rj

jj
K̃i =

Ni∑
ji=1

Ri,T
ji
KSi

mi
Ri

ji
(6.6)

If we premultiply the system with the tensor product of the inverses of the assembled mass
matrices,M̃−1

j we obtain:

d∑
i=1

((⊗i−1
j=1Imj

)⊗ ((M̃i)
−1K̃i)⊗ (⊗d

j=i+1Imj
)) + α(⊗d

j=1Imj
) = f (6.7)

This is again of the form required for the fast diagonalization method of section 9.2.

For varying degreesmij we just have to definẽM· andK̃· as

M̃j =

Nj∑
k=1

Rj,T
k M

Mjk
mjk R

j
k K̃i =

Ni∑
k=1

Ri,T
k KSik

mik
Ri

k (6.8)

and the systems are still of the form (6.5) and (6.7).

The derivation so far has been for homogenous Neumann boundary conditions, so that the
solution is only determined up to a constant. In our implementation, we force the compo-
nent corresponding to the eigenvector with eigenvalue zero to be zero, if no exact solution
is known. If we know the exact solution, we force the numerical solution to have the same
(approximate) integral as the known exact solution.

For nonhomogenous Neumann boundary conditions we obtain a boundary term on the right
hand side, which also can be discretized by spectral methods. Assuming∂nu = g, f(v) in
(6.1) is now(f, v)0 +

∫
∂Ω
gv. To discretize the additional boundary term∫

∂Ω

gv ≈ vTG

we have to restrictv to ∂Ω and take the inner product inL2(∂Ω) (corresponding to a mass
matrixM∂Ω in the discrete system), i.e.,∫

∂Ω

gv = (g,R∂Ωv)0,∂Ω ≈ vTRT
∂ΩM∂Ωg
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The boundary∂Ω is split into 2d components and on each of the components the (com-
posite) Gaussian quadrature associated to the given Gauss-Lobatto-Legendre mesh on that
part of the boundary is used to compute the appropriate part ofM∂Ω. As an example, in the
two-dimensional case with mass matricesM̃1 in thex-direction andM̃2 in they-direction,
with gd = g|{y=−1}, gu = g|{y=1}, gl = g|{x=−1} andgr = g|{x=1}, andI ⊗ Rd, I ⊗ Ru,
Rl ⊗ I andRr ⊗ I being the restrictions to the lines{y = −1}, {y = 1}, {x = −1} and
{x = 1}, the boundary term is

RT
∂ΩM∂Ωg = (I ⊗RT

d )(M̃1 ⊗ I)g
d
+ (I ⊗RT

u )(M̃1 ⊗ I)g
u
+

(RT
l ⊗ I)(I ⊗ M̃2)gl

+ (RT
r ⊗ I)(I ⊗ M̃2)gr

We will not give explicit forms for generald for R∂Ω andM∂Ω as sums of tensor product
matrices, since they are not central to our discussion and they require a lot of notation to
define concisely.

RT
∂ΩM∂Ωg is added to the right hand side of (6.5). In fast diagonalization methods we

work with (6.7) and therefore need to multiply the above vector by the inverse of the (d-
dimensional) mass matrix.

For homogenous Dirichlet boundary conditions we take the submatrix for the interior of
the domain (which still has the same tensor product structure) and invert it. The solution
technique is the same, except that we work with a principal minor of the discretization
matrices. This corresponds to a choice ofH1

0 (Ω) in (6.1) instead ofH1(Ω).

For nonhomogenous Dirichlet boundary conditions we first compute a lifting of the bound-
ary values, correct the right hand side, and solve the resulting problem with homogenous
Dirichlet boundary conditions.

6.2 Theoretical analysis

We will only work out the coercive case, i.e.,α ≥ 0. We assume Dirichlet boundary con-
ditions, for simplicity. Most of the results that we will cite assume uniform degree, that is,
mi = N .

Denote the approximation ofa(u, v) constructed by quadrature in the last section by
aq(u, v) and also the approximation off(v) by fq(v). The discrete variational problem
derived in the last section is then written

?u ∈ V{mij} : ∀v ∈ V{mij} : aq(u, v) = fq(v) (6.9)

In the case of uniform degreeN of the elements, and uniform quadrature degreeN in all
the integrations, we writeaN andfN for aq andfq.
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Forα ≥ 0 we have the following version of Strang’s Lemma:

Lemma 6.1 Assume thataq is elliptic with ellipticity constantγq onV{mij}:

∀v ∈ V{mij} : aq(v, v) ≥ γq||v||1

and assume thata(u, v) has normCa overH1
0 × H1

0 . Then the following error estimate
holds for solutionsuq of (6.9) andu of (6.1) (see [17, inequality (15.14)])

||u− uq||1 ≤ C

(
1 +

Ca

γq

)(
inf

v∈V{mij}

(
||u− v||1+

sup
w∈V{mij}

a(v, w)− aq(v, w)

||w||1

)
+ sup

w∈V{mij}

f(w)− fq(w)

||w||1

)

To use this for the analysis of our methods, we need to be able to estimate the interpolation
and the consistency errors. The interpolation error is bounded by just exhibiting a properv
which is chosen to be an appropriate projection ofu. For the analysis of such projections
see [17, sections 6 and 7]. To approximate the data of the problem, we need polynomial
approximation estimates which can be found in [17, sections 13 and 14]. (For a small
sampling of such results see also Chapter 4.) The consistency errors are bounded analyzing
the quadrature, and the ellipticity and boundedness ofaq follow in a straighforward way
from its form.

This allows us to prove, for the Laplace equation and therefore for allα ≥ 0, first aH1-error
estimate and then, by duality, the followingL2-error estimate [17, Theorem 15.14]:

Theorem 6.2 Assume thatf ∈ Hσ for someσ > d/2 andu ∈ Hs for somes ≥ 1. Then
the following error estimate holds for the solutionuN of aN(u, v) = fN(v) with respect to
the solutionu of (6.1):

||u− uN ||0 ≤ c(N−s||u||Hs +N−σ||f ||Hσ)

h−N versions can also be treated, by combining the techniques used in proving Theorem
6.2with theh− p estimates of Babǔska and coworkers (see, e.g., Babuška and Guo [9]).

For α < 0 the bilinear form is not coercive, there is only a Gårding inequality satisfied.
We could apply the standard arguments for non-coercive problems (see, e.g., Brenner and
Scott [22, sections 5.6-5.8]) to obtain error estimates for fine enough grids respectively high
enough degrees that depend on the magnitude ofα. We will not venture into this subject in
this thesis, we will contend ourselves with some numerical tests in the next section.
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6.3 Numerical experiments

We will first run some experiments with the one-dimensional version, studying how the
quality of the numerical solutions depends on the degreeS of the integration of the stiffness
matrix and the degreeM of the integration of the mass matrix.

The exactly integrated stiffness matrices have the eigenvalues shown in figure6.1for the so-
lution of Neumann and Dirichlet problems. The eigenvalues below10−10 for the Neumann
problem correspond to the zero eigenvalue of the continous problem. That the numerical
eigenvalues are not exactly zero is caused both by the eigenvalue computation algorithm
and the fact that spectral differentiation matrices differentiate constants not to the zero-
polynomial, but to a polynomial having nodal values that are multiples of the machine
accuracy. In our algorithms that use eigendecompositions, we set all eigenvalues below a
threshold (usually10−10) to zero and treat the associated eigenvectors as zero eigenvectors.

We first solved a nonhomogenous Dirichlet problem on[−1, 1] with the exact solution
u(x) = esin(x) with different degrees of integration, testing both overintegration and slight
underintegration for the stiffness matrix and also strong underintegration for the mass ma-
trix. See figure6.2for the results.

We see that an underintegration of the stiffness matrix (withS = m−2) brings devastating
consequences, instead of exponential convergence we only obtain (even relatively slow)
algebraic convergence (of an order of2.86 ≈ 3).

The other cases all look more or less alike and harbor the signs of exponential convergence,
it only seems that decreasing the degree of integration of the mass matrix delays the con-
vergence. To verify this impression, we first look closer at the case of exact integration of
the stiffness matrix, see figure6.3.

We see that there is no difference between exact and slightly underintegrated mass matrices,
and the other two choices are worse, corresponding to non-optimal exponents in the expo-
nential convergence. Estimating the loss of convergence by eye, the one withM = m − 1
seems to correspond to a difference in the exponent of about 1, and the one withM = m−5
seems to lag by about 10.

We would obtain the same results, if we would look at the case of the other integrations
of the stiffness matrix, only that all the graphs are indistinguishable in the case where we
integrate the stiffness matrix withS = m− 2.

If we look closer at the dependence on the integration of the stiffness matrix with a given
integration of the mass matrix, we observe, both for the exact integration and the slight
underintegration of the mass matrix, the same behavior. We show the later case in figure
6.4. The first two choices yield the same result, the third one is slightly less accurate.
For underintegrated mass matrices, we can not distinguish between the results. For strong
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Eigenvalues: Neumann boundary conditions

Eigenvalues of the interior part: Dirichlet boundary conditions

Figure 6.1: One-dimensional Poisson problem, Eigenvalues of the stiffness matrix for the
Neumann and the Dirichlet problem

underintegration of the mass matrix, integration withS = m− 1 outperforms the others by
a very small margin. (We chose not to show the caseS = m − 2 which is already seen to
be far worse in figure6.2.)

In the next figure, figure6.5, we show the case of Neumann boundary conditions. The result
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Figure 6.2: One-dimensional Poisson problem with Dirichlet boundary conditions: differ-
ing degrees of integration,S for the stiffness matrix andM for the mass matrix.

looks very similar to the results in6.2, and we can make exactly the same observations as
for Dirichlet boundary conditions. Figures6.6 and6.7 show this fact and correspond to
figures6.3and6.4 in the Dirichlet case.

The results agree with our theoretical expectations. Maday and Rønquist [68] and Bernardi
and Maday [17] argue that for the Laplace equation overintegration of the stiffness ma-
trix does not improve the results. They also show that for some problems with variable
coefficients or in distorted geometries, overintegration is needed for optimal convergence.

In the case of underintegration, we can use Strang’s lemma, Lemma6.1, which bounds
the error of the solution as a constant times the sum of the approximation error and the
consistency error of the bilinear form (i.e., the stiffness matrix) and the error of integration
on the right hand side (i.e., the mass matrix). Underintegration of the stiffness matrix leads
to a very bad approximation of the bilinear form, and this error term dominates the error
estimate in this case. If we approximate the stiffness matrix well, the dominating term is the
approximation of the mass matrix. If we use lower-order integration (i.e., less thanM = m)
we loose some constant in the exponent, but still obtain exponential convergence.
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Figure 6.3: One-dimensional Poisson problem, Dirichlet boundary conditions, exact inte-
gration of the stiffness matrix: Influence of the integration of the mass matrix
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Figure 6.4: One-dimensional Poisson problem, Dirichlet boundary conditions, mass matrix
slightly underintegrated: Influence of the integration of the stiffness matrix

In conclusion, reasonable orders of integration areS = m andM = m + 1 andM = m.
S = m+1 gives similar results (without numerical errors they should be exactly the same)
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Figure 6.5: One-dimensional Poisson problem with Neumann boundary conditions: differ-
ing degrees of integration,S for the stiffness matrix andM for the mass matrix.

at higher costs.S = m−1 still gives quite good results, but they are worse than forS = m,
and the choiceS = m − 1 does not lead to lower computational effort compared with
S = m.

M = m leads to diagonal mass matrices, which makes the inversion of the mass matrices
lower in computational cost, so that its use could be advised if we need to invert mass
matrices repeatedly.

Next we test the one-dimensional Helmholtz operator with the four choicesS = m,m− 1
andM = m + 1,M = m. We perform the tests only for Dirichlet boundary conditions
and expect the same results for the Neumann boundary conditions. We show the results for
α = 1, α = 100 andα = −100 in figure 6.8. We use the same exact solution as for the
Poisson equation.

The cases withS = m outperform the ones withS = m− 1 by a small margin. The results
for M = m + 1 andM = m are very close, and forS = m andM = m + 1 the results
actually seems to be slightly more accurate in the exponential convergence.

So large positive or negativeα do not seem to change the behavior of the solution process
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Figure 6.6: One-dimensional Poisson problem, Neumann boundary conditions, exact inte-
gration of the stiffness matrix: Influence of the integration of the mass matrix

5 10 15 20 25 30 35 40 45 50
−14

−12

−10

−8

−6

−4

−2

0

N

lo
g 10

(|e
rr

or
| 2)

S=m+1
S=m
S=m−1

Figure 6.7: One-dimensional Poisson problem, Neumann boundary conditions, mass matrix
slightly underintegrated: Influence of the integration of the stiffness matrix

by much.

If we run the same test, but with a solution that depends onα and is increasingly oscillatory
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Figure 6.8: Solving one-dimensional Helmholtz problems with Dirichlet boundary condi-
tions: tests forα = 1, α = 100 andα = −100

for large negativeα, we catch a more typical solution of the Helmholtz equation. We chose
the solution(x2 − 1) cos(αx), and tested forα = −1 andα = −10. Besides solving the
problem accurately, the grid has to be fine enough, or the degree has to be large enough to
resolve a solution of high frequency. That explains the delay in reaching the optimal error

62



in figure6.9. We also observe an odd-even effect which seems to be more pronounced for
the cases with underintegrated stiffness matrices.
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Figure 6.9: Solving one-dimensional Helmholtz problems with Dirichlet boundary condi-
tions: tests forα = −1 andα = −10 with an oscillatory exact solution

We also performed some experiments for the two-dimensional case, again forα = 0, α =
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−1 andα = −10. We impose nonhomogenous Neumann boundary conditions. The exact
solutions used were: forα = 0, u(x, y) = sin(x + y) cos(x − y), for α < 0, u(x, y) =
cos(αx) sin(2α (x+ y)).

In figure6.10we show the results forα = 0. The two versions with exact stiffness matrices
perform very much alike, and we see a slight odd-even effect. The two versions with inexact
stiffness matrices are also very close together, but show a stronger odd-even effect. For odd
N , they are as accurate as the first two, for evenN they are worse.
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Figure 6.10: Solving a two-dimensional Poisson problem with Neumann boundary condi-
tions

In figure 6.11, the caseα = −1 is shown. Here there seems to be no odd-even effect;
the version with exact stiffness and diagonal mass matrix performs slightly better than
the version with the exact mass matrix, and the two versions with inexact mass matrices
perform alike and worse.

The results forα = −10 with an oscillatory solution are presented in figure6.12. Note that
we had to use a wider range ofN to capture the different stages of the behavior of the error.
First, till aboutN = 30, all versions perform alike. All of them do not resolve the solution
yet, and there is no convergence. Then, betweenN = 30 andN = 40, the solution starts
to converge, first slowly, and then, afterN = 40, attaining spectral convergence. Around
N = 55, we reach the best accuracy of the implementation of the method, and the error
does not improve any longer.

Finally, we show two examples for solutions of subassembled problems. We pose problems
with Neumann boundary conditions with given exact solutions.
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Figure 6.11: Solving a two-dimensional Helmholtz problem (α = −1) with Neumann
boundary conditions

In figure6.13we show an one-dimensional example on 10 elements of equal size in[−1, 1]
with the exact solutionu(x) = esin(x) .

In figure 6.14 a two-dimensional example is shown, with exact solution
cos(πx) cos(πy)e

x+y
4 , using 10x10 spectral elements of equal size in[−1, 1]2.

We observe that the results are very simar to the single element case. We find spectral con-
vergence in the first half of the graph, and after reaching a minimal error there is no further
reduction as we reach the best accuracy numerically possible. We start with a smaller error
and reach the maximal accuracy aroundN = 10 because we already start with an approx-
imation resolving most of the features of the solution on the initial grid of 10 or 10x10
spectral elements.
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Figure 6.12: Solving a two-dimensional Helmholtz problem (α = −10) with Neumann
boundary conditions
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Figure 6.13: Solving an one-dimensional Poisson problem on 10 spectral elements with
Neumann boundary conditions
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Figure 6.14: Solving a two-dimensional Poisson problem on 10x10 spectral elements with
Neumann boundary conditions
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Chapter 7

Spectral element spaces for vector field
problems

In this chapter we will construct and analyze spectral element spaces for vector field prob-
lems posed in the graph spacesH(curl) andH(div). Unlike H1 conforming elements,
they require only partial continuity across the element interfaces. To derive optimal results,
carefully constructed interpolation operators are needed. Unfortunately, the known interpo-
lation operators require more regularity than theirH1 counterparts; in particular, they are
not defined for the whole space (H(curl) or H(div), respectively). In theH(curl) case
such elements have been first proposed by Néd́elec in ah-version [74]; we will introduce
generalized Ńed́elec spectral elements in the first section.

In two dimensions, just like in the continuous setting, theH(curl) case can be obtained by
a rotation of theH(div) case. In the analysis of the approximation properties of thecurl
of the interpolant in three dimensions we use the commuting diagram property and the
appropriateH(div) conforming spaces. Therefore, in the second section, we present these
H(div) conforming spaces called Raviart-Thomas-Néd́elec spaces. In the next section we
introduce some other spectral element spaces and state the commuting diagram properties
for the appropriate interpolation operators. We also report on the discrete analogue of the
Helmholtz decomposition and the kernel ofcurl (compare section 2.5 for the continuous
case). The approximation properties of the Raviart-Thomas-Néd́elec spaces are known,
even in thehN -version, and are needed for the proof of some of the approximation proper-
ties of the Ńed́elec elements, and we will state them in the next section. The approximation
and interpolation results for the Néd́elec elements follow. We need to study Néd́elec type
interpolants between Ńed́elec elements of different order and between Raviart-Thomas-
Néd́elec elements of different order, for later use as restriction and extension operators in
multi-level algorithms and in the analysis of domain decomposition preconditioners. We
derive the form of the interpolants in the sixth section, and numerically study their be-
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havior. Finally, in the analysis of the model problem and of the domain decomposition
preconditioners, we will need a discrete Friedrichs’ inequality and an approximation result,
which we formulate and prove in the last section.

7.1 Generalized Ńedélec elements inH(curl)

In this section we will constructH(curl) conforming elements. Only tangential components
have to match across interfaces inV (curl) to guarantee conformity inH(curl). If we work
with polynomials of equal degree on the two sides of the interface, this matching leads to
the continuity of the tangential components across the interface.

Remark:To be precise, the equality of tangential components is only enforced in the sense
of H−1/2

00 on the interface (see, e.g., Hiptmair [57, Corollary 2.6, pg.9]). By enforcing con-
tinuity of the tangential components we certainly satisfy equality in that sense. Weaker
conditions bring with them technical difficulties and matching operators that are harder to
treat analytically, algorithmically and numerically. The weak continuity conditions used in
Mortar element methods are posed in a similar space(H1/2)′ (see, e.g., Wohlmuth [103,
following (2.2)]) so that one could adapt such methods to find more generalH(curl) con-
forming elements. Those elements will a priori not have a local characterization. We will
not pursue these ideas any further in this thesis.

7.1.1 Local spaces

We use high order polynomial local spaces. Since we want to use tensorial bases, we have to
chooseQm,n-like spaces for each component. To constructH(curl) conforming elements,
the tangential components of the vector field have to match on the interface between ele-
ments. Therefore the tangential components (and their degree) of the local spaces have to
agree across an interface. In the easiest case, a rectangular arrangement of elements, and
standardQm,n spaces, this forces the degree of the tangential components to be the same
across the domain. If we wish to have different local (tangential) degrees in the elements,
we could choose to implement only weak continuity conditions across the interface, lead-
ing to mortar elements1. We could also use variable order elements (see, e.g., Demkowicz
[41] and Ainsworth and Coyle [2]) or local uniform refinement and domain decomposi-
tion methods constructed for such situations (for similar methods for the Poisson equation
see Pavarino [82, Chapter 4]). In most variable order element approaches the degrees of

1For an introduction to mortar elements see Bernardi, Maday, and Patera [18, 19], for a more modern
version see Wohlmuth [103], and for mortar elements for Maxwell’s equation see the work by Ben Belgacem
and coworkers, for instance in Ben Belgacem, Buffa, and Maday [16].
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freedom are associated with geometrical objects, such as interiors of elements or groups
of elements, edges and vertices. In that way the matching of degrees of freedom across
element interfaces is automatic.

In this thesis, we will concentrate on standardQm,n spaces, since we are interested in
solvers that use their tensorized structure. It may be possible to generalize some of the
methods to additional cases, but we will not strive for utmost generality in this respect.

Consider a rectangular elementK. The most general local space for two dimensions is then
Qm1,n1(K)×Qm2,n2(K).

Néd́elec elements of the first kind (Néd́elec [74]) of orderk on rectangles use the following
local spaces:

NDI
k(K) = Qk−1,k(K)×Qk,k−1(K) ⊃ gradQk,k

while Néd́elec elements of the second kind (Néd́elec [75]) of orderk on rectangles use

NDII
k (K) = Qk,k(K)×Qk,k(K)

We could also choose different degrees in different directions to generalize these spaces,
i.e.,

NDI
m,n(K) = Qm−1,n(K)×Qm,n−1(K) ⊃ gradQm,n

NDII
m,n(K) = Qm,n(K)×Qm,n(K)

The global spaces corresponding to these local spaces will be denoted by the same symbol,
but set in a blackboard style, i.e.,NDI

k(Ω), NDII
k (Ω), NDI

m,n(Ω) andNDII
m,n(Ω). NDI,0

k (Ω),
NDII,0

k (Ω), NDI,0
m,n(Ω) and NDII,0

m,n(Ω) stand for the discrete spaces with zero tangential
components at the boundary.

We can find potentials (in the Helmholtz decomposition) in local spectral element spaces,
which makes certain operations, such as curl-free corrections, numerically more accessible.
(See, for instance, Hiptmair [59].)

If we compute thecurl of the local Ńed́elec in the two-dimensional spaces, we obtain:

curlNDI
m,n(K) ⊂ Qm−1,n−1(K)

curlNDII
m,n(K) ⊂ Qm,n−1(K) + Qm−1,n(K)

There is no continuity between thecurl of the local Ńed́elec spaces across the interfaces in
curl ND(Ω).

If we rotate the spaces of the Néd́elec elements of the first kind by ninety degrees, we
obtain:

Rotation by90◦ of NDI
k(K) is Qk,k−1(K)×Qk−1,k(K)
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Rotation by90◦ of NDI
m,n(K) is Qm,n−1(K)×Qm−1,n(K)

These spaces will turn out to be theH(div) conforming Raviart-Thomas-Ńed́elec spaces
RTk andRTm,n in two dimensions that will be introduced in the next section.

In three dimensions, the local spaces for the (generalized) Néd́elec elements are defined as:

NDI
k(K) = Qk−1,k,k(K)×Qk,k−1,k(K)×Qk,k,k−1(K) ⊃ gradQk,k,k(K)

NDI
l,m,n(K) = Ql−1,m,n(K)×Ql,m−1,n(K)×Ql,m,n−1(K) ⊃ gradQl,m,n(K)

NDII
k (K) = (Qk,k,k(K))3

NDII
l,m,n(K) = (Ql,m,n(K))3

Computing thecurl of the Ńed́elec elements of the first kind gives us

curlNDI
k(K) ⊂ Qk,k−1,k−1(K)×Qk−1,k,k−1(K)×Qk−1,k−1,k(K)

curlNDI
l,m,n(K) ⊂ Ql,m−1,n−1(K)×Ql−1,m,n−1(K)×Ql−1,m−1,n(K)

Here, normal components in the global spacecurlND(Ω) will match across interfaces.

The supersets will turn out to be theH(div) conforming Raviart-Thomas-Ńed́elec spaces
RTk andRTl,m,n in three dimensions that will be introduced in the next section.

7.1.2 Degrees of freedom and interpolants

We want to construct spectral element type discretizations. Therefore we will use tensorized
nodal basis functions built from interpolants on a Gauss-Legendre (GL) or Gauss-Lobatto-
Legendre (GLL) mesh.

On rectangles, there are continuity conditions on the edges, as shown in figure7.1.

To have tangential degrees of freedom match across the interfaces, we should use GLL
meshes iny for u1 and inx for u2. If we use GLL meshes inx for u1 and iny for u2,
degrees of freedom at the same position on different sides of the interface should not be
identified, since normal components do not have to match.

At corners, either all components or no components have to match. In the general case,
point values are not defined, and it does not make sense to match undefined objects. Con-
sidering polynomials and endpoints as limits we would be enticed to match all components.
In several numerical experiments enforcing or not enforcing corner continuity did not seem
to lead to vastly different results.
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Figure 7.1: Continuity conditions forH(curl)-conforming elements in 2D. Dash-dotted
line: first component continuous. Dashed line: second component continuous. Solid line:
component is continuous. Dotted line: no continuity enforced.

For certain error indicators (see, e.g., Monk [72], and Beck, Hiptmair, Hoppe, and
Wohlmuth [14]) and other computations it is useful to have jumps in the normal com-
ponents available, which would favor GLL meshes. If we use GL meshes inx for u1 and in
y for u2, we do not have any degrees of freedom in the normal components located on the
interface, and we can use the slightly more accurate GL quadrature.

Recall from section 4.1, that GLLm and GLm stand for the Gauss-Lobatto-Legendre
and Gauss-Legendre mesh withm points, and that the nodal values on it determine a
polynomial of degreem − 1 uniquely. (We assume that the meshes are appropriately
scaled and translated so that they cover the sides ofK.) We will give the spectral ele-
ment type degrees of freedom for the general local spacesQm1,n1(K) × Qm2,n2(K) and
Ql1,m1,n1(K)×Ql2,m2,n2(K)×Ql3,m3,n3(K) in two and three dimensions, respectively.

The degrees of freedom for the GLL-only method are the nodal values at

(GLLm1+1 ⊗GLLn1+1)× (GLLm2+1 ⊗GLLn2+1) (7.1)

where the normal components on the boundary are defined as the appropriate one-sided
limit from the inside of the element.

The degrees of freedom for the GLL-GL method are the nodal values at

(GLLm1+1 ⊗GLn1+1)× (GLm2+1 ⊗GLLn2+1) (7.2)
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Similarly, in three dimensions, the GLL-GL method uses the nodal values on

(GLl1+1 ⊗GLLm1+1 ⊗GLLn1+1)× (GLLl2+1 ⊗GLm2+1 ⊗GLLn2+1)

× (GLLl3+1 ⊗GLLm3+1 ⊗GLn3+1) (7.3)

as degrees of freedom, while the GLL-only method uses as degrees of freedom the values
on the GLL mesh in all components and directions:

(GLLl1+1 ⊗GLLm1+1 ⊗GLLn1+1)× (GLLl2+1 ⊗GLLm2+1 ⊗GLLn2+1)

× (GLLl3+1 ⊗GLLm3+1 ⊗GLLn3+1). (7.4)

In our numerical experiments, we use the GLL-only method. We will give the derivation of
the one element system for the Maxwell model problem in chapter 8 for this case only, but
it is straightforward to extend it to the GLL-GL method.

Denote the standard nodal interpolation operator on one element for the GLL-only method
by IGLL

m1,n1;m2,n2
, IGLL

m,n,I (for theNDI
m,n space) etc., and the one for the GLL-GL method,

similarly, only with a superscript GLL-GL instead of GLL. The global interpolation oper-
ator is defined element by element usingI ·· , and is denoted byI··. We need to be able to
define point values to define these interpolants. To decrease the required regularity (so that
we can approximate also solutions of lower regularity), there are several ways, for instance
using averages (Clement [28]), a dual basis (Scott and Zhang [89], Brenner and Scott [22,
section 4.8]), or quasi-interpolants (Oswald [78, section 2.1.1]). In the analysis of our meth-
ods, we would prefer to have several properties: the interpolation should be defined locally,
it should respect boundary values, and the appropriate interpolant of thecurl of the func-
tion should be equal to thecurl of the interpolant of the function (one of the commuting
diagram properties). It is possible to define nodal interpolation operators on the GLL mesh
with the first two properties, but it is not clear how to enforce the third condition.

The degrees of freedom introduced by Néd́elec for elements of the first kind of orderk are
(te is the direction vector of the edgee):∫

e

u · tep p ∈ Qk−1(e) for all edgese of K. (7.5)

∫
K

u · p p ∈ Qk−1,k−2(K)×Qk−2,k−1(K) for k > 1. (7.6)

For the Ńed́elec elements of the second kind we could choose:∫
e

u · tep p ∈ Qk(e) for all edgese of K. (7.7)
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∫
K

u · p p ∈ Qk−2,k(K)×Qk,k−2(K) for k > 1. (7.8)

Similarly, we can define such degrees of freedom for the anisotropic case for elements of
both kinds.

In three dimensions the degrees of freedom are the appropriate interior moments and edge
moments, as above, and there are also face moments as degrees of freedom. For instance,
Néd́elec elements of the first kind in three dimensions have the following degrees of free-
dom: ∫

e

u · tep p ∈ Qk−1(e) for all edgese of K. (7.9)∫
F

(u× n) · p p ∈ Qk−2,k−1(F )×Qk−1,k−2(F ) for all facesF of K. (7.10)∫
K

u · p p ∈ Qk−1,k−2,k−2(K)×Qk−2,k−1,k−2(K)×Qk−2,k−2,k−1(K)
for k > 1. (7.11)

The degrees of freedom of Néd́elec elements of the second kind, and of the anisotropic
versions, have the same form, only that the spaces forp andp will have different degrees.

Associated to these degrees of freedom is an interpolation operator, which we will denote
byΠND

m1,n1;m2,n2
, ΠND,I

m,n , andΠND,I
k , which is defined element by element using the element

versionsΠND
m1,n1;m2,n2

, ΠND,I
m,n , andΠND,I

k .We also introduce the analogous notations for the
elements of the second kind and for the three-dimensional case. This interpolation opera-
tor is local, respects tangential boundary conditions and satisfies the commuting diagram
property2, but it is not defined for all vector fields inH(curl). To wit, the interior degrees
of freedom are defined for all ofH(curl), but the edge moments (and the face moments in
three dimensions) need more regularity. There are different spaces used in the literature on
which the moments are defined; the spaces used most often are(H1+ε(Ω))d, (W 1,s(Ω))d

and
Xp(Ω) := {u ∈ (Lp(Ω))2, curlu ∈ Lp(Ω),u · t ∈ Lp(∂Ω)} (d = 2)

Xp(Ω) := {u ∈ (Lp(Ω))3, curl u ∈ (Lp(Ω))3,u× n ∈ (Lp(∂Ω))3} (d = 3).

(See for instance in Girault and Raviart [48], Arnold, Falk, and Winther [8], and Amrouche,
Bernardi, Dauge, and Girault [5]). If we opt for modified degrees of freedom on the edges
(and possibly on the faces in three dimensions), we either need to invoke a nontrivial match-
ing or a non-local definition.

2In two dimensions, thecurl diagram commutes if one uses theL2 projection oncurl NDk; in three
dimensions, thecurl diagram commutes if one uses the Raviart-Thomas-Néd́elec interpolant onRTk ⊃
curlNDk. See lemma7.1.
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There is no interpolation operator known that satisfies the commuting diagram property
and that is also defined on all ofH(curl), works on quadrilateral meshes, and in both
the two-dimensional and the three-dimensional case. Very recently there has been some
progress on an interpolation operator in two dimensions on triangular elements satisfying
the commuting diagram property defined on a less regular space,(Hε(Ω))2 ∩H(curl), see
Demkowicz and Babǔska [42], which is optimal inN (except for an arbitrarily smallδ, on
which the bound depends) with respect to theH(curl) norm.

To avoid the added technical difficulties in this approach – since, to the best of our knowl-
edge, all known convergence proofs use the commuting diagram property – we will use
more regular spaces. This also makes sense considering the main subject of the thesis,
since we are ultimately interested in spectral approximations of smooth parts of the fields,
where we will have to assume higher regularity in the proofs a priori.

These interpolation operators can also be used to restrict functions that are locally of high
degree to global low order spaces, as needed when defining coarse spaces in multi-level
methods or domain decomposition algorithms. The different definitions of the degrees of
freedom and the interpolants so constructed will lead to different operators with different
properties. The implementation and analysis of such restriction operators is discussed in
section 7.6. They are used in section 10.2, to implement a two-level method, and in section
11.2, to derive some required estimates for the condition number bounds.

7.2 Raviart-Thomas-Ńedélec elements inH(div)

In this section, we will constructH(div) conforming elements. Therefore we will have to
enforce continuity of the normal components across the interface. (The remark made above
in the last section about the precise conditions forH(curl) conforming elements applies
to theH(div) case with the appropriate changes, but we will not discuss it for theH(div)
case.)

The local spaces for (generalized) Raviart-Thomas-Néd́elec elements in two dimensions
are

RTk(K) := Qk,k−1(K)×Qk−1,k(K)

RTm,n(K) := Qm,n−1(K)×Qm−1,n(K)

and in three dimensions

RTk(K) := Qk,k−1,k−1(K)×Qk−1,k,k−1(K)×Qk−1,k−1,k)(K)

RTl,m,n(K) := Ql,m−1,n−1(K)×Ql−1,m,n−1(K)×Ql−1,m−1,n(K)
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Applying div to the Raviart-Thomas-Ńed́elec spaces, we obtain:

divRTk(K) = Qk−1,k−1(K)

divRTm,n(K) = Qm−1,n−1(K)

and in three dimensions
divRTk(K) = Qk−1,k−1,k−1(K)

divRTl,m,n(K) = Ql−1,m−1,n−1(K)

There is no continuity between thediv of the local spaces in the global spacediv RT(Ω).

As in section 7.1, in spectral element methods we will usually work with degrees of free-
dom that correspond to point values of polynomial interpolants on Cartesian products of
GL or GLL meshes. The following assumes a local spaceQm1,n1(K) × Qm2,n2(K) and
Ql1,m1,n1(K)×Ql2,m2,n2(K)×Ql3,m3,n3(K) for the two-dimensional and three-dimensional
case, respectively.

For the GLL-only method we use exactly the same mesh as in the previous section in (7.1)
and (7.4).

For theH(div) variant of the GLL-GL method we use the meshes

(GLLm1+1 ⊗GLn1+1)× (GLm2+1 ⊗GLLn2+1) (7.12)

(GLLl1+1 ⊗GLm1+1 ⊗GLn1+1)× (GLl2+1 ⊗GLLm2+1 ⊗GLn2+1)

× (GLl3+1 ⊗GLm3+1 ⊗GLLn3+1) (7.13)

The standard nodal interpolation operator can be defined as soon as point values are de-
fined. As in theH(curl) case, we can extend its domain to include functions of lower
regularity. We can easily make it respect boundary and interface values, but it does not
have the commuting diagram property (for thecurl part of the diagram), i.e., there is no
nodal interpolation operator on the Néd́elec spaces known, so that thecurl of it is equal to
the nodal interpolation operator on the Raviart-Thomas-Néd́elec spaces of thecurl of the
interpolated function.

To obtain an interpolation operator that makes the diagram commute, we define alternative
degrees of freedom as we did for Néd́elec elements.

We define edge moments∫
e

u · np p ∈ Qk−1(e) for all edgese of K.
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and interior moments∫
K

u · p p ∈ Qk−2,k−1(K)×Qk−1,k−2(K) for k > 1.

These two sets of moments uniquely determine a functionu ∈ RTk(K).

In three dimensions face moments are used instead of edge moments:∫
F

u · np p ∈ Qk−1,k−1(F ) for all facesF of K.

and the interior moments are defined with the appropriate space:∫
K

u · p p ∈ Qk−2,k−1,k−1(K)×Qk−1,k−2,k−1(K)×Qk−1,k−1,k−2(K) for k > 1.

The extension of these degrees of freedom to the case of different degrees in different
direction, as inRTm,n andRTl,m,n is straightforward.

Associated to these degrees of freedom on an element is an interpolation operator which
will be denoted byΠRT

k , ΠRT
m,n andΠRT

l,m,n, and which is used element by element to define
the global interpolation operatorΠRT

k , ΠRT
m,n andΠRT

l,m,n. These interpolation operators are
not defined for all ofH(div), since the edge moments (in two dimensions) or the face
moments (in three dimensions) are not defined for general functionsu ∈ H(div). They are
certainly well-defined when the normal trace ofu is sufficiently regular;u ∈ (Hr(Ω))d

with r > 1
2

is enough. We can rotate the interpolation operator of Demkowicz and Babuška
[42] on triangles to obtain an interpolation operator onH(div) in two dimensions that is
defined on(Hε(Ω))2 ∩H(div) and bounded, and arbitrarily close to optimal inN . There is
no interpolation operator known that is defined in all ofH(div) and satisfies the commuting
diagram property with some interpolation operator inH(curl).

There is a interpolation operator ondiv RTk, which makes thediv diagram commute with
the Raviart-Thomas-Ńed́elec interpolant, and it turns out to be theL2-projection (Suri [93,
equation (2.28) and Theorem 2.2]).

7.3 Commuting diagram properties and discrete
Helmholtz decomposition

In this section we assume that the domainΩ is a simply connected polygon or polyhedron,
with a connected boundary. In the statement of the commuting diagram properties, and in
the analysis of the spacesND andRT, we need the standard scalar piecewise polynomial
spaces.
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TheH1-conforming space with continuity across the interfaces is:

SN(Ω) := {q ∈ H1(Ω)|q|K ∈ QN(K) ∀K}

We can also define a space with enforced zero boundary valuesS0
N(Ω) ⊂ H1

0 (Ω) and
anisotropic versionsSm,n(Ω) andSl,m,n(Ω) with the local spacesQm,n(K) andQl,m,n(K),
respectively.

We denote the standard nodal interpolation operator ontoSN(Ω) by ΠS
N .

TheL2-conforming space, in which no continuity is required across the interfaces, is de-
fined analogously:

WN(Ω) := {q ∈ L2(Ω)|q|K ∈ QN(K) ∀K}

Here the appropriate restricted space isW0
N(Ω) which is a subset ofL2

0(Ω), the subspace
of functions inL2(Ω) having zero mean. The versions ofWN(Ω) andW0

N(Ω) with dif-
ferent degree in different directions will be denotedWm,n(Ω),Wl,m,n(Ω), W0

m,n(Ω) and
W0

l,m,n(Ω).

The interpolation operatorsΠW
N andΠW,0

N are theL2-projections ontoWN(Ω) andW0
N(Ω),

respectively.

Lemma 7.1 (Commuting diagram properties) Assume thatq, u and v are sufficiently
regular. Then the following identities hold

grad
(
ΠS

Nq
)

= ΠND,I
N (grad q) ,

curl
(
ΠND,I

N u
)

= ΠW
N (curlu) ,

curl
(
ΠS

Nq
)

= ΠRT
N (curl q) ,

curl
(
ΠND,I

N u
)

= ΠRT
N (curl u) ,

div
(
ΠRT

N v
)

= ΠW
N (div v) .

Proof: See Hiptmair [57, Theorem 2.30].

This lemma also holds for the anisotropic case with the obvious changes.

Lemma 7.2 (Kernel ofcurl) If Ω is simply connected, with a connected boundary, the
kernels of the curl operator defined inNDI

N(Ω) and NDI,0
N (Ω) are gradSN(Ω) and

gradS0
N(Ω), respectively.
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We can now state the following discrete analogue of the Helmholtz decomposition (com-
pare section 2.5 for the continuous case) for the Néd́elec spaces into acurl-free part and a
div-free part:

NDI
N(Ω) = gradSN(Ω)⊕ NDI,+

N (Ω)

NDI,0
N (Ω) = gradS0

N(Ω)⊕ NDI,0,+
N (Ω)

with the orthogonal complements

NDI,+
N (Ω) := {u ∈ NDI

N(Ω)|(u,grad pN)0 = 0 ∀pN ∈ SN(Ω)} (7.14)

NDI,0,+
N (Ω) := {u ∈ NDI,0

N (Ω)|(u,grad pN)0 = 0 ∀pN ∈ S0
N(Ω)} (7.15)

In general, the spacesNDI,+
N (Ω) and NDI,0,+

N (Ω) are not included inH⊥(curl; Ω) and
H⊥

0 (curl; Ω), the analogous spaces in the continuous Helmholtz decomposition.

The discrete Friedrichs’ inequality proven in the last section of this chapter gives aL2-
bound forcurl onNDI,+

N (Ω), the orthogonal complement of its kernel.

7.4 Approximation properties of Raviart-Thomas-
Nédélec elements

We will write in this and the following section̂Π for interpolation operators on the reference
element.

The approximation properties of the Raviart-Thomas-Néd́elec elements in the two-
dimensional case are treated for thehN -version in Suri [93].

A N -version estimate is proven for the reference element in [93, Lemma 3.1].

Lemma 7.3 Assumeu ∈ (Hr)2 for somer > 1. Then there exists a constantC indepen-
dent ofN andu such that

||u− Π̂RT
N u||0 ≤ CN−(r− 1

2
)||u||r.

The transformation ofu between the reference element and any other element is given
in [93, equation (2.18)], and for this mapping, in two dimensions, we have a lemma [93,
Lemma 3.2], which allows us to prove thehN -version of the above estimate [93, Theorem
3.1]:

Lemma 7.4 Assumeu ∈ (Hr)2 for somer > 1, and leth be the size of the elements. Then
there exists a constantC independent ofh,N , andu such that

||u−ΠRT
N u||0 ≤ Chmin(N,r)N−(r− 1

2
)||u||r.
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In the original paper it is also proven that(I − ΠRT ) is bounded byChmin(N,r)N−(r− 1
2
)

as a map fromHr(div) to H(div). (We note parenthetically that Suri’s definition ofS1
k

corresponds to our definition forRTk+1 which explains the difference in exponents between
his presentation and ours.)

The hN approximation properties of the Raviart-Thomas-Néd́elec elements in three di-
mensions are derived in Monk [71].

On the reference element theN -version estimate is as follows [71, Theorem 3.5]:

Lemma 7.5 Assumeu ∈ (Hr)2 for somer > 1
2
. Then there exists a constantC indepen-

dent ofN andu such that

||u− Π̂RT
N u||0 ≤ CN−(r− 1

2
)||u||r.

The mapping between the reference element and any given element in three dimensions is
treated in [71, equation (69) and Lemma 3.6], which allows us to prove thehN -version of
the estimate [71, Theorem 3.7]:

Lemma 7.6 Assumeu ∈ (Hr)2 for somer > 1
2
, and leth be the size of the elements. Then

there exists a constantC independent ofh,N , andu such that

||u−ΠRT
N u||0 ≤ Chmin(N,r)N−(r− 1

2
)||u||r.

The techniques used in the proofs of the previous two lemmata in [71] should allow the
extension of the lemmata7.3and7.4to the caser > 1

2
.

All the proofs in this section work by expanding both the vector field and its interpolant in
Legendre polynomials, comparing coefficients and bounding the interpolation error as the
difference of these two expansions.

These results can most probably be improved for regular enoughu by adapting Ben Bel-
gacem’s and Bernardi’s strategy in [15] to theH(div) case. More explicitly, in their work
they identified the interpolation operator for the Néd́elec space as a tensor product of one-
dimensionalL2- and modifiedH1-projections examining the expansions, and derived op-
timal estimates (which would correspond to estimates onΠRT

N without the 1
2

in the expo-
nent) by tensorizing known estimates of the one-dimensional projections. The derivations
and numerical experiments in section 7.6 seem to encourage such an approach as well.

We will discuss the behavior ofΠRT
N on Raviart-Thomas-Ńed́elec elements of higher index

in section 7.6. Such estimates and bounds will be needed later for the analysis of the domain
decomposition preconditioners.
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7.5 Approximation properties of Nédélec elements

ThehN -version of the edge element approximation, i.e., enforcing only tangential conti-
nuity and using the Ńed́elec definitions for the degrees of freedom (7.5) and (7.6); is treated
in Monk [71] for Néd́elec elements of the first kind. He proves aN -version estimate on the
reference element [71, Theorem 3.1]:

Lemma 7.7 Assumeu ∈ (Hr)3 for somer > 1, and let the Ńed́elec interpolantΠND,I
N be

defined by the edge, face, and interior moments. Then, there exists a constantC independent
of u andN such that

||u− Π̂ND,I
N u||0 ≤ CN−(r−1)||u||r.

The proof consists of writingu in its expansion in Legendre polynomials, and identifying
the Ńed́elec interpolant in terms of this expansion [71, pages 123–125]. The remainder
terms of the expansion, corresponding to the interpolation error, are then bounded by some
hard and tedious algebra, see [71, pages 125-130].

Using a scaling argument and a mapping from the reference element (the Piola transform,
see [71, equation (19)]), with the appropriate bounds for that transform, allow us to prove
thehN -version of the above lemma [71, Theorem 3.3]:

Lemma 7.8 Assumeu ∈ (Hr)3 for somer > 1 and let the Ńed́elec interpolantΠND,I
N be

defined elementwise. Leth be the size of the elements. Then

||u−ΠND,I
N u||0 ≤ Chmin(N,r)N−(r−1)||u||r.

Additionaly, we have the following stability estimates foru ∈ (W 1,s)3 for somes > 2 or
for u ∈ (H1+ε)3 for someε > 0:

||u−ΠND,I
N u||0 ≤ C(hN−1||u||W 1,s + h||u||1),

||u−ΠND,I
N u||0 ≤ C(hN−1||u||1+ε + h||u||1).

It is necessary to estimate how well thecurl of the Ńed́elec interpolant approximates the
curl of the function. If the functionu is sufficiently regular (u ∈ (Hr)3 for r > 3

2
is

enough) we can use the commuting diagram property for the Néd́elec elements to reduce
the approximation of thecurl to the interpolation error of the corresponding interpolation
operator in theN -version of the Raviart-Thomas-Néd́elec spaces (which we presented in
lemma7.5 in the previous section) . This gives us asN -version estimate on a reference
element (compare [71, Theorem 3.5]):
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Lemma 7.9 Assumeu ∈ Hr(curl) for r > 1
2
. Then there is a constantC depending onr

but not onN nor u such that

|| curl u− curl Π̂ND,I
N u||0 ≤ CN−(r− 1

2
)|| curl u||r.

With an analogous argument as that that was leading to lemma7.8, we obtain thehN -
version [71, Theorem 3.4]:

Lemma 7.10 Supposeu ∈ Hr(curl) for r > 1
2
. Then there is a constantC independent

of u, h, andN such that

|| curl u− curlΠND,I
N u||0 ≤ Chmin(N,r)N−(r− 1

2
)|| curl u||r.

Ben Belgacem and Bernardi [15] prove an optimalN -version estimate assuming more
regularity ofu in section 4 of their paper for theN -extension of Ńed́elec elements of the
first kind. The technique of proof requiresu ∈ (Hr)3 for somer > 2 andcurl u ∈ (Hs)3

for somes > 3
2
. The idea is similar to that of Monk’s paper discussed above. One starts of

with an expansion ofu having vanishing Ńed́elec degrees of freedom on the boundary (i.e.,
face moments and edge moments) in Legendre polynomialsLN and in the polynomials
(1 − x2)L′

N spanningPN ∩H1
0 (on the unit cube which serves as reference element). The

projection to a subset of the latter can be identified as an one-dimensional modifiedH1-
projection, ifu is regular enough. The entire interpolation operator is identified as being a
collection of tensor products of projections and its analysis is standard using the techniques
and results of Bernardi and Maday [17, sections 6 and 7]. For non-zero boundary degrees of
freedom one identifies the interpolation operator for the face moments and edge moments
to be the appropriate modifiedH1- or H1

0 -projection, again assuming enough regularity
of the traces on the faces and edges. Adding the three parts of the interpolation operator
together, one obtains again a representation by tensor products of projections which leads to
the final estimate. It would be very useful to have a similar estimate, or a slightly degraded
estimate foru ∈ (Hr)3 with r = 2 − ε since that would simplify several arguments, for
instance the proof of a Friedrichs-like inequality later on.

Ben Belgacem’s and Bernardi’s results are given in [15, Theorem 4.9] for the cube as
reference element:

Lemma 7.11 For any real numberr ≥ 2 there exist a positive constantC such that for all
functionsu ∈ (Hr)3 the following estimate holds

||u− Π̂ND,I
N u||0 ≤ CN−r||u||r.

82



Lemma 7.12 For any real numbers ≥ 3
2

there exist a positive constantC such that for all
functionsu ∈ Hs(curl) the following estimates holds

|| curl u− curl Π̂ND,I
N u||0 ≤ CN−s|| curl u||s.

Using the same techniques as in Monk [71], we easily derive thehN -version estimates:

Lemma 7.13 For any real numberr ≥ 2 there exist a positive constantC such that for all
functionsu ∈ (Hr)3 the following estimate holds

||u−ΠND,I
N u||0 ≤ Chmin(N,r)N−r||u||r.

Lemma 7.14 For any real numbers ≥ 3
2

there exist a positive constantC such that for all
functionsu ∈ Hs(curl) the following estimates holds

|| curl u− curlΠND,I
N u||0 ≤ Chmin(N,s)N−s|| curl u||s.

Ben Belgacem and Bernardi also present an estimate for the approximation of the tangen-
tial components on the boundary needed for the analysis of problems with Silver-Müller
boundary conditions; see [15, Theorem 4.10].

In two dimension, Ben Belgacem’s and Bernardi’s estimate should extend in the same form
with less regularity; onlyr > 3

2
should be needed in lemmata7.11and7.13ands > 1 in

lemmata7.12and7.14.

In two dimensions We can also use that theH(curl) case is a rotation of theH(div) case by
ninety degrees. We herefore have the following two lemmata corresponding to the lemmata
7.3 and7.4. The first lemma is valid on a reference element, and the second one is valid
for an arbitrary element in a quasi-uniform conforming mesh. (As noted above, the proof
should extend to the caser > 1

2
.)

Lemma 7.15 Assumeu ∈ (Hr)2 for somer > 1. Then there exists a constantC indepen-
dent ofN andu such that

||u− Π̂ND
N u||0 ≤ CN−(r− 1

2
)||u||r.

Lemma 7.16 Assumeu ∈ (Hr)2 for somer > 1, and leth be the size of the elements.
Then there exists a constantC independent ofh,N , andu such that

||u−ΠND
N u||0 ≤ Chmin(N,r)N−(r− 1

2
)||u||r

Also, (I −ΠND) is bounded byChmin(N,r)N−(r− 1
2
) as a map fromHr(curl) toH(curl).

For the analysis of the domain decomposition methods in chapters 10 and 11, we will
need to study the properties of the Néd́elec interpolant between Néd́elec spaces of different
degrees. We will do so in the next section.
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7.6 Nédélec type interpolants on vector field spectral ele-
ments

In this section we will first derive the explicit form of the Néd́elec type interpolants onRT
andND from local spaces of the form

Qp1,q1,r1(K)×Qp2,q2,r2(K)×Qp3,q3,r3(K)

to local spaces
Ql1,m1,n1(K)×Ql2,m2,n2(K)×Ql3,m3,n3(K)

in the three-dimensional case, and from

Qp1,q1(K)×Qp2,q2(K)

to
Qm1,n1(K)×Qm2,n2(K)

in the two-dimensional case.

We will realize that all the interpolants in the two-dimensional and three-dimensional
case can be written as tensor products of two types of terms, one corresponding to aL2-
projection, while the other is of a similar form, but includes boundary terms.

Second, we will numerically compute the norm of these interpolants using theL2-norm on
the spaces. We do that by reformulating the problem as a generalized eigenvalue problem.
Since both matrices in these generalized eigenvalue problems are tensor products, we can
reduce the generalized eigenvalue problems to the easier generalized eigenvalue problems
on the factors of the tensor product. We numerically study the bounds on the second type of
term; the first type has a trivial bound. We show that the Néd́elec interpolants are uniformly
bounded independently ofN for a constant difference in degrees, such as fromNDN+C to
NDN , but it has an approximate

√
N bound forND2N to NDN . Besides serving as basic

estimates in our analysis of the domain decomposition preconditioner in chapter 11, these
experiments show that multiplication with some lower-order terms can be stable when using
Néd́elec type degrees of freedom and interpolants; but that nonlinear equations with terms
like (ui)

c with c > 1 may suffer under worse approximation properties than linear ones.

An analytic derivation of these results seems to be possible. On one hand, one could follow
the expansion arguments of Suri, or Monk, or Ben Belgacem and Bernardi, specializing
them to the case with few specific non-zero coefficients, and find bounds using similar
techniques as in their papers. On the other hand, one could analyze the form of the second
type of term, by either some linear algebra (using that the term is a low-order pertubation of
a known projection) or by identifying the one-dimensional continuous projection operator
that has the term as discretization, and analyzing this projection.
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Unfortunately, we lack both the time and space to attempt such a derivation within the
scope of this thesis, but we will do so in future work.

7.6.1 Ńedélec interpolants between Ńedélec spaces

First we will discuss the two-dimensional case. We can restrict our derivation to the first
component of the interpolant, the form of the second component follows by symmetry
considerations. By the standard rotation argument, we can derive the form of the interpolant
for the Raviart-Thomas-Ńed́elec spaces in two dimensions.

We will always derive the interpolation operator from the GLL-only spectral element de-
grees of freedom onQp1,q1(K) to the Ńed́elec type degrees of freedom onQm1,n1(K).
We will also assumepi ≥ mi, qi ≥ ni. The casepi = mi and qi = ni gives us the
mapping between the GLL degrees of freedom and the Néd́elec degrees of freedom on
Qm1,n1(K)×Qm2,n2(K), and taking the inverse and applying it to the above result we ob-
tain the Ńed́elec interpolation operator as an operator on the spectral element degrees of
freedom. (The casepi ≤ mi, qi ≤ ni can be treated by liftingQp1,q1(K) × Qp2,q2(K) to
Qm1,n1(K)×Qm2,n2(K) by the standard polynomial interpolation(Im1

p1
⊗In1

q1
)×(Im2

p2
⊗In2

q2
)

and using the result for thepi = mi andqi = ni case.)

As discussed in section 7.1, the Néd́elec degrees of freedom are∫
e

u · tep p ∈ Q·(e) for all edgese of K.∫
K

u · p p ∈ Q·,·(K)×Q·,·(K) for degrees> 1.

We can organize these degrees of freedom according to components, foru1 there are∫
K

u1 · pI
1 pI

1 ∈ Qm1,n1−2∫
{y=−1}

u1p
A
1 pA

1 ∈ Qm1∫
{y=1}

u1p
B
1 pB

1 ∈ Qm1

and foru2 ∫
K

u2 · pI
2 pI

2 ∈ Qm2−2,n2∫
{x=−1}

u2p
A
2 pA

2 ∈ Qn2
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∫
{x=1}

u2p
B
2 pB

2 ∈ Qn2

To derive tensor product forms mapping to Néd́elec degrees of freedom, we have to arrange
them in two two-dimensional arraysp1 andp2:

p1(i, 1) = pA
1 (i) p1(i, j) = pI

1(i, j − 1) p1(i, n1) = pB
1 (i)

p2(1, j) = pA
2 (j) p2(i, j) = pI

1(i− 1, j) p2(m2, j) = pB
1 (j)

or with self-explanatory notation

pA
1 = (Im1 ⊗ en1

1 )p1 pB
1 = (Im1 ⊗ en1

n1
)p1 pI

1 = (Im1 ⊗RI,n1)p1

pA
2 = (em1

1 ⊗ In1)p2 pB
2 = (em1

m1
⊗ In1)p2 pI

2 = (RI,m1 ⊗ In1)p2

Now the degrees of freedom foru1 can be discretized (using the one-dimensional mass and
interpolation matrices from chapter 4):∫

K

u1 · pI
1 = pT

1 ((Im1 ⊗RT
I,n1

)(Ip1,T
m1

⊗ Iq1,T
n1−2)(M

p1+1
p1

⊗M q1+1
q1

)u1

= pT
1 ((Ip1,T

m1
Mp1+1

p1
)⊗ (RT

I,n1
Iq1,T
n1−2M

q1+1
q1

))u1

∫
{y=−1}

u1p
A
1 = pT

1 (Im1 ⊗ en1,T
1 )(Ip1,T

m1
⊗ 1)(Mp1+1

p1
⊗ 1)(Ip1 ⊗ ep1

1 )u1

= pT
1 ((Ip1,T

m1
Mp1+1

p1
)⊗ (en1,T

1 ep1

1 ))u1

∫
{y=1}

u1p
B
1 = pT

1 (Im1 ⊗ en1,T
n1

)(Ip1,T
m1

⊗ 1)(Mp1+1
p1

⊗ 1)(Ip1 ⊗ ep1
p1

)u1

= pT
1 ((Ip1,T

m1
Mp1+1

p1
)⊗ (en1,T

n1
ep1

p1
))u1

Adding up these expressions, we obtain that the first component of the Néd́elec interpolant
from the spectral element degrees of freedom to the Néd́elec degrees of freedom is:

((Ip1,T
m1

Mp1+1
p1

)⊗ (en1,T
1 ep1

1 +RT
I,n1

Iq1,T
n1−2M

q1+1
q1

+ en1,T
n1

ep1
p1

))

We will introduce the following notation for the two types of terms, since they will appear
in all our interpolants:

Lm1
p1

:= Ip1,T
m1

Mp1+1
p1

Hn1
q1

:= en1,T
1 ep1

1 +RT
I,n1

Iq1,T
n1−2M

q1+1
q1

+ en1,T
n1

ep1
p1
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To obtain the version of the Ńed́elec interpolant that maps between spectral element degrees
of freedom, we multiply this by the inverse of the same mapping for the casem1 = p1 and
n1 = q1:

Lm1
p1

:= (Lm1
m1

)−1Lm1
p1

Hn1
q1

:= (Hn1
n1

)−1Hn1
q1

and finally obtain thatΠND
m1,n1;m2,n2

u onQp1,q1(K)×Qp2,q2(K) has the form

ΠND
m1,n1;m2,n2

u = ((Lm1
p1
⊗Hn1

q1
)u1, (Hm2

p2
⊗ Ln2

q2
)u2) (7.16)

Rotating this expression by ninety degrees, we obtain thatΠRT
m1,n1;m2,n2

u on Qp1,q1(K) ×
Qp2,q2(K) has the form:

ΠRT
m1,n1;m2,n2

u = ((Hm1
p1
⊗ Ln1

q1
)u1, (Lm2

p2
⊗Hn2

q2
)u2) (7.17)

Now we will perform the analogous derivations in three dimensions. We have the following
degrees of freedom for the three-dimensional case:∫

e

u · tep p ∈ Q·(e) for all edgese of K.

∫
F

(u× n) · p p ∈ Q·,·(F )×Q·,·(F ) for all facesF of K.∫
K

u · p p ∈ Q·,·,·(K)×Q·,·,·(K)×Q·,·,·(K) for degrees> 1.

The degrees of freedom connected to the first componentu1 are of the following nine types:∫
{y=−1,z=−1}

u1p
A
1 pA

1 ∈ Ql1

∫
{y=−1,z=1}

u1p
B
1 pB

1 ∈ Ql1

∫
{y=1,z=−1}

u1p
C
1 pC

1 ∈ Ql1

∫
{y=1,z=1}

u1p
D
1 pD

1 ∈ Ql1∫
{y=−1}

u1p
E
1 pE

1 ∈ Ql1,n1−2

∫
{y=1}

u1p
F
1 pF

1 ∈ Ql1,n1−2∫
{z=−1}

u1p
G
1 pG

1 ∈ Ql1,m1−2

∫
{z=1}

u1p
H
1 pH

1 ∈ Ql1,m1−2∫
K

u1p
I
1 pI

1 ∈ Ql1,m1−2,n1−2
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We arrange these degrees of freedom in a three-dimensional arrayp1 as follows:

p1(i, 1, 1) = pA
1 (i) p1(i, 1, n1) = pB

1 (i) p1(i,m1, 1) = pC
1 (i)

p1(i,m1, n1) = pD
1 (i) p1(i, 1, j) = pE

1 (i, j − 1) p1(i,m1, j) = pF
1 (i, j − 1)

p1(i, j, 1) = pG
1 (i, j − 1) p1(i, j, n1) = pH

1 (i, j − 1)

p1(i, j, k) = pI
1(i, j − 1, k − 1)

and they can be computed by the following expressions from the arrayp1:

pA
1 = (Il1 ⊗ em1

1 ⊗ en1
1 )p1 pB

1 = (Il1 ⊗ em1
1 ⊗ en1

n1
)p1

pC
1 = (Il1 ⊗ em1

m1
⊗ en1

1 )p1 pD
1 = (Il1 ⊗ em1

m1
⊗ en1

n1
)p1

pE
1 = (Il1 ⊗ em1

1 ⊗RI,n1)p1 pE
1 = (Il1 ⊗ em1

m1
⊗RI,n1)p1

pG
1 = (Il1 ⊗RI,m1 ⊗ en1

1 )p1 pH
1 = (Il1 ⊗RI,m1 ⊗ en1

n1
)p1

pI
1 = (Il1 ⊗RI,m1 ⊗RI,n1)p1

Computing these degrees of freedom exactly on our polynomial space by Gaussian quadra-
ture inQp1,q1,r1, we obtain the following:∫

{y=−1,z=−1}
u1p

A
1 = pT

1 (Il1 ⊗ em1,T
1 ⊗ en1,T

1 )(Ip1,T
l1

⊗ 1⊗ 1)

(Mp1+1
p1

⊗ 1⊗ 1)(Ip1 ⊗ eq1

1 ⊗ er1
1 )u1

= pT
1 ((Ip1,T

l1
Mp1+1

p1
)⊗ (em1,T

1 eq1

1 )⊗ (en1,T
1 er1

1 ))u1∫
{y=−1,z=1}

u1p
B
1 = pT

1 ((Ip1,T
l1

Mp1+1
p1

)⊗ (em1,T
1 eq1

1 )⊗ (en1,T
n1

er1
r1

))u1∫
{y=1,z=−1}

u1p
C
1 = pT

1 ((Ip1,T
l1

Mp1+1
p1

)⊗ (em1,T
m1

eq1
q1

)⊗ (en1,T
1 er1

1 ))u1∫
{y=1,z=1}

u1p
D
1 = pT

1 ((Ip1,T
l1

Mp1+1
p1

)⊗ (em1,T
m1

eq1
q1

)⊗ (en1,T
n1

er1
r1

))u1

∫
{y=−1}

u1p
E
1 = pT

1 (Il1 ⊗ em1,T
1 ⊗RT

I,n1
)(Ip1,T

l1
⊗ 1⊗ Ir1,T

n1−2)

(Mp1+1
p1

⊗ 1⊗M r1+1
r1

)(Ip1 ⊗ eq1

1 ⊗ Ir1)u1

= pT
1 ((Ip1,T

l1
Mp1+1

p1
)⊗ (em1,T

1 eq1

1 )⊗ (RT
I,n1

Ir1,T
n1−2M

r1+1
r1

))u1∫
{y=1}

u1p
F
1 = pT

1 ((Ip1,T
l1

Mp1+1
p1

)⊗ (em1,T
m1

eq1
q1

)⊗ (RT
I,n1

Ir1,T
n1−2M

r1+1
r1

))u1∫
{z=−1}

u1p
G
1 = pT

1 ((Ip1,T
l1

Mp1+1
p1

)⊗ (RT
I,m1

Iq1,T
m1−2M

q1+1
q1

)⊗ (en1,T
1 er1

1 ))u1∫
{z=1}

u1p
H
1 = pT

1 ((Ip1,T
l1

Mp1+1
p1

)⊗ (RT
I,m1

Iq1,T
m1−2M

q1+1
q1

)⊗ (en1,T
n1

er1
r1

))u1
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∫
K

u1p
I
1 = pT

1 (Il1 ⊗RT
I,m1

⊗RT
I,n1

)(Ip1,T
l1

⊗ Iq1,T
m1−2 ⊗ Ir1,T

n1−2)

(Mp1+1
p1

⊗M q1+1
q1

⊗M r1+1
r1

)u1

= pT
1 ((Ip1,T

l1
Mp1+1

p1
)⊗ (RT

I,m1
Iq1,T
m1−2M

q1+1
q1

)⊗ (RT
I,n1

Ir1,T
n1−2M

r1+1
r1

))u1

We recognize that their sum is of the tensor product form:

((Ip1,T
l1

Mp1+1
p1

)⊗ (em1,T
1 eq1

1 +RT
I,m1

Iq1,T
m1−2M

q1+1
q1

+ em1,T
m1

eq1
q1

)

⊗(en1,T
1 er1

1 +RT
I,n1

Ir1,T
n1−2M

r1+1
r1

+ en1,T
n1

er1
r1

)) = (Ll1
p1
⊗Hm1

q1
⊗Hn1

r1
)

Multiplying by the inverse of the equal degree version, we obtain the mapping on spectral
element degrees of freedom:

(((Ll1
l1
)−1Ll1

p1
)⊗ ((Hm1

m1
)−1Hm1

q1
)⊗ ((Hn1

n1
)−1Hn1

r1
)) = (Ll1

p1
⊗Hm1

q1
⊗Hn1

r1
)

After similar computations on the other components, we obtainΠND
l1,m1,n1;l2,m2,n2;l3,m3,n3

u
onQp1,q1,r1(K)×Qp2,q2,r2(K)×Qp3,q3,r3(K) as:

ΠND
l1,m1,n1;l2,m2,n2;l3,m3,n3

u =

((Ll1
p1
⊗Hm1

q1
⊗Hn1

r1
)u1, (Hl2

p2
⊗ Lm2

q2
⊗Hn2

r2
)u2, (Hl3

p3
⊗Hm3

q3
⊗ Ln3

r3
)u3) (7.18)

7.6.2 Ńedélec interpolants between Raviart-Thomas-Ńedélec spaces

We already obtained the form in the two-dimensional case in the last section by rotation,
so we only are left with the three-dimensional case.

As discussed in section 7.2, Raviart-Thomas-Néd́elec spaces have the following Néd́elec
type degrees of freedom in three dimensions:∫

F

u · np p ∈ Q·,·(F ) for all facesF of K.

∫
K

u · p p ∈ Q·,·,·(K)×Q·,·,·(K)×Q·,·,·(K) for degrees> 1.

The degrees of freedom associated with the first component are:∫
{x=−1}

u1p
A
1 pA

1 ∈ Qm1,n1

∫
{x=1}

u1p
B
1 pB

1 ∈ Qm1,n1
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∫
K

u1p
I
1 pI

1 ∈ Ql1−2,m1,n1

We have to arrange these three types of degrees in a three-dimensional array so that we can
obtain tensor product forms of the mapping. We choose the following layout:

p1(1, i, j) = pA
1 (i, j) p1(l1, i, j) = pB

1 (i, j) p1(i, j, k) = pI
1(i− 1, j, k)

The expressions forpA
1 , pB

1 andpI
1 in terms ofp1 are:

pA
1 = (el1

1 ⊗ Im1 ⊗ In1)p1 pB
1 = (el1

l1
⊗ Im1 ⊗ In1)p1

pI
1 = (RI,l1 ⊗ Im1 ⊗ In1)p1

We can compute the degrees of freedom exactly by Gaussian quadrature, since we are in a
polynomial space:∫

{x=−1}
u1p

A
1 = pT

1 (el1,T
1 ⊗ Im1 ⊗ In1)(1⊗ Iq1,T

m1
⊗ Ir1,T

n1
)

(1⊗M q1+1
q1

⊗M r1+1
r1

)(ep1

1 ⊗ Iq1 ⊗ Ir1)u1

= pT
1 ((el1,T

1 ep1

1 )⊗ (Iq1,T
m1

M q1+1
q1

)⊗ (Ir1,T
n1

M r1+1
r1

))u1∫
{x=1}

u1p
B
1 = pT

1 ((el1,T
l1

ep1
p1

)⊗ (Iq1,T
m1

M q1+1
q1

)⊗ (Ir1,T
n1

M r1+1
r1

))u1∫
K

u1p
I
1 = pT

1 (RT
I,l1

⊗ Im1 ⊗ In1)(I
p1,T
l1−2 ⊗ Iq1,T

m1
⊗ Ir1,T

n1
)

(Mp1+1
p1

⊗M q1+1
q1

⊗M r1+1
r1

)u1

= pT
1 ((RT

I,l1
Ip1,T
l1−2M

p1+1
p1

)⊗ (Iq1,T
m1

M q1+1
q1

)⊗ (Ir1,T
n1

M r1+1
r1

))u1

We recognize that their sum (which is also the mapping from spectral element degrees of
freedom to Ńed́elec type degrees of freedom fromQp1,q1,r1 to Ql1,m1,n1) is of the tensor
product form:

((el1,T
1 ep1

1 +RT
I,l1
Ip1,T
l1−2M

p1+1
p1

+ el1,T
l1

ep1
p1

)⊗ (Iq1,T
m1

M q1+1
q1

)⊗ (Ir1,T
n1

M r1+1
r1

))

= (H l1
p1
⊗ Lm1

q1
⊗ Ln1

r1
)

Multiplying this result with the inverse of the casep1 = l1, q1 = m1, r1 = n1, we obtain
the mapping between spectral element degrees of freedom:

(((H l1
l1

)−1H l1
p1

)⊗ ((Lm1
m1

)−1Lm1
q1

)⊗ ((Ln1
n1

)−1Ln1
r1

)) = (Hl1
p1
⊗ Lm1

q1
⊗ Ln1

r1
)

Similar derivations for the other components show that the complete form of the interpola-
tion operatorΠRT

l1,m1,n1;l2,m2,n2;l3,m3,n3
u onQp1,q1,r1 ×Qp2,q2,r2 ×Qp3,q3,r3(K) is:

ΠRT
l1,m1,n1;l2,m2,n2;l3,m3,n3

u =

((Hl1
p1
⊗ Lm1

q1
⊗ Ln1

r1
)u1, (Ll2

p2
⊗Hm2

q2
⊗ Ln2

r2
)u2, (Ll3

p3
⊗ Lm3

q3
⊗Hn3

r3
)u3) (7.19)
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7.6.3 L2-bounds on the norm of the interpolant

We will explain the idea in a two-dimensional model case.

AssumeΠu = ((P x
1 ⊗P

y
1 )u1, (P

x
2 ⊗P

y
2 )u2) is an interpolation operator fromQp1,q1×Qp2,q2

to Qm1,n1 ×Qm2,n2, and we want to derive aL2-bound:

||Πu||0 ≤ C||u||0 (7.20)

Such a bound follows from theL2-bounds on the components,

||(P x
1 ⊗ P y

1 )u1||0 ≤ C1||u1||0

||(P x
2 ⊗ P y

2 )u2||0 ≤ C2||u2||0
imply C ≤

√
C2

1 + C2
2 in (7.20).

We can reformulate the problems on the components as generalized eigenvalue problems
by considering the squares of the estimates:

||(P x
1 ⊗ P y

1 )u1||20 = uT
1 (P x,T

1 ⊗ P y,T
1 )(Mm1+1

m1
⊗Mn1+1

n1
)(P x

1 ⊗ P y
1 )u1

≤ C2
1 ||u1||20 = C2

1u
T
1 (Mp1+1

p1
⊗M q1+1

q1
)u1

We see that the square of the componentL2-bound is the largest eigenvalue of the general-
ized eigenvalue problem:

((P x,T
1 Mm1+1

m1
P x

1 )⊗ (P y,T
1 Mn1+1

n1
P y

1 ))x = λ((Mp1+1
p1

)⊗ (M q1+1
q1

))x

Since the matrices on both sides are tensor product matrices, we can reduce the generalized
eigenvalue problem to the generalized eigenvalue problems on the factors of the tensor
product:

(P x,T
1 Mm1+1

m1
P x

1 )x1 = λ1(M
p1+1
p1

)x1

(P y,T
1 Mn1+1

n1
P y

1 )x2 = λ2(M
q1+1
q1

)x2

The upper bound for the tensor product problem is given by the product of the maximal
eigenvalues of the two factor problems.

Since all the factors of the tensor product interpolation operators are of one of the two types
L andH, it is enough to consider the following two generalized eigenvalue problems:

(Lm
p )TMm+1

m Lm
p x = λMp+1

p x (7.21)

(Hm
p )TMm+1

m Hm
p x = λMp+1

p x (7.22)
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L is the discrete form of theL2-projection. As such, it has the trivial upper bound of 1. The
maximal eigenvalue of (7.21) is also 1. We will present numerical verifications of this fact
in the next subsection.

We will present some numerical results forHm
p for some differentm = N andp = p(N)

in the next subsection.

7.6.4 Numerical results

In several experiments, we observed that for the casep = N + c, m = N the maximal
eigenvalue of (7.22) is bounded independently ofN . We also see in all experiments that
(7.21) has the maximal eigenvalue 1, up to some numerical inaccuracies. These are in the
order of10−11 even for a degree of 200.

In figure7.2 we show the casep = N + 1. (In the analysis of the domain decomposition
preconditioners, this case correspond to the multiplication of an elementwise linear par-
tition of unity, i.e., overlaps are only made of complete elements.) The value ofλmax of
(7.22) for N = 200 is 2.0101.

In figure 7.3 we show the casep = N + 10. The maximal eigenvalue of (7.22) is still
bounded independently ofN , the value ofλmax atN = 200 is 6.1511.

As a last examples for the casep = N + c, we show in figure7.4 the casec = 100. The
maximal eigenvalue of the problem (7.22) is bounded independently ofN and decreasing
for increasingN , as in the two cases above. The value ofλmax atN = 200 is 63.8463.

It is easy to see that a bound independent ofN for p = N + 1 implies that theL2-bound
of the interpolation operator is independent ofN for p = N + c for anyc. The reasoning
is the following: we can write the interpolation operator forN + c → N as a product of
the operatorsN + c → N + c − 1, N + c − 1 → N + c − 2, . . ., N + 1 → N , in total
c factors. Each of the norms of the factors is bounded by a constantC that can be derived
from the bound on the maximal eigenvalue for (7.22) for p = N + 1, and therefore the
entire operator should be bounded byCc. We see in the figures and in the reported bounds
atN = 200 that this estimate is too pessimistic, the bounds are growing rather slowly with
c.

For the discussion of the approximation for nonlinear equations, and also for one of the
ways to treat overlap of less than an entire element, we need to study the eigenvalue prob-
lem for p = cN . The numerical results show that the maximal eigenvalue of (7.22) grows
linearly (or slower) withN , which would correspond to a bound on the interpolation oper-
ator that grows with

√
N .

In figure7.5we show the results for the casep = 2N . This case is important in the discus-
sion of the approximation of quadratic nonlinear terms, and in the discussion of partitions
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Figure 7.2: Maximal eigenvalues for the two generalized eigenvalue problems withp =
N + 1,m = N . Top panel: problem (7.22). Bottom panel: problem (7.21). Note that in the
latter,λmax − 1 is shown.

of unity that are of the same degree as the spectral element functions. We showλmax/N
for (7.22) in the upper part, and it looks that asymptotically the growth is linear or slightly
sublinear, the coefficient ofN estimated from the values betweenN = 180 andN = 200
is 0.76.

In figures7.6and7.7we show the casesp = b1.5Nc andp = d1.1Ne. In both of the cases
we observe approximately linear growth ofλmax, estimated from the values betweenN =
180 andN = 200 we obtain a constant in front of theN of 0.32 and 0.06, approximately.
We also performed experiments for otherc in p = cN , which we do not show here, and we
found in all of them approximately linear growth.

We also tested some other cases withp = N + f(N) for f(N) growing slower thanN .
We saw growth inN for f(N) =

√
N . The results forf(N) = 30 log(N) are shown in

the next figure7.8 and show that for this case there seems to be a bound independent of
N . (The value ofλmax for N = 200 is 113.6448.) One of the questions arising from these
experiments is if there is ac such that forf(N) = N c we have a bound independent ofN ,
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Figure 7.3: Maximal eigenvalues for the two generalized eigenvalue problems withp =
N + 10, m = N . Top panel: problem (7.22). Bottom panel: problem (7.21). Note that in
the latter,λmax − 1 is shown.

or if the maximal eigenvalue will grow for any power inf(N).

We formulate the result of these numerical experiments (assuming that we can generalize
them and observe the same results for allc in cN ) and the consequences obtained by ten-
sorization arguments in the following observation (or numerically supported conjecture):

Observation 7.1:The maximal eigenvalue of the generalized eigenvalue problem (7.22) is
bounded independently ofN for m = N , p = N + c for all c, and allows a bound linear in
N for m = N , p = cN . The interpolation operator for the Ńed́elec and Raviart-Thomas-
Néd́elec spaces from degreeN + c toN is bounded independently ofN , and is bounded by
C
√
N withC independent ofN from degreecN toN .
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Figure 7.4: Maximal eigenvalues for the two generalized eigenvalue problems withp =
N + 100, m = N . Top panel: problem (7.22). Bottom panel: problem (7.21). Note that in
the latter,λmax − 1 is shown.
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Figure 7.5: Maximal eigenvalues for the two generalized eigenvalue problems withp =
2N , m = N . Top panel: problem (7.22), plot of λmax/N . Bottom panel: problem (7.21),
plot of λmax − 1.
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Figure 7.6: Maximal eigenvalues for the two generalized eigenvalue problems withp =
b1.5Nc, m = N . Top panel: problem (7.22), plot of λmax/N . Bottom panel: problem
(7.21), plot ofλmax − 1.
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Figure 7.7: Maximal eigenvalues for the two generalized eigenvalue problems withp =
d1.1Ne, m = N . Top panel: problem (7.22), plot of λmax/N . Bottom panel: problem
(7.21), plot ofλmax − 1.
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Figure 7.8: Maximal eigenvalues for the two generalized eigenvalue problems withp =
dN+30 log(N)e,m = N . Top panel: problem (7.22), plot ofλmax. Bottom panel: problem
(7.21), plot ofλmax − 1.
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7.7 Discrete Friedrichs’ inequality

We saw in chapter 2 that on the complement of the kernel ofcurl, the weakly divergence
free functions (i.e. functions that are orthogonal to all the gradients ofH1

0 ), we have a
Friedrichs’ inequality (see theorem2.6)

||u||0,Ω ≤ CHΩ|| curl u||0,Ω

In various situations, we need to ascertain the analogous inequality on a polynomial space
that is orthogonal to a space of gradients of another polynomial space. The fundamental
idea is to split the function on the constrained polynomial space into one which is con-
tinously weakly divergence free and estimate the rest. The complicating feature of the
proof is that the needed interpolant, the Néd́elec interpolant (again needed because of its
commuting diagram property), is not defined on(H1)d, where we would prefer to work.
Therefore we have to choose more regular spaces to work on. Girault and Raviart prove
this Friedrichs’ inequality for finite elements (theh-version) in [48, Proposition 5.1] using
W 1,s spaces and Monk [71, Theorem 4.1] proves it in thehN -version usingH1+ε spaces.

We give proofs only for the three-dimensional case. The two-dimensional result can be
proven in a similar way, certain steps simplify and sharper results can be obtained. We will
indicate some of these improvements.

In the proof of Friedrichs’ inequality we need an approximation result which will be useful
later in the analysis of our domain decomposition preconditioners:

Lemma 7.17 Assume that the bounded and convex domainΩ with HΩ = O(1) has a
Lipschitz boundary and is covered with an uniformly regular mesh of elements of sizeh.
Assume also thatw ∈ H⊥

0 (curl) and thatcurl u ∈ WN(Ω). Then the Ńed́elec interpolant
allows the followingL2-bounds:

||w −ΠND,I
N w||0 ≤ Ch

(
1 + C1

(
2

1− ε

)
N−1+ε

)
|| curlw||0

||w −ΠND,I
N w||0 ≤ Ch

(
1 + C2

( ε
2

)
N−1+ε

)
|| curlw||0

whereC1(s) is the regularity constant of thecurl potential problem fromc = curlw ∈
(Ls)3 to w ∈ (W 1,s)3 andC2(ε) is the regularity constant of the same problem, but from
c = curlw ∈ (Hε)3 to w ∈ (H1+ε)3.

Proof: Both of the bounds are proven in a very similar way, starting from the stability esti-
mates in lemma7.8. If we would have an interpolation estimate such as in lemmata7.11and

100



7.13for anyr < 2, or a slightly degraded one, we would obtain by (Hilbert space) interpo-
lation betweenH1+ε andHr an interpolation estimate that would allow a direct proof of the
lemma, but with a better constantCC3(ε)hN

−1+f(ε). For two dimensions that is possible.
For three dimensions we still need a proof of such an optimalHr interpolation estimate.
See figure7.9 for a graphical representation. The solid line shows the upper bound below
which we could prove this lemma using aHs interpolation estimate withs ∈ (1, 3

2
), and the

other lines show different interpolation estimates from the lemmata. In two dimensions, we
should have aH

3
2
+ε interpolation estimate and therefore a proof with the better constant.
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Figure 7.9: Exponents in the proof of Friedrichs’ inequality,Hs case

Proof of theW 1,s case:We start off with the stability estimate from lemma7.8:

||w −ΠND,I
N w||0 ≤ Ch[N−1||w||1,s + ||w||1]

Next comes the realization thatw is a solution of thecurl potential problem:

curlw ∈ (QN,N,N(K))3 ⊂ (Lp(Ω))3 ∀p div w = 0 w × n|∂Ω = 0

Since this problem is regular from(Lp)3 to (W 1,p)3 for p ∈ (2, sΩ) for convex domains
(see theorem 2.21 in section 2.8), we have

||w||1,s ≤ C1(s)|| curlw||0,s = C1(s)|| curlw||Ls (7.23)
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Using again the fact thatcurlw ∈ (QN,N,N(K))3, and that therefore an inverse inequality
holds (see section 4.5) we obtain

|| curlw||Ls ≤ CN2( 1
2
− 1

s
)|| curlw||0 = CN1− 2

s || curlw||0 (7.24)

Using the result from section 2.7, theorem 2.14, thatHN(Ω) is imbedded continuously in
H1 for convex domains, we have

||w||1 ≤ C(||w||0 + || curlw||0)

If we use the continuous Friedrichs’ inequality (theorem2.6) – recall that we work on a
domain of diameter of order 1 – we obtain the following bound with a differentC

||w||1 ≤ C|| curlw||0 (7.25)

Using (7.23), (7.24), and (7.25) in the stability estimate, we finally obtain

||w −ΠND,I
N w||0 ≤ Ch[N−1||w||1,s + ||w||1] ≤ Ch

(
1 + C1 (s)N− 2

s

)
|| curlw||0

Theε form of that estimate follows by an easy calculation.

Proof of theH1+ε case:We start of with the stability estimate from lemma7.8:

||w −ΠND,I
N w||0 ≤ C(hN−1||w||1+ε + h||w||1)

Next comes the realization thatw is a solution of thecurl potential problem:

curlw ∈ (QN,N,N(K))3 ⊂ (Hε(Ω))3 ε ∈ [0,
1

2
) div w = 0 w × n|∂Ω = 0

Since this problem is regular from(Hε)3 to (H1+ε)3 for ε ∈ [0, ε0) for convex domains (see
section 2.8, theorem 2.20), we have

||w||1+ε ≤ C2(ε)|| curlw||ε

and sincecurlw is a piecewise polynomial, we have an inverse estimate (see section 4.5)

|| curlw||ε ≤ CN2ε|| curlw||0

Using the last two inequalities and (7.25) in the stability estimate, we obtain

||w − ΠND,I
N w||0 ≤ Ch

(
C2(ε)N

−1+2ε + 1
)
|| curlw||0

The form stated in the lemma follows by substitutingε
2

for ε.
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Theorem 7.18 (Discrete Friedrichs’ inequality for thehN case) Assume that the
bounded and convex domainΩ withHΩ = O(1) has a Lipschitz boundary and is covered
with an uniformly regular mesh of elements of sizeh. LetΦN be discretely divergence free
of degreeN , i.e., assumeΦN ∈ NDI,+

N . Then there exist constantsC andC ′ such that

||ΦN ||0 ≤ C
(
1 + h

(
1 + C1,2(ε)N

−1+ε
))
|| curlΦN ||0 ≤ C ′|| curlΦN ||0

Proof: The second inequality follows trivially from the first, since the coefficient is a func-
tion that decreases with increasingN and decreasingh, so thatN = 1 andh = HΩ

substituted into the coefficient give a trival bound forC ′.

The first inequality is proven in several steps.

Definep ∈ H1
0 (Ω) as the solution of the generalized Neumann problem

∀q ∈ H1
0 (Ω) : (grad p,grad q) = (ΦN ,grad q)

Then,w := ΦN − grad p satisfies

curlw = curlΦN div w = 0 w × n|∂Ω = 0

SinceΩ is convex, either theW 1,s or theH1+ε regularity used in the proof of the previ-
ous lemma guarantees thatw ∈ (W 1,s)3 or w ∈ (H1+ε)3, and that thereforeΠND,I

N w
is defined. SinceΦN is in the Ńed́elec space, its interpolant is defined, and therefore
ΠND,I

N (grad p) is defined. The appropriate version of the commuting diagram property
(see, e.g., Girault and Raviart [48, Lemma 5.10]) shows that there is a piecewise polyno-
mial pN such that

ΠND,I
k (grad p) = grad pN

and thereforeΦN = ΠND,I
N w + grad pN . Now (ΦN ,grad qN) = 0 for all qN ∈ SN(Ω),

therefore also especially forqN = pN . This gives that(ΦN ,ΦN) = (ΠND,I
N w,ΦN) +

(grad pN ,ΦN) = (ΠND,I
N w,ΦN) and an application of the Cauchy-Schwarz inequality

gives
||ΦN ||0 ≤ ||ΠND,I

N w||0

Next we use lemma7.17and the triangle inequality to show

||ΠND,I
N w||0 ≤ ||w||0 + ||w −ΠND,I

N w||0

≤ C
(
1 + h

(
1 + C1,2(ε)N

−1+ε
))
|| curlw||0

whereC1,2(ε) is one of the twoC2(
ε
2
) andC1(

2
1−ε

).

The proof is completed by recalling thatcurlw = curlΦN .
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If we can prove a spectral version of Lemma 4.7 in Amrouche, Bernardi, Dauge, and Girault
[5, page 855], that is, if we can give a bound of theL2-norm of ΠND,I

N in terms of the
Xp-norm with an explicit dependence onN and a coefficient that does not depend onN ,
then we can prove thehN -version of the discrete Friedrichs’ inequality for non-convex
domains following the proof of [5, Proposition 4.6] adapted for the case of the potential
with tangential boundary values [5, Proposition 4.12]. A variant of lemma7.17can then be
proven following the proof of a similar inequality in Arnold, Falk and Winther [8, (2.4)].
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Chapter 8

Spectral Elements for the Maxwell
model problem

In this chapter, we will discretizeαId + β curl curl in two dimensions on rectangular
elements. We naturally work with the variational formulation

?u ∈ H(curl) : ∀v ∈ H(curl) : (αu,v)0 + (β curlu, curlv)0 = f(v) (8.1)

and we will construct a discrete function spaceV (curl) to approximateH(curl).

We will provide details only in the two-dimensional case. Almost everything carries over
into three dimensions, and we will discuss differences between the two-dimensional case
and the three-dimensional case in remarks.

In the first section we describe how to discretize the problem on one element. In the sec-
ond, short, section, we discuss the discretization on domains consisting out of more than
one element. For the case where the domain is logically rectangular, we give subassembly
procedures for theH(curl),H1, andH(div) conforming case in the next section. In the last
section we discuss how to enforce different types of boundary conditions.

There are only a few numerical experiments in this chapter. We will present numerical ex-
periments that apply the discretizations and methods from this chapter in chapter 9, where
we discuss fast direct solvers for them, and in chapter 10, where we will show their use in
domain decomposition preconditioners.

8.1 Discretization on one element

We try to discretize

?u ∈ H(curl) : ∀v ∈ H(curl) : (αu,v)0 + (β curlu, curlv)0 = f(v)
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with f(v) = (f(1),v)0 + (f(2), curlv)0 on a rectangular element[a, b] × [c, d]. We will
perform the derivation on[−1, 1]2 and then obtain the general result by scaling.

If we have more general mappingsF from the reference element, we can discretize the
equations similarly by consideringu ◦ F andv ◦ F instead ofu andv, and multiplying
all integrands by the determinant of the Jacobian ofF . The special structure needed for
our fastest solvers will not be available for generalF , but a fast application of the stiffness
matrix is still possible.

As indicated in the first section of the previous chapter, we chooseQm1,n1(K)×Qm2,n2(K)
as the local spaceV (curl). For multi-element problems we will have to enforce tangential
continuity on the product space of all local spaces.

In an exact Galerkin method we would compute all the integrals exactly. Ifα, β, f(1), f(2)
are polynomials, then we can achieve this by using Gaussian quadrature of high enough
order. For arbitraryα, β, f(1),f(2) we would have to be able to analytically compute all the
integrals which is impossible in the general case. For arbitrary coefficients we will therefore
use numerical integration, which gives an additional error term in the analysis of the method
by the appropriate variant of Strang’s lemma (see for instance Bernardi and Maday [17], or
Ciarlet [27]).

Since we have Gaussian quadratures of many orders at our easy disposal (see section 4.3),
we can easily study the influence of the accuracy of the quadrature.

Overintegration (of not exactly computable terms) and underintegration may make sense.
Overintegration of critical terms may improve the overall accuracy, underintegration may
result in an advantageous special form or properties of the matrices, without loosing too
much accuracy and keeping the same order of convergence.

The exact analysis of underintegration for our discretization in its full generality is non-
trivial, and would require error estimates for anisotropic polynomial spaces and analysis
of the approximate bilinear forms obtained by general tensor product Gaussian quadrature
rules. While that seems to be a feasible and interesting enterprise on its own (for some
very recent work on error estimates for anisotropic discretizations in the context of theh-
version for Ńed́elec elements see Nicaise [76]), we lack the space and the time to execute it
in the context of this thesis. We will take a hint from the theory and our experiments in the
chapter 6: we will integrate differentiated directions in the components exactly and we will
integrate undifferentiated directions exactly or one order lower (which leads to diagonal
mass matrices). A list with appropriate choices of degrees will be given in the statement of
the discretization.

Let us define (see sections 4.3 and 4.6) that(u, v)M,N denotes the Gaussian integration on
GLLM ×GLLN .

We assume constantα andβ for simplicity.
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Remark:If we have separableα andβ, then we can obtain a discretization of a very sim-
ilar form, only that the weighted inner products(α·, ·) and(β·, ·) will give modified mass
matrices that are tensor products of one dimensional standard mass matrices scaled by the
appropriate parts ofα andβ.

We try to approximate foru,v ∈ V (curl)

(αu,v)0 + (β curlu, curlv)0 = (f(1),v)0 + (f(2), curlv)0 (8.2)

Written more explicitly,

?u1 ∈ Qm1,n1 , ?u2 ∈ Qm2,n2 : ∀v1 ∈ Qm1,n1 : ∀v2 ∈ Qm2,n2

α(u1, v1)0 + α(u2, v2)0 + β(∂xu2 − ∂yu1, ∂xv2 − ∂yv1)0

= (f1, v1)0 + (f2, v2)0 + (f3, ∂xv2 − ∂yv1)0

In the following we will discuss the degrees and the discretization of the different terms
separately.

(u1, v1)0 is the integral ofu1 ·v1 over the rectangular element. Therefore,u1 ·v1 is contained
in Q2m1,2n1. To integrate this exactly, we have to use(·, ·)M1,N1 withM1 ≥ m1+1 andN1 ≥
n1+1. Such exact integration leads to a non-diagonal mass matrix. ChoosingM1 = m1 and
N1 = n1 results in a diagonal mass matrix and is often used in spectral element methods,
especially since no order of convergence is lost in standard examples such as the isotropic
discretization of the Laplace equation.

Similarly, u2 · v2 is contained inQ2m2,2n2 and it is integrated exactly with(·, ·)M2,N2 under
the conditionM2 ≥ m2 + 1 andN2 ≥ n2 + 1. If we decrease both degrees by one, we
obtain diagonal matrices.

We will treat the different parts of the(curl ·, curl ·) term separately, since they have differ-
ent degrees.

(curlu, curlv) = (∂yu1, ∂yv1) + (∂xu2, ∂xv2)− (∂yu1, ∂xv2)− (∂xu2, ∂yv1)

The first part,(∂yu1, ∂yv1) leads to an integration of a function inQ2m1,2n1−2 and is in-
tegrated exactly with(·, ·)M3,N3 givenM3 ≥ m1 + 1, N3 ≥ n1. (∂xu2, ∂xv2) leads to an
integration inQ2m2−2,2n2 which will be exact with(·, ·)M4,N4 under the conditionM4 ≥ m2

andN4 ≥ n2 + 1. Both of the last two parts lead to the integration of a polynomial in
Qm1+m2−1,n1+n2−1 and are integrated by(·, ·)M5,N5. The integration is exact under the con-
ditionsM5 ≥ m1+m2

2
,N5 ≥ n1+n2

2
.

Putting the parts back together, we approximate

(αu,v) ≈ (αu,v)S := α(u1, v1)M1,N1 + α(u2, v2)M2,N2

107



(β curlu, curlv) ≈ (β curlu, curlv)S := β(∂yu1, ∂yv1)M3,N3+

β(∂xu2, ∂xv2)M4,N4 − β(∂yu1, ∂xv2)M5,N5 − β(∂xu2, ∂yv1)M5,N5

With the same approach we obtain a spectral approximationfS(u) of f(u), and finally the
discrete problem

?u ∈ V (curl) : ∀v ∈ V (curl) : (αu,v)S + (β curlu, curlv)S = fS(u) (8.3)

Next we will find a matrix representation of this problem and make explicit its structure
as a system of linear equations. In the derivation of this representation we will realize an
additional simplifying restriction on the degrees of the integration formulae.

We will make a distinction between an arbitrary function inH(curl) resp.V (curl) and its
vector of nodal values1. For any functionu we will denote the vector of nodal values byu,
for any vector of nodal valuesv, we will denote the corresponding function, obtained by
straightforward interpolation using the Gauss-(Lobatto-)Legendre nodal basis, byv.

To compute(αu,v)S in matrix form, we need to interpolate fromQmi,ni
to QMi,Ni

and then
use Gaussian quadrature there (see chapter 4 for Gaussian quadratures and mass matrices,
interpolation matrices and differentiation matrices for the one-dimensional case)

(αu,v)S = α(u1, v1)M1,N1 + α(u2, v2)M2,N2

= αvT
1 (IM1

m1
⊗ IN1

n1
)T (MM1 ⊗MN1)(I

M1
m1

⊗ IN1
n1

)u1

+αvT
2 (IM2

m2
⊗ IN2

n2
)T (MM2 ⊗MN2)(I

M2
m2

⊗ IN2
n2

)u2

= αvT
1 (MM1

m1
⊗MN1

n1
)u1 + αvT

2 (MM2
m2

⊗MN2
n2

)u2

curlu = ∂xu2 − ∂yu1. A priori, the two terms in the definition ofcurl are not of the same
degree. If we desire an exact representation ofcurlu on a GLL(m3)×GLL(n3) mesh, we
would requirem3 ≥ max{m1,m2 − 1} andn3 ≥ max{n1 − 1, n2} and we would obtain
curlu on that grid as

curlum3,n3
= (Im3

m2
⊗ In3

n2
)(Dm2 ⊗ In2)u2 − (Im3

m1
⊗ In3

n1
)(Im1 ⊗Dn1)u1

= ((Im3
m2
Dm2)⊗ In3

n2
)u2 − (Im3

m1
⊗ (In3

n1
Dn1))u1

We will discretize the parts separately and not enforce a common mesh forcurlu in the
bilinear form.

The parts of(curl ·, curl ·)S transform into matrix form as follows:

β(∂yu1, ∂yv1)M3,N3 = ((Im1 ⊗Dn1)u1, (Im1 ⊗Dn1)v1)M3,N3

= βvT
1 (Im1 ⊗Dn1)

T (MM3
m1

⊗MN3
n1

)(Im1 ⊗Dn1)u1

= βvT
1 (MM3

m1
⊗ (DT

n1
MN3

n1
Dn1))u1

1We assume that the function is sufficiently regular so that these point values are defined.
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β(∂xu2, ∂xv2)M4,N4 = ((Dm2 ⊗ In2)u2, (Dm2 ⊗ In2)v2)M4,N4

= βvT
2 (Dm2 ⊗ In2)

T (MM4
m2

⊗MN4
n2

)(Dm2 ⊗ In2)u2

= βvT
2 ((DT

m2
MM4

m2
Dm2)⊗MN4

n2
)u2

β(∂yu1, ∂xv2)M5,N5 = ((Im1 ⊗Dn1)u1, (Dm2 ⊗ In2)v2)M5,N5

= βvT
2 (Dm2 ⊗ In2)

T (IM5
m2

⊗ IN5
n2

)T (MM5 ⊗MN5)

(IM5
m1

⊗ IN5
n1

)(Im1 ⊗Dn1)u1

= βvT
2 ((DT

m2
IM5,T
m2

MM5I
M5
m1

)⊗ (IN5,T
n2

MN5I
N5
n1
Dn1))u1

β(∂xu2, ∂yv1)M5,N5 = ((Dm2 ⊗ In2)u2, (Im1 ⊗Dn1)v1)M5,N5

= βvT
1 (Im1 ⊗Dn1)

T (IM5
m1

⊗ IN5
n1

)T (MM5 ⊗MN5)

(IM5
m2

⊗ IN5
n2

)(Dm2 ⊗ In2)u2

= βvT
1 ((IM5,T

m1
MM5I

M5
m2
Dm2)⊗ (DT

n1
IN5,T
n1

MN5I
N5
n2

))u2

Assuming for simplicity thatf1 ∈ Qm1,n1, f2 ∈ Qm2,n2 andf3 ∈ Qm3,n3, and that we treat
the terms(fi, vi) like the terms(ui, vi), the right hand side is approximated by:

vT
1 (MM1

m1
⊗MN1

n1
)f

1
+ vT

2 (MM2
m2

⊗MN2
n2

)f
2

−vT
1 ((Im3,T

m1
Mm3)⊗ (DT

n1
In3,T
n1

Mn3))f 3
+ vT

2 ((DT
m2
Im3,T
m2

Mm3)⊗ (In3,T
n2

Mn3))f 3

If we want to combine theαvT
1 . . . u1 term and theβvT

1 . . . u1 term, we need to choose
M3 = M1. Similarly, we needN4 = N2 to combineαvT

2 . . . u2 andβvT
2 . . . u2.

Under these conditions, and collecting terms, we obtain an equation of the form:

vT
1 (Mx

1 ⊗ Ay)u1 + vT
1 (Bx ⊗ Cy)u2 + vT

2 (Cx ⊗By)u1 + vT
2 (Ax ⊗My

2 )u2 =

vT
1 (Mx

1 ⊗My
1 )f

1
+ vT

2 (Mx
2 ⊗My

2 )f
2
− vT

1 (F x
1 ⊗ F y

1 )f
3
+ vT

2 (F x
2 ⊗ F y

2 )f
3

(8.4)

with, for instance,

Mx
1 = MM1

m1
My

1 = MN1
n1

Mx
2 = MM2

m2
My

2 = MN2
n2

Ax = αMM2
m2

+ βDT
m2
MM4

m2
Dm2 = αMM2

m2
+ βKM4

m2

Ay = αMN1
n1

+ βDT
n1
MN3

n1
Dn1 = αMN1

n1
+ βKN3

n1

Bx = −βIM5,T
m1

MM5I
M5
m2
Dm2

By = IN5,T
n2

MN5I
N5
n1
Dn1
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Cx = −βDT
m2
IM5,T
m2

MM5I
M5
m1

= Bx,T

Cy = DT
n1
IN5,T
n1

MN5I
N5
n2

= By,T

F x
1 = Im3,T

m1
Mm3 F y

1 = DT
n1
In3,T
n1

Mn3

F x
2 = DT

m2
Im3,T
m2

Mm3 F y
2 = In3,T

n2
Mn3

Ax andAy are scaled discretizations of one-dimensional Helmholtz operators, and they
containKN

n which is a spectral discretization of an one-dimensional Laplace operator. We
have studied the properties of these operators in chapter 6.

Since (8.4) has to be valid for all possible vectorsv1 andv2, we can especially choose
test vectors that are zero in one component and arbitrary in the other, and therefore obtain,
finally, the system of equation on one element as:

(Mx
1 ⊗ Ay)u1 + (Bx ⊗ Cy)u2 = (Mx

1 ⊗My
1 )f

1
− (F x

1 ⊗ F y
1 )f

3
(8.5)

(Cx ⊗By)u1 + (Ax ⊗My
2 )u2 = (Mx

2 ⊗My
2 )f

2
+ (F x

2 ⊗ F y
2 )f

3
(8.6)

This is a symmetric system of equations.

We have to choose 8 degrees of integrations, namelyM1 = M3,M2,M4,M5,N1,N2 = N4,
N3 andN5. There is no differentiation in the directions associated to the quadrature degrees
M1,M2,N1,N2. These directions have to be integrated withmi + 1 resp.ni + 1 for exact
integration and withmi resp.ni for diagonal mass matrices.

We differentiate in the directions associated with the quadrature degreesN3 andM4. We
use exact integration with degreesn1 andm2.

In the directions associated with the quadrature degreesM5 andN5, we have a product in
which differentiated and not differentiated components are mixed. We will test both exact
and slightly inexact integration usingM5 = m1+m2

2
, m1+m2

2
− 1 andN5 = n1+n2

2
, n1+n2

2
− 1

To compute on[a, b] × [c, d], we have to multiply the mass matrices forx by b−a
2

and the
ones fory by d−c

2
. The differentiation matricesDmi

andDni
will be replaced by 2

b−a
Dmi

and 2
d−c

Dni
.

If we use this method as a spectral method (i.e., no subdivision into elements, the en-
tire rectangular domain is discretized with one spectral element), it may be advantageous
to multiply the two equations of the system with the inverse of the mass matrices, i.e.,
((Mx

i )−1 ⊗ (My
i )−1). Then one obtains a system of the form

(Ix
1 ⊗Ay)u1 + (Bx ⊗ Cy)u2 = f

1
− (Fx

1 ⊗Fy
1 )f

3
(8.7)

(Cx ⊗ By)u1 + (Ax ⊗ Iy
2 )u2 = f

2
+ (Fx

2 ⊗Fy
2 )f

3
(8.8)

We will discuss how to solve such systems fast in chapter 9.
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As an example, and to show the convergence of such elements, we present the results in
figure8.1, 8.2, 8.3and8.4.

In figures8.1and8.2we show the error solving a tangential boundary value problem with
a spectral method with the Néd́elec I space, i.e.,Qk−1,k ×Qk,k−1 and in figures8.3and8.4
we show the analogous results for the Néd́elec II case. All the figures correspond to a case
with α = 1, β = 1 and with the exact solutionu = (sin(π

2
y)x, sin(π

2
x)y) on [−1, 1]2.

We tested the following choices for quadrature degrees: exact integration and slight under-
integration for purely differentiated terms, exact integration and slight underintegration for
the mass matrices, and exact integration and slight underintegration for the mixed terms.

In figures8.1and8.3we tested the exact integration of the mixed terms, in8.2and8.4we
underintegrated the mixed term by one degree. The results look in all cases very similar.
(The spike in figure8.4corresponds to a badly conditioned eigensystem in the fast diago-
nalization method in the solution algorithm, and it could be avoided by a slightly different
numerical algorithm.) For Ńed́elec I elements, underintegration of the mixed terms intro-
duces an odd-even effect. We always observe exponential convergence. The versions with
exact integration of the differentiated terms outperform the ones with slight underintegra-
tion by a small margin in the exponential convergence. ForN ≥ 20, it is even harder to
compare the different choices. It seems that for underintegrated mixed terms the case with
exactly integrated mass matrices and differentiated terms performs best, in the other cases
there is no choice that performs always best.

In the numerical tests for the model problem in the rest of the thesis we use the versions
with exactly integrated differentiated terms and mixed terms, and the two choices for the
integration of the mass matrix.

In the three-dimensional case, we can analogously derive a system foru1, u2 andu3, in
which all the blocksKij (i = 1, 2, 3, j = 1, 2, 3) of the stiffness matrixK are tensor prod-
uct matrices. These blocks are also tensor products of discretizations of two-dimensional
Helmholtz problems and mass matrices on the diagonal, and mixtures of mass, differentia-
tion, and interpolation matrices on the off-diagonal, and the system is still symmetric. The
fast solution of such systems will be explored in future work, and the extension of at least
some of our algorithms to the three-dimensional case seems to be possible.
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Figure 8.1: Two-dimensionalId + curl curl problem, Ńed́elec I type elements, mixed
terms integrated exactly: Results for different quadrature degrees.
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Figure 8.2: Two-dimensionalId + curl curl problem, Ńed́elec I type elements, mixed
terms slightly underintegrated: Results for different quadrature degrees.
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Figure 8.3: Two-dimensionalId + curl curl problem, Ńed́elec II type elements, mixed
terms integrated exactly: Results for different quadrature degrees.
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Figure 8.4: Two-dimensionalId + curl curl problem, Ńed́elec II type elements, mixed
terms slighly underintegrated: Results for different quadrature degrees.
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8.2 Discretization on a collection of elements

Unfortunately, most domains occuring in practice are too large or too irregular to be
mapped to a single rectangular element. Therefore we will have to work with collections
of elements. We discretize the domain by a number of mapped elements and compute the
element matrices by mapping back to the reference element and by using the discretization
from the last section there. In the context of this thesis, we will only consider examples on
rectangular meshes of elements, and therefore only need to scale the matrices derived on
the reference element to get the correct element matrices. We plan to extend our methods
to cases with general, well-behaved mappingsf from the reference element in future work.

If we work on a domain decomposed into several elements, we will have to subassem-
ble the discretization on the elements into that of the problem on the entire domain. In
the case when the entire domain is logically rectangular and split into a rectangular mesh
of elements of matching degrees, the global discretization has the same structure as on
the elements, and we give the subassembly procedure in the next section. In the general
case a standard subassembly procedure for unstructured finite elements can be used, except
that we have to treat the nontangential components on the interfaces like interior compo-
nents. On a block structured mesh, we will first use the methods from the next section to
subassemble the rectangular blocks, and then subassemble the blocks with a subassembly
procedure for unstructured finite elements.

We have to choose the element mesh and the degrees of the elements. We could consider
them as given and leave the burden of choice to the designer of the discretization for a
particular problem. We could choose them heuristically, to resolve features of the right
hand side and expected features of the solution (for instance by using a geometric grading
of the mesh close to a corner to resolve singularities, or by using points-per-wavelength
rules for the choice of degrees). Lastly, we could design error estimators and refinement
schemes to develop adaptive algorithms which automatically choose those degrees starting
from a given initial discretization. Here, for the sake of brevity and simplicity, we will
consider the mesh and the degrees as given.

8.3 Subassembling vector field spectral elements

In this section we will explain how to subassemble vector field spectral elements under dif-
ferent continuity conditions. Even though we apply it here to (8.5) and (8.6), the derivation
applies to any system of that form, for instance, also to the subassembly of discretizations
of αId+ β grad div in H(div).

The subassembly procedures given in this section can be easily generalized to the case of
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three or more dimensions with different continuity conditions on different components.

8.3.1 Enforcing continuity in tangential components

We assumef
3
≡ 0 in the following computations. They can be easily extended to include

that term.

Assume that there is a rectangular domainΩ split intoN1 × N2 rectangular elements. On
each of the elementsΩij (i = 1, . . . , N1, j = 1, . . . , N2) we use a local spaceQm1

ij ,n1
ij
×

Qm2
ij ,n2

ij
. Since tangential components have to match, the first component has to match in

the x-direction and the second component has to match in they-direction with adjacent
subdomains. That impliesm1

ij = m1
ik =: m1

i andn2
ij = n2

kj =: n2
j . A priori the choice of

n1
ij andm2

ij is not restricted by the matching conditions, and they should be chosen such
that the local discretization is accurate enough but not too expensive.

If we want to obtain a linear system of equations with a tensor product structure like (8.5)
and (8.6), we have to chose then1

ij andm2
ij so that they also match across the domain,

i.e.,n1
ij =: n1

j andm2
ij =: m2

i . In the following we will work with such a choice, andΩij

therefore has as local space
Qm1

i ,n1
j
×Qm2

i ,n2
j

On each of the elementsΩij we have contributions like (8.5) and (8.6):

(Mx
1,i ⊗ Ay

j )u1 + (Bx
i ⊗ Cy

j )u2 = (Mx
1,i ⊗My

1,j)f 1
(8.9)

(Cx
i ⊗By

j )u1 + (Ax
i ⊗My

2,j)u2 = (Mx
2,i ⊗My

2,j)f 2
(8.10)

Now the solution on the rectangular domain is given as two two-dimensional arrays

u1 ∈ R(
PN1

k=1(m1
k+1))×((

PN2
l=1 n1

l )+1) and u2 ∈ R((
PN1

k=1 m2
k)+1)×(

PN2
l=1(n2

l +1))

First we need to define two different types of one-dimensional restriction operators,S for
the directions without enforced continuity andR for those with continuity,

vi = Sx
i v vi

l = vPi−1
k=1(m1

k+1)+l for l = 1, . . . ,m1
i + 1 (8.11)

vj = Ry
jv vj

l = v(
Pj−1

k=1 n1
k)+l for l = 1, . . . , n1

j + 1 (8.12)

vi = Rx
i v vi

l = v(
Pi−1

k=1 m2
k)+l for l = 1, . . . ,m2

i + 1 (8.13)

vj = Sy
j v vj

l = vPj−1
k=1(n2

k+1)+l for l = 1, . . . , n2
j + 1 (8.14)

Using the restriction operators just defined, we obtain the values on the elementΩij from
the global arraysu1 andu2 as follows:

uij
1 = (Sx

i ⊗Ry
j )u1 uij

2 = (Rx
i ⊗ Sy

j )u2
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To add a contributionvij = (vij
1 , v

ij
2 ) to the global arrayv = (v1, v2), we have to compute

v′1 = v1 + (Sx,T
i ⊗Ry,T

j )vij
1 v′2 = v2 + (Rx,T

i ⊗ Sy,T
j )vij

2

Now, subassembling by adding all the contributions of the form (8.9), we obtain for the
first equation:∑

ij

(Sx,T
i ⊗Ry,T

j )
{
(Mx

1,i ⊗ Ay
j )(S

x
i ⊗Ry

j )u1 + (Bx
i ⊗ Cy

j )(Rx
i ⊗ Sy

j )u2

}
=
∑
ij

(Sx,T
i ⊗Ry,T

j )(Mx
1,i ⊗My

1,j)(S
x
i ⊗Ry

j )f1

After some algebraic manipulations we obtain((∑
i

Sx,T
i Mx

1,iS
x
i

)
⊗

(∑
j

Ry,T
j Ay

jR
y
j

))
u1

+

((∑
i

Sx,T
i Bx

i R
x
i

)
⊗

(∑
j

Ry,T
j Cy

j S
y
j

))
u2

=

((∑
i

Sx,T
i Mx

1,iS
x
i

)
⊗

(∑
j

Ry,T
j My

1,jR
y
j

))
f1

and realize that this is still of the form (8.9) resp. (8.5)

(M̃x
1 ⊗ Ãy)u1 + (B̃x ⊗ C̃y)u2 = (M̃x

1 ⊗ M̃y
1 )f1 (8.15)

if we set
M̃x

1 :=
∑

i

Sx,T
i Mx

1,iS
x
i M̃y

1 :=
∑

j

Ry,T
j My

1,jR
y
j (8.16)

Ãy :=
∑

j

Ry,T
j Ay

jR
y
j B̃x :=

∑
i

Sx,T
i Bx

i R
x
i (8.17)

C̃y :=
∑

j

Ry,T
j Cy

j S
y
j (8.18)

M̃x
1 is a block-diagonal matrix in which the blocks are the mass matrices from the elements.

BothM̃y
1 andÃy are subassembled one-dimensional mass matrices; and subassembled stiff-

ness matrices for the Helmholtz type operator, respectively.
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Similarly the second component is subassembled∑
ij

(Rx,T
i ⊗ Sy,T

j )
{
(Cx

i ⊗By
j )(Sx

i ⊗Ry
j )u1 + (Ax

i ⊗My
2,j)(R

x
i ⊗ Sy

j )u2

}
=
∑
ij

(Rx,T
i ⊗ Sy,T

j )(Mx
2,i ⊗My

2,j)(R
x
i ⊗ Sy

j )f2

to give
(C̃x ⊗ B̃y)u1 + (Ãx ⊗ M̃y

2 )u2 = (M̃x
2 ⊗ M̃y

2 )f2 (8.19)

with
M̃x

2 :=
∑

i

Rx,T
i Mx

2,iR
x
i M̃y

2 :=
∑

j

Sy,T
j My

2,jS
y
j (8.20)

Ãx :=
∑

i

Rx,T
i Ax

iR
x
i C̃x :=

∑
i

Rx,T
i Cx

i S
x
i (8.21)

B̃y :=
∑

j

Sy,T
j By

jR
y
j (8.22)

The equations (8.15) and (8.19) are still a symmetric system of equations, and have the
same tensor product structure as (8.9) and (8.10).

8.3.2 Enforcing continuity in all components

There may be circumstances where we want to enforce continuity of all components across
element interfaces. We could have aH1 conforming formulation of aH1 conforming prob-
lem, for instance if we try to approximate vector Laplace or Helmholtz problems, especially
with some additional coupling between components. We could use it also to show thatH1

conforming approaches perform worse forH(curl) formulations thanH(curl) conforming
ones do. Finally, if we try to construct preconditioners for higher-order spectral element
discretizations using lower order discretizations defined on the Gauss-Lobatto-Legendre
mesh associated to the higher-order spectral element (so-called Deville-Mund precondi-
tioners), it would make sense to enforce total continuity for the lower-order discretization
inside the higher-order elements and impose tangential continuity only across interfaces of
the higher-order elements, since that would correspond to the continuity conditions in the
higher-order spectral element spaces, and also simplify the mapping of degrees of freedom
between higher-order and lower-order space.

To derive the form of the system that we obtain when we subassemble (8.9) and (8.10),
and to enforce the continuity of all components across interfaces, we follow the above
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derivation, but change all the restriction operatorsS intoR to obtain

(M
x

1 ⊗ A
y
)u1 + (B

x ⊗ C
y
)u2 = (M

x

1 ⊗M
y

1)f1 (8.23)

(C
x ⊗B

y
)u1 + (A

x ⊗M
y

2)u2 = (M
x

2 ⊗M
y

2)f2 (8.24)

with
M

x

1 :=
∑

i

Rx,T
i Mx

1,iR
x
i M

y

1 :=
∑

j

Ry,T
j My

1,jR
y
j (8.25)

A
y

:=
∑

j

Ry,T
j Ay

jR
y
j B

x
:=
∑

i

Rx,T
i Bx

i R
x
i (8.26)

C
y

:=
∑

j

Ry,T
j Cy

jR
y
j (8.27)

M
x

2 :=
∑

i

Rx,T
i Mx

2,iR
x
i M

y

2 :=
∑

j

Ry,T
j My

2,jR
y
j (8.28)

A
x

:=
∑

i

Rx,T
i Ax

iR
x
i C

x
:=
∑

i

Rx,T
i Cx

i R
x
i (8.29)

B
y

:=
∑

j

Ry,T
j By

jR
y
j (8.30)

8.3.3 Enforcing continuity in normal components

In the case that the element discretization (8.9) and (8.10) corresponds to aH(div) con-
forming discretization of a problem inH(div), we have to subassemble the contributions
from the elements enforcing continuity of the normal component across the interfaces. We
obtain the subassembled system by following the derivation of the first subsection and ex-
changing allS andR:

(M̌x
1 ⊗ Ǎy)u1 + (B̌x ⊗ Čy)u2 = (M̌x

1 ⊗ M̌y
1 )f1 (8.31)

(Čx ⊗ B̌y)u1 + (Ǎx ⊗ M̌y
2 )u2 = (M̌x

2 ⊗ M̌y
2 )f2 (8.32)

with
M̌x

1 :=
∑

i

Rx,T
i Mx

1,iR
x
i M̌y

1 :=
∑

j

Sy,T
j My

1,jS
y
j (8.33)

Ǎy :=
∑

j

Sy,T
j Ay

jS
y
j B̌x :=

∑
i

Rx,T
i Bx

i S
x
i (8.34)

Čy :=
∑

j

Sy,T
j Cy

jR
y
j (8.35)
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M̌x
2 :=

∑
i

Sx,T
i Mx

2,iS
x
i M̌y

2 :=
∑

j

Ry,T
j My

2,jR
y
j (8.36)

Ǎx :=
∑

i

Sx,T
i Ax

i S
x
i Čx :=

∑
i

Sx,T
i Cx

i R
x
i (8.37)

B̌y :=
∑

j

Ry,T
j By

jS
y
j (8.38)

8.4 Enforcing boundary conditions

If we solve the systems (8.5) and (8.6) or (8.15) and (8.19) as they are, we will solve a
problem with natural boundary conditions. The natural boundary conditions for the model
problem are that the tangential components ofβ curl of the solution are equal to zero.
(See chapter 3, especially section 3.2.3.) Ifβ is a scalar function this is equivalent to the
vanishing of the tangential components ofcurl u on the boundary. In the two-dimensional
case,curlu is a scalar, so thatcurlu = 0 on the boundary.

If we have inhomogenous natural boundary conditions on a part of the boundary, sayΓNBC ,
then we have to subtract a boundary integral from the right hand side of the variational
formulation. If

γt(β curl u)|ΓNBC
= gNBC

then the additional boundary term is

−
∫

ΓNBC

gNBCγt(v) (8.39)

On a rectangular geometry aligned with the coordinate axes,γt(v) is always one of the com-
ponents (in the two-dimensional case) or two of the components (in the three-dimensional
case). So the boundary integral turns into an integral of one of components withgNBC or
of the inner product of two of the components with the vector functiongNBC . In the two-
dimensional case we can discretize it exactly like the boundary integral for inhomogenous
Neumann boundary conditions in section 6.1. In the three-dimensional case we obtain a
discretization by Gaussian quadrature on the boundary in a similar way.

If we solve the essential boundary value problem, i.e., pose (8.1) inH0(curl), then we have
to force the tangential degrees of freedom on the boundary to be zero. Algorithmically, we
pass to the non-tangential part of the system (8.5) and (8.6) or (8.15) and (8.19) and solve
it exactly as we solved it in the case for natural boundary conditions. Taking the non-
tangential part corresponds to a restriction

(u1
NT , u

2
NT ) = ((Ix ⊗Ry

I )u1, (R
x
I ⊗ Iy)u2)
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with I denoting the identity in the appropriate direction andRI the restriction to the interior
part (everything except the first and the last component of the vector). The system for the
non-tangential part has again the form of (8.5) and (8.6), only that the matricesAy andAx

are replaced by their principal minor involving only the interior, and that the matricesBx,
By, Cx, andCy are replaced by submatrices missing the first and last row or column.

Nonhomogenous tangential boundary conditions are treated similarly to Dirichlet bound-
ary conditions for the Helmholtz type problem from chapter 6. We first perform a lifting of
the tangential boundary conditions – we usually take the nodal interpolant of the boundary
conditions which seems to be working satisfactorily, but we could as well use one with
smaller maximal gradient – and then use the lifting to correct the right hand side of the dis-
crete problem, and reduce it to a problem with zero tangential boundary conditions which
we solve as described in the last paragraph.

All these boundary conditions still preserve the tensor product structure of the system, since
they only change the right hand side or correspond to taking submatrices.

The Silver-M̈uller boundary condition, imposed on a partΓA of the boundary , corresponds
to the addition of a term of the form∫

ΓA

ργt(u)γt(v) (8.40)

to the bilinear form on the left hand side. We will only be able to write the system in the
form (8.5) and (8.6) for special forms ofρ, such as for constantρ.

To give an indication of how such a problem with constantρ is solved, we will explain the
idea in a special case without working out all the details in the general setting.

Assume thatΩ = [−1, 1]2 is discretized by one spectral element, and therefore we have a
system (8.5) and (8.6) with the matrices given after (8.4). Let ΓA be [−1, 1]×−1. OnΓA,
γt(u) andγt(v) areu1 andv1, respectively. We discretize (8.40) and add it to (8.5), after
removing thevT

1 . (ey
1 denotes the vector(1, 0, . . . , 0) of lengthn1.)∫

ΓA

ργt(u)γt(v) =

∫ 1

−1

ρu1|y=−1v1|y=−1dx ≈ ρv1|y=−1
TMx

1 u1|y=−1

= [(Ix
1 ⊗ ey

1)v1]
T [Mx

1 ⊗ ρ][(Ix
1 ⊗ ey

1)u1] = vT
1 (Mx

1 ⊗ ρey,T
1 ey

1)u1 (8.41)

to obtain a system (8.5’) and (8.6), where the only change is thatAy has been replaced by
Ay ′ = Ay + ρey,T

1 ey
1. The system (8.5’) and (8.6) can be solved exactly like (8.5) and (8.6).

In the case of arbitraryρ, we can split the variablesu of the system (8.15) and (8.19) which
we will denoteKu = M f into two vectorsuA anduI corresponding to the tangential
components ofu onΓA and the rest, respectively, and obtain the system:
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(
KAA KAI

KIA KII

)(
uA

uI

)
=

(
MAA MAI

MIA MII

)(
fA

fI

)
=:

(
f̃A

f̃I

)
(8.42)

We can reduce the solution of this system to the solution of the Schur complement system:(
KAA −KAIK

−1
II KIA

)
uA = f̃A −KAIK

−1
II f̃I (8.43)

followed by the solution of the tangential boundary value problem:

KIIuI = f̃I −KIAuA (8.44)

K−1
II vI can be computed fast by our direct solvers for the tangential boundary value prob-

lem.

SI = −KAIK
−1
II KIA can be constructed by as many tangential boundary value problem

solves as there are mesh points (nA) onΓA.

In this way we can constructSA = KII + SI andfS = f̃A −KAIK
−1
II f̃I by nA + 1 solves

of a tangential boundary value problem.

SAuA = fS can then be solved by a direct solver. If we have uniform degreem1 = n1 =
m2 = n2 = N , this system is of sizecN × cN instead of2N2 × 2N2, sinceuA discretizes
the solution on a manifold of lower dimension thanuI . uI is then computed by one more
tangential boundary value problem solve.

We will consider both the tensor product solvers for problems with Silver-Müller boundary
conditions for constantρ and the Schur complement approach for arbitraryρ in future work.
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Chapter 9

Fast direct solvers for tensor product
systems

In this chapter, we will present fast solvers that take advantage of the tensor product struc-
ture of the discretizations. Discretizing the scalar Poisson or Helmholtz problem (or any
separable problem for that matter) on a rectangular domain, as in chapter 6, yields a sum of
d tensor products matrices for ad-dimensional problem. Discretizing the Maxwell model
problem (and similar problems) inH(curl) on a rectangular geometry, as in chapter 8,
leads to a block tensor product matrix.

First we present a short introduction into tensor product matrices, operations on them,
and efficient implementations of such operations in the first section. The second section
presents sum of tensor product discretizations and their solution. We give the general form
of discretizations to which the method can be applied, and discuss some ways to actually
implement the solution algorithm. In the third section we discuss the block tensor product
matrix case, which is of use in the solution of vector field problems, and is here applied to
the solution of the Maxwell model problem on a rectangular domain. In direct substructur-
ing and iterative substructuring methods we solve a Schur complement system involving
only the shared, tangential, components on the interface. In the fourth section we discuss
how to apply the local Schur complement, its inverse, and the global Schur complement to
a vector. We also describe the subassembly and direct solution of the Schur complement
system. We close the chapter with a section presenting some numerical examples for some
of the methods introduced in this chapter.

122



9.1 Tensor product matrices

We denote the tensor product ofd matricesAi of sizeni × ni as follows:

T = (⊗d
i=1Ai)

It is the matrixT with the entries

T (j(k1, . . . , kd), j(m1, . . . ,md)) =
d∏

l=1

Al(kl,ml)

wherej(·) is the mapping from the index in thed-dimensional grid of size(n1, n2, . . . nd),
containing in totalN =

∏d
l=1 nl grid points, to the index in the vector.

We define the mappingsj andJ between vectors of dimension
∏d

l=1 nl andd dimensional
arrays as

J [U ](j(k1, . . . , kd)) = U(k1, . . . , kd)

and
j[u](k1, . . . , kd) = u(j(k1, . . . , kd))

A matrix-vector multiplication of a tensor product matrix⊗d
i=1Ai with a vectoru represent-

ing a function on a regulard dimensional grid of size(n1, n2, . . . , nd) can be implemented
by representing the vectoru as ad dimensional arrayj[u] and multiplying the array along
dimensioni with theni×ni matrixAi. In restriction and prolongation operators the matri-
cesAi can also be rectangular matrices instead of square matrices.

For instance, in the case of two dimensions, we can write withU = j[u]:

(A⊗B)u = AUBT

In the way just explained, multiplication with a tensor product matrix can be implemented
in O((

∑d
l=1 ni)

∏d
l=1 ni) = O((

∑d
l=1 ni)N) with a standard matrix-matrix multiplication,

instead of theO(N2) needed for a general matrix of the same size. We can reduce the
operation count further by using a fast matrix-matrix multiplication.1

Assuming that a matrix-matrix multiplication of twon × n matrices needsO(nα) time2,
and that the multiplication of an × n with a n × m matrix takesO(mnβ) time3, the

1See Golub and Van Loan [49] for an introduction to matrix computations; Strassen [92] or Coppersmith
and Winograd [29] for original algorithms for square matrices; Knight [63] or Huang and Pan [61] for algo-
rithms for rectangular matrices. See also [65, 81, 64, 80, 79].

2α is smaller or equal 2.376, see Coppersmith and Winograd [29], α = 2 or α > 2 is the subject of a bet
between Trefethen and Alfeld, seehttp://www.math.utah.edu/˜alfeld/bet.html .

3β = α− 1 is given for the special casem = nr with r a rational number in Huang and Pan [61], among
other results.β = α − 1 is especially true form = n, for instance in the case of an uniform number of grid
points in all directions,m = n = ni. In this case all statements in the following involvingβ − 1 should be
readα− 2.
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multiplication by a tensor product matrix utilizing fast matrix-matrix multiplication takes
O(
∑d

k=1 n
β−1
k N) time. In the best possible case, ifα should turn out to be 2 (andβ = 1),

this would reduce toO(dN). If the factorsAi in the tensor product have additional struc-
ture, the complexity can be even further reduced. (See, e.g., Buis and Dyksen [23], and
references therein.)

The inverse of a tensor product matrix is the tensor product of the inverses of the tensor
product factors. If the inverses of the factors are available, or can be computed easily, the
inverse can be applied as a tensor product. Even when the explicit computation of the
inverse is more time-intensive, it is likely, especially in higher-dimensional cases, that its
computation will be of lower complexity than the other steps in the algorithms.

If the inverses are not available, or it would be too expensive to form them, we can use
the idea from de Boor [40, 39] to implement the inverse of the tensor product matrix using
solvers (with multiple right hand sides) for the problemsAixi = bi.

For further discussions about implementation and use of tensor product matrices, see [23,
40, 39, 83].

9.2 Sums of tensor product matrices: solving scalar prob-
lems

Many finite difference discretizations of partial differential equations of the form

Lu =
d∑

i=1

Pi(
∂

∂xi

)u = f (9.1)

can be written in a formLhuh = fh with

Lh =
d∑

i=1

(⊗i−1
j=1Ij)⊗ Li ⊗ (⊗d

j=i+1Ij). (9.2)

Here,Li is ani × ni matrix related to the discretization ofPi(
∂

∂xi
), andIi is the identity

matrix for theith coordinate direction.

Also many finite element or spectral element discretizations of (9.1) for rectangular meshes
can be written in a similar form (if tensor product basis functions and tensor product nu-
merical integration are used):

Lh =
d∑

i=1

(⊗i−1
j=1Mj)⊗Ki ⊗ (⊗d

j=i+1Mj). (9.3)
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Here,Li is ani × ni matrix related to the discretization of an one-dimensional variational
problem involvingPi(

∂
∂xi

) – an one-dimensional stiffness matrix – andMi is an approxi-
mation for the integration operator – an one-dimensional mass matrix.

(9.3) can be transformed into (9.2) by multiplying both sides ofLhuh = fh with the tensor
product of the inverses of the one-dimensional mass matrices. We will give references for
methods for the solution of (9.2) and for the solution of (9.3). Many of the algorithms
are given for the two-dimensional or three-dimensional case in the literature. The two-
dimensional case corresponds to the matrix equations (withU = j[u]):

AT U + UBT
T = FT respective AT UB

T
T + CT UD

T
T = FT .

These equations are also known asSylvester matrix equations.

Several fast solvers for this system are transform methods, i.e., they multiply the system
Lhu = fh with a judiciously chosen tensor product matrix such that the resulting system
is of a special form and can be solved very efficiently. For an introduction to some of such
methods, see, e.g., Canuto, Hussaini, Quarteroni, and Zang [24, section 5.1], or Gardiner,
Laub, Amato, and Moler [47].

The one we chose to implement is the algorithm of Lynch, Rice, and Thomas [67] (or its
generalization), also called thefast diagonalization method. It consists of diagonalizing all
the non-identity factors in the form (9.2). It has the advantage of being easy to implement,
and it generalizes to an arbitrary number of dimensions.

Using this algorithm, the matrixLh from (9.2) can be inverted in the following way

L−1
h = (⊗d

i=1Pxi
)

(
d∑

i=1

(⊗i−1
j=1Ixj

)⊗ Λxi
⊗ (⊗d

j=i+1Ixj
)

)−1

(⊗d
i=1P

−1
xi

)

where
Lxi

Pxi
= Pxi

Λxi

is the diagonalization ofLxi
to Λxi

, i.e., its spectral decomposition4.

The inverse of the middle factor of the product inL−1
h corresponds to a diagonal scal-

ing in each direction. Multiplication with the middle factor corresponds on the level of
d-dimensional arrays to a component-wise multiplication ofU = j[u] by another array of
the same size. (We can also apply other matrix operators besides the inverse defined by a
functional calculus on the eigenvalues of the matrix in this way.) The complexity of this
step isO(

∏d
k=1 nk) = O(N) since it requires exactly one multiplication per variable.

4Using the QR algorithm from Golub and Van Loan [49, section 7.5.6], we needO(
∑

i n3
i ) to compute

that, which in the case of equal size in all directions simplifies toO(dn3). This is a lower order term for
d ≥ 3; for d = 2 we need to do at leastO(n) solves to amortize this set-up cost.
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The first and the third factor are tensor products. If we use the fast matrix-matrix multipli-
cation method to compute the product of the factors and a vector, we needO(

∑d
k=1 n

β−1
k N)

time to apply the tensor products. This is the dominant factor in the complexity forβ > 1,
and it is of the same magnitude forβ = 1 as the component wise multiplication.

Therefore, ifα = 2 andβ = 1, the fast diagonalization method is of quasi-optimal com-
plexity O(dN) if it uses that fast matrix multiplication method. For uniform number of
points and straightforward matrix multiplication we loose a power inn and obtain an al-
gorithm of complexityO(dnd+1) = O(dnN). This algorithm is attractive especially for
higher-dimensional problems.

Instead of diagonalizing all the matricesLi in the sum of tensor product discretization, we
could diagonalize all except one and solve the remaining decoupled one-dimensional prob-
lems. In some cases, especially in two dimensions, that results in lower computational cost,
see Canuto, Hussaini, Quarteroni, and Zang [24, pages 135–136] and Zang and Haidvogel
[106].

Explicit transformation to the eigenbasis may be unstable, if the eigensystem is ill-
conditioned. In this case, a transformation to Schur forms is more stable, see Bartels and
Stewart [13]. Since we did not observe instabilities or reductions in accuracy in our tests,
we used the fast diagonalization method.

We solve the spectral element system by transforming it first into the form (9.2) by multi-
plying by the inverse of the mass matrix, and using the fast diagonalization method. Alter-
native, possibly more stable algorithms and implementations for the two-dimensional case
(i.e., the Sylvester matrix equations) are described in Gardiner, Laub, Amato, and Moler
[47] and Kågstr̈om and Poromaa [62].

For a fuller discussions of the issues involved in the implementation and the choice between
the different algorithms, see the papers cited above and references therein.

We could describe here also for the scalar case the fast application, construction, and sub-
assembly of Schur complement systems with respect to the interfaces that we present in
the fourth section for the vector field case. Since the implementation is straightforward and
very similar to (and easier than) the case discussed in the fourth section, we will not do so
for conciseness.

126



9.3 Block tensor product matrices: Solving vector field
problems

In this section we describe fast direct solvers for the systems (8.5), (8.6); (8.7), (8.8); and
(8.15), (8.19). (8.5) and (8.6) are (with the matrices defined after (8.4)):

(Mx
1 ⊗ Ay)u1 + (Bx ⊗ Cy)u2 = (Mx

1 ⊗My
1 )f

1
− (F x

1 ⊗ F y
1 )f

3
(8.5)

(Cx ⊗By)u1 + (Ax ⊗My
2 )u2 = (Mx

2 ⊗My
2 )f

2
+ (F x

2 ⊗ F y
2 )f

3
(8.6)

(8.15) and (8.19) are of the same form, only with different matrices as defined in (8.16)-
(8.18) and (8.20)-(8.22).

(8.7) and (8.8) are

(Ix
1 ⊗Ay)u1 + (Bx ⊗ Cy)u2 = f

1
− (Fx

1 ⊗Fy
1 )f

3
(8.7)

(Cx ⊗ By)u1 + (Ax ⊗ Iy
2 )u2 = f

2
+ (Fx

2 ⊗Fy
2 )f

3
(8.8)

We will only discuss the solution of (8.5) and (8.6) in the following form

(Mx
1 ⊗ Ay)u1 + (Bx ⊗ Cy)u2 = g1 (9.4)

(Cx ⊗By)u1 + (Ax ⊗My
2 )u2 = g2 (9.5)

since (8.7) and (8.8) correspond to a specific choice ofMx
1 andMy

2 in (8.5) and (8.6), and
the exact form of the right hand side does not matter in the proposed algorithm.

We reduce (9.4) and (9.5) to a system inu1, by solving the second equation (9.5) for u2,
and substituting the result into (9.4):

u2 = ((Ax)−1 ⊗ (My
2 )−1)(g2 − (Cx ⊗By)u1) (9.6)

(Mx
1 ⊗ Ay − (Bx(Ax)−1Cx)⊗ (Cy(My

2 )−1By))u1 = g̃1 (9.7)

with: g̃1 = g1 − ((Bx(Ax)−1)⊗ (Cy(My
2 )−1))g2 (9.8)

We could use the methods mentioned in the last section for Sylvester matrix equations to
solve the system

(AT ⊗BT + CT ⊗DT )u1 = g̃1 (9.9)

with

AT = Mx
1 BT = Ay CT = −(Bx(Ax)−1Cx) DT = (Cy(My

2 )−1By) (9.10)
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We chose to reduce (9.9) to the form (9.2) and then use the fast diagonalization method.
This reduction is effected by premultiplying (9.9) with5 (A−1

T ⊗D−1
T ):

(I ⊗ (D−1
T BT ) + (A−1

T CT )⊗ I)u1 = (A−1
T ⊗D−1

T )g̃1 (9.11)

For the case of the subassembled system (8.15) and (8.19) with (8.16)-(8.18) and (8.20)-
(8.22), we can find a simplified, subassembled form ofDT :

DT = Cy(My
2 )−1By

=

(∑
j

Ry,T
j Cy

j S
y
j

)(∑
j

Sy,T
j My

2,jS
y
j

)−1(∑
j

Sy,T
j By

jR
y
j

)

=

(∑
j

Ry,T
j Cy

j (My
2,j)

−1By
jR

y
j

)

since differentSy
j have non-overlapping support. There are no such simplifications in the

other matrices in (9.11).

Now (9.11) can be solved with the fast diagonalization method from the last section to
obtainu1. We can then use (9.6) to obtainu2 at the cost of two more tensor product ma-
trix vector applications, if we store(Ax)−1 and(My

2 )−1. The second is a block diagonal
matrix, and is therefore easily inverted, the first one is a discretized Helmholtz operator
for which we already have computed the spectral decomposition in the setup of the fast
diagonalization method, so that we can easily form its inverse.

We have implemented this method and will present some examples and timings in the last
section.

In a few numerical tests, we observed almost singular matrices of eigenvectors in our cho-
sen set-up for the fast diagonalization method. For those cases, an alternative reduction to
the form (9.2) seems to lead to a stable solution algorithm. We intend to implement a gen-
eralized Sylvester equation solver in future work as a slower, but more stable alternative.

9.4 Direct and iterative substructuring methods

In certain circumstances it is preferable to work on the system of the interface variables
(i.e., variables that are shared across element interfaces). For instance, in a direct solution

5(C−1
T ⊗B−1

T ) results in the same form with the inverse of the matrices in the sum of tensor product form
(9.11). In the case of the reduced system (8.7) and (8.8), AT = A−1

T = Ix
1 and therefore we prefer the choice

made in the text.

128



of the model problem on non-rectangular domains, it is advantageous, both in terms of
computing time and needed memomory, to reduce the large global system to the system on
the interface. This is standard practice forp-version finite element methods and is called in
that contextstatic condensation.

For large systems, a recursive application of this idea is possible and has been widely used
in the engineering community, especially in structural analysis, under the name of(direct)
substructing. In it one introduces several levels of super-elements, and the large domain is
split into a few (tens to hundreds) highest-level substructures. The interior variables of ele-
ments, and then, recursively, the interior variables of the super-elements are eliminated. The
(small) global system on the interface of the highest-level substructures is solved directly,
and the local solution is found by backsolving in the super-elements and local solves on
the element level (see, e.g., Smith, Bjørstad, and Gropp [91, section 4.1] or Przemieniecki
[84]).

We will present numerical results for a direct solver for the Schur complement system on
the element interfaces in the next section. We could use the fast direct tensor product solvers
from the last section on rectangular superelements, or higher levels of substructuring by
easy extensions of our algorithms and implementations. We will explain later in this section
how to subassemble the Schur complement system for the interfaces.

There are also iterative substructuring methods that try to solve the Schur complement
system by iterative methods such as Krylov subspace methods. Even though the condition
number of the Schur complement is usually much smaller than the condition number of
the entire system, the increased computational expense of handling the Schur complement
tends to diminish potential savings in iterative methods without preconditioners. Therefore
efficient preconditioner for the Schur complement need to be constructed. We will not
present such preconditioners in this thesis, we will just discuss the implementation of some
of the modules that need to be implemented in such preconditioners and iterative methods.

A system of the form (8.5) and (8.6) can be seen as a system

Ku = fM(:= Mf)

with K being a block tensor product matrix, andu being a concatenation ofu1 andu2. We
splitu into a vectoruT containing the tangential components on the element interfaces, and
into a vectoruI containing the other, interior, variables.(

KII KIT

KTI KTT

)(
uI

uT

)
=

(
fI

fT

)
We will reduce this system to the Schur complement system

STuT = fS (9.12)
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We need to subassembleST from local contributionsS(i) and also decide on a layout ofuT

in terms of its local contributionsu(i)
T (we assume that we haveN elements):

uT =
N∑

i=1

RT
i u

(i)
T

The local contributionsS(i) come from the element matricesK(i) andM (i) and the load
vectorsf (i)

M . We split these into tangential and interior part:

K(i) =

(
K

(i)
II K

(i)
IT

K
(i)
TI K

(i)
TT

)
f

(i)
M =

(
f

(i)
I

f
(i)
T

)
u(i) =

(
u

(i)
I

u
(i)
T

)

We can locally eliminate the variablesu(i)
I to obtain as Schur complement of the element

matrix:
S(i) = K

(i)
TT −K

(i)
TI(K

(i)
II )−1K

(i)
TT

Subassembling these local Schur complements, we obtain the global Schur complement
matrixST :

ST =
N∑

i=1

RT
i S

(i)Ri

Likewise, the right hand sidefS can be subassembled from local contributions:

fS = fT −
N∑

i=1

RT
i K

(i)
TI(K

(i)
II )−1f

(i)
I

In iterative substructuring methods we do not need to formST or S(i) explicitly, we just
need a routine to apply toST to a vectoru. That can be done in parallel by first computing
the local parts ofu, u(i) = Riu, appyingS(i) on each elements(i) = S(i)ui and then
assembling the resultsSTu = s =

∑N
i=1R

T
i s

(i).

ApplyingS(i) to a vectoru(i) on the element corresponds to three sparse matrix-vector mul-
tiplication and the evaluation of(K(i)

II )−1v, which corresponds to the solution of a tangential
boundary value problem in the interior of the element.

In some domain decomposition preconditioners such as Neumann-Neumann methods we
also need a way to apply(S(i))−1 fast. As explained in Smith, Bjørstad, and Gropp [91,
section 4.2.1], an inverse ofS(i) can be found be factoringK(i) and restricting the result,
i.e.,

(S(i))−1u = (0 I)(K(i))−1

(
0
I

)
u
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This corresponds to a local solve involving the entire element matrixK(i). As we saw in
chapter 8, this corresponds to the solution of a natural boundary value problem, which can
be obtained fast with fast diagonalization methods as explained in the third section of this
chapter.

If we intend to solve the Schur complement system for the interface variables directly, we
need to explicitly formS(i) andS.

One of the ways to explicitly formS(i) without computations onn2 × n2 matrices is to
computeS(i)ek for all the unit vectors on the tangential components on the interface of the
element.S(i)ek could be computed as above withv = ek. We implemented an optimized
version that takes advantage of the special form of the right hand side and of the special
matrix that we multiply the solution with (that is,K(i)

TI) to avoid unneeded computations.

To form the global Schur complement system, we first have to obtain a mapping from the
local (tangential) variables to the global vector of tangential components, and then we can
use a standard subassembly procedure with that index information.

We show the tangential variables for one of the elements schematically in figure9.1.

First component Second component

Figure 9.1: Tangential degrees of freedom for one of the elements to be subassembled.

To find the local-to-global mapping, we have to make sure that all the local tangential
components are indexed, and in such a way that variables to be identified have the same
index. One way to do so is to (arbitrarily; usually geometrically) order the elements, then
to iterate over the elements and give indices (in increasing order, or in increasing order
for different types of variables, such as corner or interior of edge) to variables that are not
indexed yet. If such a variable is shared with other elements, the given index is also entered
into the other elements’ variable index.

The corner variables are drawn separate from the interior edge in figure9.1. As discussed
in section 7.1.2 on page 60, it is not a priori clear which components should be matched
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at corners to obtain the best results. There are three choices: no matching (local element
always indexes variable and does not copy index to anywhere else), matching together with
the tangential edges they are endpoints of (that means that we treat them as a part of the
edge in the indexing, and we only have to keep track if the edge has been indexed or not)
or matching all components (treat corner and edges separately, keep track of indexing state
of both corners and edges).

Using the index information computed as explained above, represented mathematically as
RT

i , the subassembly ofST corresponds to adding the element Schur complement matrix
S(i) to the appropriate submatrix ofST . The right hand sidefS can be also be obtained by
adding the local (and locally computed) contributions to the appropriate subvector offS.

The subassembly procedure has been implemented for the general case. The topological
information has to be given locally, element by element. The program will be extended to
derive this information from a global geometric description at a later point.

The system (9.12) is then solved directly by Gaussian elimination.

We will show some numerical examples for the Schur complement direct solver introduced
above in the next section.

9.5 Numerical experiments

In this section we test both the vector field tensor product solver introduced in section 10.3,
and the interface Schur system solver introduced in the last section.

We solve a zero tangential boundary value problem in[−1, 1]2 with the exact solution
u = (sin(π

2
y)x, sin(π

2
x)y) andα = β = 1.

The domain[−1, 1]2 is covered by a uniform mesh ofM ×M identical spectral Ńed́elec
elements of degreeN × N . We use the discretization given in chapter 8. We chose the
integration degrees high enough so that all terms are integrated exactly, unless otherwise
noted. We treat corners in the subassembly like the edges they are endpoints of. (The Schur
solvers can be easily extended to any of the discussed continuity conditions at the corners.
Initial tests did not show any significant differences for different corner conditions.)

We implemented the methods in MATLAB version 6 in a straightforward, modular manner;
without attempting to optimize the code. The codes were run on a Ultra 10 workstation
with 512 Mb main memory with an UltraSPARC 1 processor running at 440Mhz. The
CPU times reported later were obtained by the cputime function provided by matlab. We
monitored the running matlab jobs with top, and stopped them when swapping and iowait
took more than 90% of the time for extended periods of time. CPU time measurements for
jobs dominated by swapping, paging or waiting for IO are extremely unreliant, and the wall
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clock time essentially measures the performance of the paging algorithm and of the swap
disk.

In figure9.26, we present a comparison of the accuracy of the interface Schur solver and
of the vector field tensor product solver, on5 × 5 spectral elements, and we vary the de-
gree of the spectral elements. We test both exactly integrated and slighly underintegrated
(diagonal) mass matrices. The two solvers perform very similar, the Schur solvers having a
slighly higher accuracy for largeN . Comparing the results in these figures with the results
from chapter 6, especially figures6.13and6.14, we realize that the convergence for the
Maxwell model problem is very similar to the convergence of spectral element methods for
the Poisson problem.

In figure 9.3, we show the accuracy of the two solvers for local degreesN × N with
N = 5, 10, 15, when the number of spectral elements is varied. Because of the higher
memory requirements and CPU times dominated by swapping, we report the results for the
Schur solver for the10×10 and15×15 case only for1×1 to 10×10 spectral elements. The
gap for the Blocktensor 15x15 case at 7 spectral elements stems from a badly conditioned
eigensystem in the fast diagonalization solver. A method that performs well also for this
case can be obtained by a slight change in the implementation, choosing the setup for the
fast diagonalization solver that gives the better conditioned eigensystems, or opting for a
solver for the generalized Sylvester matrix equation as described in Gardiner, Laub, Amato,
and Moler [47].

The two methods perform very much alike with respect to accuracy. The use of an increas-
ing number of subdomains corresponds to ah-extension and therefore we do not expect
exponential convergence. For both the5 × 5 and10 × 10 case, we observe algebraic con-
vergence, in the latter followed by stagnation after the maximal accuracy of the method is
reached. The15×15 case performs already best for 1 spectral element and has its maximal
accuracy there. Since we are already at the maximal accuracy of the method, there is no
hope of improved accuracy for larger number of elements, unless other steps to improve
accuracy are taken, such as quadruple precision or iterative refinement.

For the higher-degree examples (N = 10, 15), we see that the Schur solver yields slightly
more accurate solutions. As reported above and below it needs more memory and time for
largeM and is therefore not competetive for regular decompositions into many spectral
elements.

In the next four figures, figures9.4–9.7, we report some timings of the two solvers. We use
exact stiffness, mass, and mixed term matrices.

Figures9.4and9.5correspond to the cases ”Schur” and ”Blocktensor” in figure9.2. Figure
9.4shows the results for the vector field tensor product solver. We see that most of the time

6The figures for this section are given at the end of the chapter.
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is spent on subassembling, the time of the actual solve is growing slowly withN , being less
than two seconds for degree50 × 50. The element matrices are computed in the element-
wise setup, which takes an almost neglible time.

In figure9.5we show the timings for the interface Schur solver. Here, the most time is spent
on the Schur and local solves.7 The element-wise setup time, which includes the compu-
tation of the elementwise Schur complement with respect to the tangential components on
the interface, grows rather slowly withN , being less than four seconds for degree50× 50.
Subassembling the Schur complement matrix and setting up the Schur complement solver
takes the least percentage of the time.

Comparing figures9.4 and9.5 we see that for the problem considered, the block tensor
product solve is slightly less than two times as fast. Comparing the times excluding the
setup times – for instance in local solvers in domain decomposition methods we will only
perform the setup once and use only the prepared solver in the iterations – we see that the
solve in the block tensor product case is much faster than the forming of the right hand side,
the Schur solve and the local solves in the interface Schur solver, at degree 50 we need< 2
seconds for the first, compared with> 14 seconds for the latter.

In figures9.6and9.7we give the CPU times for the solvers for varying numbers of spectral
elements of degree10 × 10. We observe very similar behavior in figure9.6 compared to
figure9.4. Preparing the tensor product solve is the most time-consuming step, the actual
solve takes less than one second for20×20 spectral elements. In figure9.7, the correspond-
ing figure for the interface Schur solver, the solution of the interface Schur sytem and of
the local problems is still the most time-consuming part. We observe that for larger num-
bers of subdomains the subassembly takes longer than the element-wise setup. This is to be
expected, since the elements are all of the same fixed degree, while the Schur complement
system grows in size. Comparing again the performance of the block tensor product solver
and the interface Schur solver, atM = 10, we see that the Schur solver together with set-up
is more than twenty times slower than the tensor product solve, the solve step itself is more
than a hundred times slower,> 10 seconds against< 0.1 second.

7The former could be parallelized using a standard parallel dense linear solver. The local solves are em-
barrassingly parallel: after the interface values are known, the local solves are completely independent of
each other.

134



5 10 15 20 25 30 35 40 45 50
−12

−11

−10

−9

−8

−7

−6

−5

−4

N

lo
g 10

(|e
rro

r| ∞)

Schur
Schur (diag. MM)
Blocktensor
Blocktensor (diag. MM)

Figure 9.2: Direct solution ofId + curl curl problems: Comparison between interface
Schur solvers and vector field tensor product solvers,5× 5 spectral elements of degreeN
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Figure 9.4: Direct solution ofId + curl curl problems: CPU times for the vector field
tensor product solver,5× 5 spectral elements of degreeN (Néd́elec II).
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Figure 9.5: Direct solution ofId+ curl curl problems: CPU times for the interface Schur
solver,5× 5 spectral elements of degreeN (Néd́elec II).
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Figure 9.6: Direct solution ofId + curl curl problems: CPU times for the vector field
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Chapter 10

Overlapping Schwarz methods:
Implementation and results in two
dimensions

In this chapter, we will present implementations of one- and two-level overlapping Schwarz
preconditioners for the model problem

η1(u,v)0 + η2(curl u, curl v)0 = (f ,u)0

in two dimensions.

To demonstrate why good preconditioners are needed, we present the results in tables10.1
and10.2. They show the behavior of a conjugate gradient method without preconditioner
for η1 = η2 = 1. In table10.1we show how increasing the number of spectral elements
M ×M influences the results, and in table10.2we show the effect of increasing the local
degreesN × N of the spectral elements (Néd́elec II). We report the number of iterations
that the conjugate gradient method needed to reduce thel2-norm of the residual by a factor
of TOL = 10−3, a condition number estimate obtained from the conjugate gradient param-
etersαn andβn, the maximum error of the last iterate on the associated Gauss-Lobatto-
Legendre mesh, and the CPU time.

We see that the number of iterations and the condition number grow very fast with the
number of spectral elements and the degree, the condition number reaching about106 for
10× 10 spectral elements of degree10× 10.

Obviously, there is much room for improvement. To show that very efficient precondition-
ers can be constructed, we present table10.3with results from one- and two-level precon-
ditioners that we will implement in this chapter. We see that for10× 10 spectral elements,
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M iter κest(K) ||uiter − u∗||∞ tCPU in s

1 53 1.99e+03 6.57e-02 0.2
2 200 3.10e+04 9.23e-02 1.1
3 323 7.17e+04 7.46e-02 2.8
4 424 1.29e+05 8.22e-02 5.8
5 655 2.23e+05 3.03e-02 15.8
6 774 3.23e+05 2.83e-02 26.1
7 916 4.44e+05 2.55e-02 43.8
8 1147 6.14e+05 1.19e-02 82.6
9 1301 7.80e+05 1.07e-02 123.7
10 1441 9.65e+05 1.01e-02 171.1

Table 10.1: Results for cg without preconditioner:M × M spectral elements of degree
10× 10, TOL = 10−3.

N iter κest(K) ||uiter − u∗||∞ tCPU in s

2 11 1.02e+02 9.21e-02 < 0.1
3 45 1.60e+03 1.56e-02 0.2
4 92 9.32e+03 8.28e-03 0.7
5 155 2.10e+04 1.18e-02 1.8
6 249 7.32e+04 1.21e-02 4.1
7 401 1.16e+05 1.23e-02 10.1
8 776 3.17e+05 7.22e-03 35.8
9 965 4.28e+05 1.09e-02 65.6
10 1441 9.65e+05 1.01e-02 169.5

Table 10.2: Results for cg without preconditioner,10 × 10 spectral elements of degree
N ×N , TOL = 10−3.

and for a reduction of thel2-norm of the residual1 by TOL = 10−6, already the one-level
method improves the number of iterations from around 3600 to 31, and decreases the CPU
time from around 450 seconds to less than 8 seconds; the two-level methods decrease the
iteration count further to 15 and the time to less than 4 seconds.

The addition of a second level is paramount to maintaining the performance for large num-
bers of spectral elements, see table10.4in section 10.3. We cite only one pair of examples

1We useTOL = 10−6 for this and all the following runs in this chapter.
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Method iter κest(K) ||uiter − u∗||∞ tCPU in s

No preconditioner 3580 1.44e+06 5.73e-05 448.6
one-level 31 38.2 3.21e-06 7.6
two-level(N0 = 2) 15 4.93 3.78e-06 3.8
two-level(N0 = 3) 15 4.52 9.95e-07 3.8
two-level(N0 = 4) 15 4.51 9.48e-07 3.9
two-level(N0 = 5) 14 4.49 1.88e-06 3.8

Table 10.3: Comparison of different methods forη1 = η2 = 1,M = N = 10.

from that table: for30 × 30 spectral elements of degree10 × 10, the one-level method
needs 85 iterations to reachTOL = 10−6 and 251 CPU seconds, the two-level method
with N0 = 2 needs only 15 iterations and 47.2 CPU seconds to do the same.

All the examples that we will show in this chapter are forη1 = η2 = 1 and the standard
exact solutionu = (sin(π

2
y)x, sin(π

2
x)y) on the square[−1, 1]2. Unfortunately we do not

have enough time and space to fully explore the performance of our methods for varying
η1 or η2, or for highly oscillatory or singular exact solutions; we just could test how they
perform for this standard case. We are emboldened by their excellent performance to test
our methods in future work for all these scenarios. We mention that Toselli [96, section 3.6]
presented some numerical evidence that the performance of lower order Néd́elec elements
does not detoriate too much forη1 or η2 very small or very large, in fact, for fixed overlap,
the empirical condition numbers and iteration counts are bounded from above by a constant.

This chapter is organized as follows: in the first section we state the problem and the pre-
conditioners and discuss their implementation. The second section presents a numerical
exploration of the one-level method with overlapping subregions made out of2×2 spectral
elements, and we show the dependence of the performance on the degree and the number
of spectral elements. The third section presents two-level methods, their dependence on the
degree and on the number of spectral elements. We also explore the dependence on the
degree of the coarse space. We end the section and the chapter with two examples with
overlaps smaller than a complete spectral element.

10.1 Implementation of Schwarz preconditioners

We solve the variational problem:

?u ∈ V : ∀v ∈ V : a(u,v) := η1(u,v)0 + η2(curl u, curl v)0 = (f ,u)0
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Our implementation uses as computational subspaceV the generalND0
m1,n1;m2,n2

(see sec-
tion 7.1), i.e., the space with tangential continuity across the element interfaces with the
local spaceQm1,n1(K) × Qm2,n2(K) and zero tangential components on∂Ω. Usually, we
use the Ńed́elec II spaces of degreeN , settingm1 = m2 = n1 = n2 = N . The domain is
covered by an uniform mesh ofM ×M spectral elements, implyingh = 2

M
. The coarse

space is the Ńed́elec II space of degreeN0, and we use the block tensor fast direct solver
developed in section 9.3 to solve the coarse problem exactly. In the Schwarz framework,
this corresponds to the exact projection intoV0 = NDII

N0
(Ω, Th):

?T0u : ∀v ∈ V0 : a(T0u,v) = a(u,v)

For element-wise overlap,δ = h, we choose the four spectral elements touching each
interior vertex in the spectral element mesh as overlapping subregionΩ′

i (thereforeH = 2h)
and we solve a zero tangential boundary value problem in each of the subregions, using the
block tensor fast direct solver to solve the local problems exactly. This corresponds to the
exact projections intoVi = ND0

m1,n1;m2,n2
(Ω′

i), i = 1, · · · , J := (M − 1)2:

?Tiu : ∀v ∈ Vi : a(Tiu,v) = a(u,v)

See figure10.1 for a picture of the four overlapping subregions that share one spectral
element. (The number of colors in the coloring assumption is thereforeNC = 4.) We call
this case the2× 2 vertex centered case.

For overlap less than one element, we use a rectangular overlapping subregionΩ′
i,δ extend-

ing h+δ
2

in each direction from the central vertex. (See the middle subregion in figure10.3,
and the four overlapping subregions sharing the center of one spectral element in figure
10.2.) On the boundary, several choices for overlapping subregions are conceivable. We
chose to extend the subregions belonging to interior vertices next to the boundary up to
the boundary, see figure10.3. As local solvers we use the inversion of the submatrix of the
discretization associated to the Gauss-Lobatto-Legendre points inside the subregion, and
we call the set of all basis functions associated to those pointsVi,δ. The local solve does not
correspond to a standard zero tangential boundary value solve insideΩ′

i,δ, since the spectral
element approximation of the local correction is only zero at the Gauss-Lobatto-Legendre
mesh inΩ′

i \ Ω′
i,δ, but it will not be zero everywhere inΩ′

i \ Ω′
i,δ. Written in another way,

suppVi,δ = Ω′
i, and notΩ′

i,δ. The local solve induces a projection onVi,δ :

?Ti,δu : ∀v ∈ Vi,δ : a(Ti,δu,v) = a(u,v)

These local solvers are not standard solvers, and we are still in the process of analyzing and
testing them. We use these local solvers by analogy to domain decomposition methods for
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Figure 10.1: Four overlapping subregions in the 2x2 vertex centered case: elementwise
overlap.

general matrices (see, e.g., Hackbusch [53, Kapitel 11]) and the preconditioner proposed
and analyzed by Casarin [25, Theorem 3.5.2] for Poisson’s equation.

The one-level methods tested in the next section use the preconditioner

Tas1 =
J∑

i=1

Ti.

The two-level methods tested in section 10.3 are of the two types

Tas2 = T0 +
J∑

i=1

Ti Tas2,δ = T0 +
J∑

i=1

Ti,δ.

We implemented a modified version of the preconditioned conjugate gradient method from
Barrett et al [12] in MATLAB. Instead of using vectors forxn, rn, pn, qn, andzn (see the
conjugate gradient algorithm in figure 5.1), we use two two-dimensional arrays for each of
them to represent the vector fields on the rectangular regionΩ. The application of the stiff-
ness matrix, the preconditioners, and the inner product are implemented by matrix-matrix
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Figure 10.2: Four overlapping subregions in the vertex centered case: overlap of one half
element.

multiplications and componentwise multiplication of matrices, and could be translated di-
rectly into BLAS level 3 calls in a C or FORTRAN implementation allowing the use of
highly optimized numerical kernels. We also added an implementation of the O’Leary–
Widlund conjugate gradient condition number estimator.

10.2 Numerical results: One level methods

Here we present two figures,10.4 and 10.5. Both of them useTas1. Figure10.4 shows
the dependence of the iteration count and the condition number on the number of spectral
elements. We see that the iteration count seems to grow approximately linearly, and that the
condition number grows superlinearly. In figure10.5we study the effect of increasing the
degrees of the spectral elements while keeping their number fixed. Increasing the degree
actually improves the condition number, which seems to converge to about 38.2 and the
iteration count stays constant at 32.
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Figure 10.3: Interior and boundary subregions in the vertex centered case, overlap of one
half element: the nine types of subregions, extended subregions on the boundary.
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Figure 10.4: One-level method, varying number of spectral elements, degree10× 10
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Figure 10.5: One-level method, varying degree,10× 10 spectral elements
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10.3 Numerical results: Two level methods

We start with a table that summarizes some of the results shown in more detail later on, in
table10.4. In it we compare the different methods for three numbers of spectral elements,
20× 20, 30× 30, and40× 40. The degree of the spectral elements is always10× 10. We
compare the one-level method of the previous section with two-level methods that differ in
the degree of the coarse space. (We use the2 × 2 vertex centered domain decomposition
with element-wise overlap.)

Method iter κest(K) ||uiter − u∗||∞ tCPU in s

M = 20

one-level 58 142.9 2.05e-06 74.4
two-level(N0 = 2) 15 4.84 1.46e-06 19.6
two-level(N0 = 3) 14 4.84 1.49e-06 18.9
two-level(N0 = 4) 15 4.85 5.56e-07 20.7
two-level(N0 = 5) 14 4.84 1.25e-06 20.7

M = 30

one-level 85 316.0 1.59e-06 251
two-level(N0 = 2) 15 4.91 1.03e-06 47.2
two-level(N0 = 3) 15 4.93 3.74e-07 47.7
two-level(N0 = 4) 15 4.93 3.11e-07 49.7
two-level(N0 = 5) 15 4.93 2.83e-07 52.1

M = 40

two-level(N0 = 2) 15 4.95 7.24e-07 98.3
two-level(N0 = 3) 15 4.96 2.66e-07 102.2
two-level(N0 = 4) 15 4.96 2.15e-07 106.0
two-level(N0 = 5) 15 4.96 1.83e-07 117.4

Table 10.4: Comparison of different methods for the2× 2 vertex centered domain decom-
position forη1 = η2 = 1,N = 10,M = 20, 30, 40.

The performance of the one-level method detoriates with increasing number of spectral
elements. The addition of a coarse space removes the dependence on the number of spectral
elements. The choice of the degreeN0 of the coarse space does not seem to make much of
a difference. The fastest method seems to be almost always the choiceN0 = 2 orN0 = 3.
Seeing that the exact form of the coarse space does not seem to matter would suggest
testing coarse spaces of even lower dimension, maybe one or two well-chosen coarse basis
functions per spectral element are already enough.
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In figures10.6and10.7we show the casen0 = 2, in 10.6the dependence on the number
of spectral elements, in10.7the dependence on the degree.
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Figure 10.6: Two-level method, varying number of spectral elements, degree10×10, n0 =
2

In the computations for figure10.6 we encountered several badly conditioned eigensys-
tems. We mark the data points for the well-conditioned eigensystems with a+ and do not
report the results for the near-singular cases. It seems that the coarse solver withn0 = 2 is
more prone to such problems, we did not observe badly conditioned eigensystems in any
other case in our tests. The iteration count stays constant at 15 afterM = 10, the condition
number approaches 4.95. Increasing the degree in10.7 results in increasing the iteration
count to 16 atN = 12, but there seems to be no further increase, and the condition number
goes to 4.95 after some initial oscillations.
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Figure 10.7: Two-level method, varying degree,10× 10 spectral elements,n0 = 2
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In figures10.8, 10.9, and10.10, we show the dependence on the number of spectral ele-
ments forn0 = 3, n0 = 4, andn0 = 5, respectively. Increasing the degree of the coarse
space seems to improve the results for small numbers of spectral elements, but it does not
seem to change the bound for largeM for the iteration count nor the condition number.
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Figure 10.8: Two-level method, varying number of spectral elements, degree10×10, n0 =
3
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Figure 10.9: Two-level method, varying number of spectral elements, degree10×10, n0 =
4
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Figure 10.10: Two-level method, varying number of spectral elements, degree10 × 10,
n0 = 5
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In figures10.11, 10.12, and10.13, we show the dependence on the degree of spectral el-
ements forn0 = 3, n0 = 4, andn0 = 5, respectively. Increasing the degree of the coarse
space does not seem to improve the iteration count, but it improves the initial condition
number, and, to a smaller extent, the condition number atN = 50.
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Figure 10.11: Two-level method, varying degree,10× 10 spectral elements,n0 = 3
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Figure 10.12: Two-level method, varying degree,10× 10 spectral elements,n0 = 4
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Figure 10.13: Two-level method, varying degree,10× 10 spectral elements,n0 = 5

154



Lastly, we show two examples with overlap smaller than one element in figure10.14and
10.15. In figure10.14we show the case of spectral elements of local degree10 × 10, and
in figure 10.15the case of local degree20 × 20; both on10 × 10 spectral elements. We
give results for four differentδ in both figures. Decreasing overlap yields an increase in
condition number and iteration count. Increased degree seems to result in larger iteration
counts and larger condition numbers. It is not possible to guess from the figures what the
”empirical” c andd in the condition number estimateN c(1+ H

δ
)d should be. More tests are

needed, and we will present further analysis and numerical evidence in future work.
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Figure 10.14: Two-level method,10 × 10 spectral elements of degree10 × 10, n0 = 2,
varying overlap
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Chapter 11

Overlapping Schwarz methods: Theory

In this chapter we will prove a bound on the condition number of the two-level overlapping
Schwarz method in the two-dimensional and three-dimensional case, following the general
outline of the proof from Toselli [98] with some changes and extensions necessitated by
our use of spectral elements and by our desire to obtain bounds that are explicit in their
dependence onN .

In the first subsection, we state the problem, the domain decomposition, and the overlapping
additive Schwarz method for which we will prove the condition number estimate. Our main
result is given in terms of three estimates that we present and discuss in the second section.
In the third section, we introduce some operators, prove a lemma and give a result that we
need in the proof of the main result. The last section presents the estimate and its proof.
The estimate is then explicated for two choices of overlap and possible improvements are
noted.

In the following, recall that|| · ||r is theHr-norm,| · |r is theHr-seminorm,|| · ||s,p is the
W s,p-norm and, in particular,|| · ||0,p is theLp-norm.

11.1 Variational problem and overlapping method

We solve the model problem in the constant coefficient case on a bounded and convex poly-
hedronΩ of diameterHΩ = O(1), i.e., the variational problem is for some computational
subspaceV = VN(Ω) of H0(curl,Ω)

?u ∈ V : ∀v ∈ V : a(u,v) := η1(u,v)0 + η2(curl u, curl v)0 = (f ,u)0

The domain is covered by a shape-regular and quasi-uniform meshTH of quadrilateral
elements of sizeH. Those elements are further subdivided into spectral elements of sizeh
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and degreeN , constituting a shape-regular fine meshTh. There are several ways to obtain
the overlapping subregions. In one of them, the subdomainsΩi, i = 1, · · · , J , correspond
to the elements of the coarse mesh, and they are extended by some distanceδi to yield the
overlapping regionsΩ′

i.

See figure11.1for an example. We show one of theΩ′
i, with some surrounding elements

from Th.

A second way is to combine elements (and parts of elements) in such a way that the con-
structed subregion still has a diameter ofO(H) and overlaps other subregions with a geo-
metric overlapδ. We chose such a setting for the implementation in chapter 10, and refer
to the explanation and figures there.

The overlap parameterδ is the minimal distance between∂Ω′
i andΩi, and therefore equal

to mini δi. In the element-wise overlap case it will be a multiple ofh.

Figure 11.1: An overlapping subregion for the domain decomposition method.h = H/4,
δ = h/2,N = 10. Broken lines: subdomain meshTH . Dotted lines: element meshTh. Solid
enclosure:∂Ω′

i. We also show the GLL mesh associated to a degree 10 spectral element in
four of the elements of sizeh.

The global computational subspaceV = VN(Ω), in which the variational problem is dis-
cretized, is chosen asV = NDI

N(Ω, Th).

In the element-wise overlap case, the local spacesVi are the subspaces of functions inV
that have support inΩ′

i. For general (smaller) overlap,Vi is the subspace of functions inV
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spanned by the spectral element basis functions inNDI
N(Ω, Th) that are associated to GLL

points that are insideΩ′
i. (Or equivalently, the subspace of functions inV with spectral

element degrees of freedom outside ofΩ′
i set to zero.) In the element-wise overlap case, the

support of functions inVi is Ω′
i; for general overlap, the support isΩ∗

i , equal to the union of
all the elements inTh that intersectΩ′

i.

The coarse spaceV0 is chosen asNDI
N0

(Ω, TH) ⊂ NDI
N(Ω, Th). (Different choices for

the fine-to-coarse mapping in the algorithms of chapter 11 correspond either to a different
spaceV0, or to a different system, i.e., differenta0(·, ·), posed onV0.) For any fixedN0 we
have the estimates in lemma11.2. For the sake of simplicity, we will not try to explicate
the dependence of the condition number of the operator onN0.

The global spaceV admits a non-unique decompositionV =
∑J

i=0 Vi.

We will use exact solvers in the subspaces, i.e., the bilinear form for all problems will be
a(·, ·). The proof could be extended to inexact solvers with standard arguments. (See, e.g.,
Smith, Bjørstad, and Gropp [91].)

We introduce the local projectionsTi : V → Vi, u 7→ Tiu defined by

?Tiu : ∀v ∈ Vi : a(Tiu,v) = a(u,v)

Using these projections, many domain decomposition methods can be defined (see chapter
5 and, for instance, [91, pages 149–153]).

We define two operators, an additive one-level operator given by

Tas1 =
J∑

i=1

Ti

and an additive two-level operator

Tas2 = T0 +
J∑

i=1

Ti = T0 + Tas1

See chapter 5 for further explanations on the implementation of such methods, and the
previous chapter for an implementation of these methods in the two-dimensional case.

We will prove a condition number estimate forTas2. With similar techniques and the same
kind of estimates, results forTas1, multiplicative and hybrid methods could be proven, see,
e.g., Smith, Bjørstad, and Gropp [91, pages 155–158].

To use the standard coloring arguments (see, e.g., [91, bottom of page 165 and proof of
theorem 1 on page 167], and also chapter 5), we need an assumption about the covering of
Ω by the overlapping regionsΩ′

i:

Coloring assumption: The overlapping regions{Ω′
i} can be colored usingNc colors, in

such a way that regions with the same color do not intersect.
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11.2 Required estimates

Our final estimate depends on the following three estimates.

Estimate 1 (Interpolation property for divergence-free vector fields)There is a constant
C independent ofN , h and u, and a functionf1(N) such that foru ∈ H⊥

0 (curl) with
curl u ∈ WN(Ω, Th) there is a bound

||(I −ΠND,I
N )w||0 ≤ Chf1(N)|| curlw||0 (11.1)

Estimate 2 (L2-stability of the local splitting) Letχi be the interpolated partition of unity
used to define the local splitting. Then, there exist a constantC independent ofN , h andu,
and a functionf2(N) independent ofh andu such that for allu ∈ NDI

N

||ΠND,I
N (χiu)||0 ≤ Cf2(N)||χiu||0 (11.2)

Estimate 3 (curl-stability of the local splitting) Let χi be the interpolated partition of
unity used to define the local splitting. Then, there exist a constantC independent ofN , h
andu, and a functionf3(N) independent ofh andu such that for allu ∈ NDI

N

|| curl
(
ΠND,I

N (χiu)
)
||0 ≤ Cf3(N)|| curl(χiu)||0 (11.3)

We proved the interpolation property in lemma7.17in section 7.7. There we showed that
(11.1) holds withf1(N) = 1 + C(ε)N−1+ε whereC(ε) is related to the regularity of a
certaincurl potential problem. In the proof of that result we also indicated that an improved
or optimal interpolation estimate for the Néd́elec interpolation operator (which is not yet
proven in the three-dimensional case) would implyf1(N) = C(ε)N−1+g(ε).

The properties of the local splitting (11.2) and (11.3) are usually proven in a way that makes
as little use of the special form ofχi as possible, and are based on estimates forΠND,I

N on
certain polynomial spaces of higher degree in whichχiu lies. If that space is denotedVN+,
then it would be enough to prove

∀vN+ ∈ VN+ : ||ΠND,I
N vN+||0 ≤ Cf2(N)||vN+||0

∀vN+ ∈ VN+ : || curl
(
ΠND,I

N vN+

)
||0 ≤ Cf3(N)|| curl vN+||0

The second estimate is reduced to an estimate of a different interpolation operator on a
different space using the commuting diagram property: LetCN+ be a space containing
curlVN+. SetTN = WN(Ω, Th) for the two-dimensional case, andTN = RTN(Ω, Th)
for the threedimensional case and letΠT

N be the commuting interpolant inTN . Then the
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commuting diagram property (lemma 7.1 in section 7.3) implies thatcurl
(
ΠND,I

N vN+

)
=

ΠT
N(curl vN+). Therefore proving

∀vN+ ∈ VN+ : ||ΠND,I
N vN+||0 ≤ Cf2(N)||vN+||0

∀wN+ ∈ CN+ : ||ΠT
NwN+||0 ≤ Cf3(N)||wN+||0

implies the estimates (11.2) and (11.3).

There are several candidates for the interpolated partition of unityχi. One possible choice
for theχi is as a polynomial inside each small elementKh in Th. In the case of element-
wise overlap we can just choose a linear function inside each element, andχiu would be in
VN+ = NDI

N+1, andCN+ = TN+1.

For this case the numerical results from section 7.6 show that (11.2) and (11.3) are satisfied
with f1(N) = f2(N) = 1 and a small constantC.

For overlapsδ smaller thanh, we need to construct an interpolated partition of unityχi

with

||χi||0,∞ < C ||gradχi||0,∞ <
C

δ
(11.4)

We also need to assume that the setsΩ∗
i := suppχi can be colored byNc colors so thatΩ∗

i

with the same color do not intersect. Even though that in general in theory this coloring
assumption is stronger than the one withΩ′

i given above, in almost all cases in practice the
number of colors needed will stay the same or will increase very slightly.

The standard choice for the small overlap case in the finite element context is the piece-
wise linear interpolated partition of unityχPL

i . For rectangles,χPL
i can be constructed as

a tensor product of one-dimensional function like in figure11.2, which obviously meet the
requirements (and theΩ∗

i are identical to theΩ′
i). For spectral elements,χPL

i is not a poly-
nomial inside the element forδ < h. To be able to study the properties ofχiu inside a
framework of polynomial spaces, we have two choices: either we work with a polynomial
interpolation of the piecewise linearχPL

i such as the Gauss-Lobatto-Legendre interpolant
χM

i associated to some degreeM and the corresponding Gauss-Lobatto-Legendre mesh
GLLM inside the elementTh – thenχiu will be in a standard Ńed́elec spectral element
spaceVN+ = NDI

N+M (andCN+ = TI
N+M ); or we work with the original piecewise linear

χPL
i and chose piecewise polynomial spacesVN+ andCN+.

We will first discuss the case ofχM
i : to convince ourselves that the Gauss-Lobatto-Legendre

interpolated partition of unity has the requisite properties, we performed some numerical
experiments shown in the figures11.3, 11.4, 11.5, and11.6. In figures11.3, 11.4, and11.5
we show the ratio of the maximal gradient and maximal value1 of (the one-dimensional

1We evaluated the gradient and the value ofχM
i on an uniform grid of 2000 grid points inside the element.

The subdomain part ofχM
i is χM

i |Ωi
, the border part isχM

i |Ω−Ωi
.
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linear χ
i
 for element−wise overlap

piecewise linear χPL
i

 for δ=0.1

GLL interpolated χ10
i

 for δ=0.1

Figure 11.2: One-dimensional partitions of unity: Upper panel: linearχi for the case of
element-wise overlap. Middle panel: piecewise linearχPL

i for δ = 0.1. Bottom panel: GLL
interpolatedχ10

i for δ = 0.1.

version of)χM
i overχPL

i for the choicesδ = 0.5, δ = 0.1 andδ = 0.01. Since the Gauss-
Lobatto-Legendre mesh on each element has a spacing ofO(h/N2) close to the boundary,
the smallest possibleδ is also of that size. To test if the properties ofχM

i detoriate for the
smallest possibleδ, we test overlaps of a small number of Gauss-Lobatto-Legendre cells in
figure 11.6. In all the tested cases, the Gauss-Lobatto-Legendre interpolatedχM

i satisfies
(11.4) with bounds worse by a factor of at most 2 when compared to the piecewise linear
χPL

i .

To useχM
i in the proof, we needL2-bounds for the interpolation operators on the spaces

VN+ = NDI
N+M andCN+ = TI

N+M . We refer to section 7.6 where we computed such
bounds numerically, especially to Observation 7.1 on page94: for M a constant,f2(N) =
f3(N) = 1. ForM = N orM = cN , we obtainedf2(N) =

√
N andf3(N) =

√
N .

That translates into conditions on the overlap. If we have the case of fixed overlap, i.e.,
δ
h
> Cov, then we can find a fixedM ∼

√
h
δ
∼
√
Cov so that (11.2) and (11.3) are satisfied

with f2(N) = f3(N) = 1.

For minimal overlap, i.e.,δ ∼ h
N2 we needM ∼ N , and thereforef2(N) = f3(N) =

√
N .

The second choice — usingχPL
i as interpolated partition of unity and piecewise polynomial
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Figure 11.3: Comparing Gauss-Lobatto-Legendre and piecewise linear interpolated parti-
tions of unity,δ = 0.5.
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Figure 11.4: Comparing Gauss-Lobatto-Legendre and piecewise linear interpolated parti-
tions of unity,δ = 0.1.

spaces — holds some promise for better estimates.

We will explain the main idea in the following: Since the interpolation is defined element-
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Figure 11.5: Comparing Gauss-Lobatto-Legendre and piecewise linear interpolated parti-
tions of unity,δ = 0.01.

0 5 10 15 20 25 30 35 40 45 50
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

N

ra
tio

ratio of maximal gradients for χ
i
 and χN

i
 for very small overlaps

1 GLL cell overlap

2 GLL cells overlap

3 GLL cells overlap

4 GLL cells overlap

5 GLL cells overlap

Figure 11.6: Comparing Gauss-Lobatto-Legendre and piecewise linear interpolated parti-
tions of unity, minimal overlap on GLL grid.

wise and global bounds will easily follow from local bounds, we can restrict ourselves to
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the case of the reference element[−1, 1]d with d = 2, 3. Now define the piecewise space

QN,δ([−1, 1]) = QN+1([−1,−1 + δ]) ∩QN([−1 + δ, 1− δ]) ∩QN+1([1− δ, 1])

and also its tensorized versionsQm,n,δ and Ql,m,n,δ for the two-dimensional and three-
dimensional case. From these spaces we build the piecewise analogue ofNDI

N+1, and
TN+1, and call themNDI

N,δ andTN,δ. We can retrace the derivations in section 7.6, and we
will obtain very similar expressions for the Néd́elec type interpolants from the piecewise
space to the standard spaceNDI

N andTN . (The main difference being different interpola-
tion matrices and mass matrices, the former corresponding to the piecewise Gauss-Lobatto-
Legendre interpolation onQN,δ([−1, 1]) and the latter corresponding to the subassembled
mass matrix onQN,δ([−1, 1]).) We could use then the same numerical and analytical ap-
proaches as in section 7.6 to study the local splitting. Unfortunately we lack both time and
space to follow this idea in the context of this thesis, but we will treat it in future work.

11.3 Technical tools

To introduce and analyze a stable projection into the coarse space, we need several opera-
tors. One of them is the orthogonal projection into the weakly divergence-free space

Θ : H0(curl) → H⊥
0 (curl)

defined by
Θu := u− grad q

whereq ∈ H1
0 (Ω) is the unique solution of

?q : ∀p ∈ H1
0 (Ω) : (grad q,grad p) = (u,grad p)

It follows easily thatΘ leaves thecurl of its argument unchanged, and is also an orthogonal
projection in(L2(Ω))3.

We useΘ now to define the finite dimensional subspace

V ⊥ = Θ(NDI,+
N (Ω, Th)) ⊂ H⊥

0 (curl).

Even thoughV ⊥ is not a spectral element space, thecurl of functions inV ⊥ will be a
piecewise polynomial vector field. We recall that we showed in chapter 7 that the Néd́elec
interpolant has better bounds on such functions.

Next, we define a projectionPN ontoV ⊥:

PN : H0(curl) → V ⊥

?PNu ∈ V ⊥ : ∀v ∈ V ⊥ : (curl(PNu− u), curl v) = 0
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Since|| curl ·||0 is an equivalent norm to|| · ||0 onH0(curl), PN is well-defined.

RemarkOnNDI,+
N (Ω, Th), PNu coincides withΘu, and it is clear that

curlPNu = curlΘu = curl u

Next, we prove an error estimate forPN using the interpolation properties of the Néd́elec
interpolant. This lemma corresponds to [98, Lemma 3.3]. We follow the idea of the proof
from that paper, but instead of invoking [98, Lemma 3.1], we use lemma7.17 in section
7.7.

Lemma 11.1 LetΩ be convex. Then, the operatorPN satisfies the following error estimate
for all u ∈ NDI,+

N (Ω, Th) withC independent ofh,N andu:

||u− PNu||0 ≤ Chf1(N)|| curl u||0 (11.5)

Proof: Let u ∈ NDI,+
N (Ω, Th). Thanks to the remark after the definition ofPNu, curl(u−

PNu) = 0, and therefore
u− PNu = grad q

with someq ∈ H1
0 (Ω). Now the appropriate version of the commuting diagram property

guarantees that
u−ΠND,I

N PNu = ΠND,I
N (u− PNu) = grad qN (11.6)

with someqN ∈ WN(Ω). (See section 7.3 on the commuting diagram property.)

We rewrite

||u− PNu||20 = (u− PNu,u−ΠND,I
N PNu + ΠND,I

N PNu− PNu)

and use thatu andPNu, by (11.6), are orthogonal tou−ΠND,I
N PNu :

||u− PNu||20 = (u− PNu,ΠND,I
N PNu− PNu)

≤ ||u− PNu||0||PNu−ΠND,I
N PNu||0

to obtain
||u− PNu||0 ≤ ||PNu−ΠND,I

N PNu||0
We use lemma7.17and the remark to estimate

||PNu−ΠND,I
N PNu||0 ≤ Chf1(N)|| curlPNu||0 = Chf1(N)|| curlPNu||0

and thus obtain the estimate in the lemma.

We also need theL2-projection

Q0 : (L2(Ω))3 → V0

onto the coarse spaceV0. We require some estimates forQ0, which can be proven exactly
as in Toselli [98]:
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Lemma 11.2 Let TH be shape-regular and quasi-uniform. Then, the following estimates
hold with constants independent ofu andH:

∀u ∈ (H1(Ω))3 : || curlQ0u||0 ≤ C|u|1 (11.7)

∀u ∈ (H1(Ω))3 : ||u−Q0u||0 ≤ CH|u|1 (11.8)

11.4 Condition number bound

We will use the abstract Schwarz theory; see section 5.2 for a short introduction and the
theorems that we will use here, and Smith, Bjørstad, and Gropp [91, chapter 5] for an
introduction in textbook form, discussing theh-versions of standard algorithms.

We will give an upper bound for the inverse of the smallest eigenvalue by the standard de-
composition argument, andC−2

0 will then be a lower bound for the smallest eigenvalue. As
discussed in the first section, we assume a coloring withNc colors for the overlapping re-
gionsΩ′

i (respectiveΩ∗
i ). Using a standard argument (see, e.g., Smith, Bjørstad, and Gropp

[91, proof of theorem 1 on page 167]), this implies an upper bound for the eigenvalues of
Tas1 of Nc and ofTas2 of Nc + 1. Therefore, the boundC2

0 proven in the next theorem will
imply a bound of(Nc + 1)C2

0 for the condition number ofTas2.

First we will prove the theorem using the general forms of the estimates (11.1), (11.2) and
(11.3). Afterwards we will discuss the estimate for specific cases, and give shorter forms.

Theorem 11.3 (Lower bound) For every u ∈ V there is a splitting
u =

∑
ui with

∑
a(ui,ui) ≤ C2

0a(u,u) with a C2
0 of the form

Cmax

{
Nc

(
1 +

H

δ

)
,

max(η1, η2)

min(η1, η2)
max

(
1 +Ncf

2
2 (N), 1 +Ncf

2
3 (N)

(
1 +

(
H + hf1(N)

δ

)2
))}

Proof: First, we use the discrete Helmholtz decomposition (see section 7.3 in chapter 7)
in NDI

N to split u into a sumgrad q + w, whereq ∈ SN andw ∈ NDI,+
N . The two parts

are orthogonal inH(curl) and also with respect to the bilinear forma(·, ·), so that we can
decompose and estimate them separately. For gradients, the second term ina(·, ·) vanishes,
anda(grad q,grad q) = (grad q,grad q)0 is the bilinear form for the Laplace operator in
q. Therefore, we can use the domain decomposition theory for scalar elliptic operators and
results for the spectral element case for the Laplace equation. Casarin [25, Theorem 3.5.2]
proves a bound on the condition number of the additive two-level overlapping Schwarz
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preconditioner that coresponds to our preconditioner on thegrad q part. His result implies
that there is a decomposition

∑
i qi of q such that∑

i

a(grad qi,grad qi) = η1

∑
i

|qi|21 ≤ CNC

(
1 +

H

δ

)
η1|q|21

= CNC

(
1 +

H

δ

)
a(grad q,grad q) (11.9)

Remark: Casarin uses the spectral equivalence of a finite element preconditioner on the Gauss-
Lobatto-Legendre mesh to the spectral element preconditioner for the spectral elements associated
to that mesh, which he proves in his thesis. We do not know of any direct proof by exhibiting a
splitting and verifying the assumptions in section 5.2. If one follows the standard proof for generous
overlap, one obtainsCNC

(
1 + (H

δ )
)2

instead ofCNC

(
1 + H

δ

)
. It would be interesting to see if

a direct proof could be constructed extending the small-overlap theory for theh-version by Dryja
and Widlund [44].

Now, we will decomposew. First we note that for any decompositionw =
∑

i wi we have∑
i

a(wi,wi) ≤ max(η1, η2)
∑

i

(wi,wi)curl =

≤ max(η1, η2)
∑

i

(||wi||2 + || curlwi||2)

and that

(||w||20 + || curlw||20) ≤
1

min(η1, η2)
a(w,w)

Therefore, if we can decomposew =
∑

i wi so that∑
i

(||wi||20 + || curlwi||20) ≤ Cn(||w||20 + || curlw||20)

the same decomposition will satisfy∑
i

a(wi,wi) ≤
max(η1, η2)

min(η1, η2)
Cna(w,w) (11.10)

In the following, we will introduce a decompositionw =
∑

i wi for which we can estimate
Cn.

We will start with the coarse space. To definew0, we first use the projectionPN into
the semicontinuous divergence-free spaceV ⊥, followed by theL2-projectionQ0 into the
coarse spaceNDI

N0
:

w = w0 + v w0 := Q0(PNw) ∈ V0 v = (I −Q0PN)w
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We will decompose the remainderv by multiplying it with the partition of unityχi and
using the Ńed́elec interpolant to project it back into the local space:

wi := ΠND,I
N (χiv) ∈ Vi

First, we estimate|| curlw0||20:

|| curlw0||20 = || curlQ0(PNw)||20 ≤ C|PNw|21
≤ C|| curlPNw||20 ≤ C|| curlw||20 (11.11)

The first inequality uses property (11.7) from lemma11.2on theL2-projection, the second
follows from the imbedding ofHT (Ω) in H1(Ω) (see section 2.7), and the last one by
noticing thatPN leaves thecurl of its argument unchanged.

Then, we bound|| curlwi||20:

|| curlwi||20 = || curlΠND,I
N (χiv)||20

≤ Cf 2
3 (N)|| curl(χiv)||20

≤ Cf 2
3 (N)

(
||gradχi × v + χi curl v||20

)
≤ Cf 2

3 (N)
(
||gradχi||20,∞,Ω||v||20,Ω′

i
+ ||χi||20,∞,Ω′

i
|| curl v||20,Ω′

i

)
≤ Cf 2

3 (N)
(
δ−2||v||20 + || curl v||20

)
(11.12)

We realize that we have to bound||v||20 and|| curl v||20 to finish this estimate.

To bound theL2-norm ofv = w − Q0PNw we writev = w − PNw + PNw − Q0PNw
and use the triangle inequality to obtain

||v||20 ≤ ||w − PNw||20 + ||PNw −Q0PNw||20

We can estimate the first term by lemma11.1from the last section, and the second term by
property (11.8) from lemma11.2on theL2-projection and the arguments in (11.11):

||v||20 ≤ Ch2f 2
1 (N)|| curlw||20 + CH2|| curlw||20

≤ C(H + hf1(N))2|| curlw||20

To estimate|| curl v||20, we rewritecurl v = curl(w − w0) = curlw − curlw0, use
(11.11) and the triangle inequality to obtain

|| curl v||20 ≤ C|| curlw||20

169



Substituting these bounds into (11.12) yields

|| curlwi||20 ≤ Cf 2
3 (N)

(
1 +

(
H + hf1(N)

δ

)2
)
|| curlw||20 (11.13)

The bound on||w0||20 follows from the definitions ofQ0 andθ and the remark after their
definition:

||w0||20 = ||Q0PNw||20 ≤ ||PNw||20 = ||Θw||20 ≤ ||w||20 (11.14)

Finally, usingwi = ΠND,I
N (χi(w − w0)), (11.2), the triangle inequality, and (11.14), we

obtain

||wi||20 = ||ΠND,I
N (χi(w −w0))||20

≤ Cf 2
2 (N)||w −w0||20

≤ 2Cf 2
2 (N)||w||20 (11.15)

Adding up (11.11), (11.13) and using the coloring assumption shows

J∑
i=0

|| curlwi||20 ≤ C

(
1 +NCf

2
3 (N)

(
1 +

(
H + hf1(N)

δ

)2
))

|| curlw0||20 (11.16)

Similarly, adding (11.14) and (11.15) shows

J∑
i=0

||wi||20 ≤ C(1 +NCf
2
2 (N))||w||20 (11.17)

Combining the last two inequalities, we obtain an upper bound forCn:

Cn ≤ Cmax

(
1 +NCf

2
2 (N),

(
1 +NCf

2
3 (N)

(
1 +

(
H + hf1(N)

δ

)2
)))

(11.18)

We derive a bound on thew part of the decomposition using (11.10). Finally, we combine
this bound with the bound from the decomposition ofgrad q in (11.9) to obtain the bound
given in the theorem.

Domain decomposition methods for spectral elements are often used with the spectral ele-
ments constituting the subdomains, and thereforeH = h.
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In all cases,f1(N) = 1 +C(ε)N−1+ε, which allows an upper boundf1(N) = 1 +C(ε). If
a better bound onf1(N) would be proven as mentioned in the proof of7.17, f1(N) would
go to zero with increasingN . In any case,(

1 +

(
H + hf1(N)

δ

)2
)
≤ C

(
1 +

(
H

δ

)2
)
.

For both the element-wise overlap case and the fixed overlap casef2(N) = f3(N) = 1,
and therefore we obtain after some easy computations:

Corollary 11.4 (Fixed and element-wise overlap)In the case of element-wise or fixed
overlap, the condition number ofTas2 is bounded by

κ(Tas2) ≤ C(Nc + 1)
max(η1, η2)

min(η1, η2)

(
1 +Nc

(
1 +

(
H

δ

)2
))

This result corresponds to the result in Toselli [98] and differs only in that it is explicit in
Nc (andN ).

For the minimal overlap case we obtain the most probably not optimal

Corollary 11.5 (Minimal overlap) For generalδ, an upper bound of the condition number
of Tas2 is given by

κ(Tas2) ≤ C(Nc + 1)N
max(η1, η2)

min(η1, η2)

(
1 +Nc

(
1 +

(
H

δ

)2
))

For overlaps corresponding to a minimal overlap in the uniform finite element case, i.e.
δ ∼ 1

N
, we obtain with numerically estimated (for the caseM =

√
N in section 7.6,

following from numerical results not given there)f2(N) = f3(N) = o(N0.2) a powerN0.4

instead ofN . Any improvement in the bounds off2(N) andf3(N) in the minimal overlap
case – possibly using the piecewise spacesNDI

N,δ andTN,δ in the interpolation estimates
as indicated in section 12.2 – directly results in a improved power ofN c, or evenN0 = 1.

It has been noted in Toselli [96, section 3.6] that the estimates for the minimal eigenvalue
obtained from a small number of tests with differentH/δ allowed the conjecture that also
for theh-version for the model problem, the power of

(
H
δ

)
could be reduced. A numerical

test of this conjecture for both theh- and theN -version is possible within our implementa-
tion, we intend to perform such tests in future work. The initial tests that we performed for
theN -version were inconclusive.

We refer to chapter 10 for some numerical results. There we give numbers of iterations
and condition numbers for several settings that explore the condition number estimate in
different regimes forN ,H = O(h),N0, andδ.
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