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Abstract

We study the relation between escape rates and pressure in general dynamical
systems with holes, where pressure is defined to be the difference between entropy and
the sum of positive Lyapunov exponents. Central to the discussion is the formulation
of a class of invariant measures supported on the survivor set over which we take the
supremum to measure the pressure. Upper bounds for escape rates are proved for
general diffeomorphisms of manifolds, possibly with singularities, for arbitrary holes
and natural initial distributions including Lebesgue and SRB measures. Lower bounds
do not hold in such generality, but for systems admitting Markov tower extensions
with spectral gaps, we prove the equality of the escape rate with the pressure and
the existence of an invariant measure realizing the escape rate, i.e. we prove a full
variational principle. As an application of our results, we prove a variational principle
for the billiard map associated with a planar Lorentz gas of finite horizon with holes.

1 Introduction

This paper is about leaky dynamical systems or dynamical systems with holes. A generic
setup consists of a triple (f,M ;H) where M is the phase space of a map or flow denoted
by f , and H ⊂ M is an open set. We refer to (f,M) as a closed system and H as the
hole through which mass is allowed to escape from the system. More precisely, we follow
trajectories in M until they enter H . Once a point enters H , it leaves the system forever,
i.e. we stop considering it.

Holes can be large or small. Small holes are often used to model small (unintended) leaks
in physical systems; proximity of normalized surviving distributions to the physical measure
of the closed system is a form of stability. More generally, the study of (f,M ;H) can be
viewed as the study of dynamics on non-invariant domains. As an example of why such
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studies are relevant, consider the following. It is well known that attractors are important
because they capture the large-time behavior of dynamical systems, but invariant sets that
are not attracting can substantially impact the qualitative behavior of a system as well: Let
Λ ⊂ M be such a set, and U ⊂ M a neighborhood of Λ. Then we may regard H = M \ U
as the hole. Slow escape rates from such holes are known to impact the speed of correlation
decay of the closed system.

Escape dynamics have been studied by many authors. We refer the reader to the part-
review article [DY], which contains many references, and will mention explicitly works that
are closer to the present paper as we go along. Most previous works have focused on specific
systems, such as Anosov diffeomorphisms, interval and billiard maps. In this paper, we seek
a general understanding for as large a class of dynamical systems as we can. Specifically, we
seek to relate escape rate to a dynamical invariant called pressure, which roughly speaking
measures the discrepancy between metric entropy and sum of positive Lyapunov exponents.
We now proceed to a discussion of what this paper is about.

Setting and questions

We begin with the simpler setting of a compact Riemannian manifoldM without bound-
ary and a diffeomorphism f which is at least C1+ǫ for some ǫ > 0. In order to include
applications to systems such as billiards, which are very important examples of dynamical
systems of physical origin, we also allow M to be the union of a (possibly open) Riemannian
manifold and a singularity set S, and f to be piecewise smooth. Precise conditions on S and
the behavior of f near it will be made precise in due course. Riemannian measure on M
(or M \ S) is denoted by µ throughout. Unless otherwise stated, the hole H is an arbitrary
open set in M .

Let m be a reference measure on M . We think of m as the initial distribution of mass in
the phase space before any escape takes place, and take the view that initial distributions
related to µ are of particular physical interest. Notice thatm need not be f -invariant. Indeed
one can interpret the situation as follows: The escape of mass can begin before or after the
closed system f : M 	 reaches a steady state. In the first case, m is usually not invariant,
and we assume it has a density with respect to µ. In the second case, we take m to be an
SRB measure, which may be singular with respect to µ.

A basic quantity of interest is the escape rate, defined to be −ρ(m) where

ρ(m) = lim
n→∞

1

n
logm(Mn) (1)

when the limit exists. Here Mn = ∩n
i=0f

−i(M \H) is the set of points which has not escaped
by time n. In general, the limit in (1) may not exist, and we write ρ and ρ for the lim infn→∞

and lim supn→∞ of the quantity on the right hand side. Notice that while ρ(m) depends on
m, all initial distributions uniformly equivalent to m have the same escape rate, i.e. if ϕ is
a function with 1

c
≤ ϕ ≤ c for some c > 0, then ρ(ϕm) = ρ(m), and the same is true for ρ

and ρ.
For an f -invariant Borel probability measure ν on M , the pressure of ν, denoted Pν , is

defined to be

Pν = hν(f)−
∫

λ+dν
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where hν(f) is the metric entropy of (f, ν) and λ+ is the the sum of the positive Lyapunov
exponents counted with multiplicity. We will write PG = supν∈G Pν where G is a collection
of invariant measures.

Given an open system (f,M ;H), we define the survivor set to be the f -invariant set
Ω := ∩n∈Zf

n(M \ H).1 Let I = I(Ω) denote the set of f -invariant Borel probability
measures supported on Ω, and let E ⊂ I be the subset of I consisting of ergodic measures.
Assuming ρ(m) is well defined, we say ρ(m) satisfies a variational principle if

ρ(m) = PG for a suitable class of measures G ⊂ I .

Of interest also is whether the supremum in PG is attained, i.e. if there is a measure ν ∈ G
for which Pν = PG . Obviously, one can also ask if ρ(m) = Pν for some ν without mentioning
any variational principles.

The ideas in the last paragraph were suggested by a number of previously known results
some of which are recalled below, but let us first summarize the questions to be addressed.

This paper seeks to address for as large a class of dynamical systems as possible the
following three questions for natural initial distributions m:

Q1 (Escape rate) Is the escape rate ρ(m) well defined?

Q2 (Formula for escape rate) Is ρ(m) = hν(f)−
∫

λ+dν for some ν ∈ I?
The same question can be posed for ρ(m) and ρ(m).

Q3 (Variational principle) Does ρ(m) satisfy a variational principle?

Partial answers are given for very general dynamical systems, and complete answers for
a more restricted class which includes many known examples. A concrete application to the
leaky periodic Lorentz gas is mentioned explicitly.

Earlier works

Theorem 1. [B] Consider a C1+ǫ Axiom A diffeomorphism f :M 	 of a compact Rieman-
nian manifold M . Let Λ ⊂ M be a basic set, and let I = I(Λ). Then PI ≤ 0, and PI = 0
if and only if Λ is an attractor.

This is the first result that systematically relates the escape of mass to pressure: In the
case where Λ is an Axiom A attractor, no mass can escape from a neighborhood of Λ, and
PI = 0; for non-attracting basic sets such as horseshoes, mass escapes at exponential rates
and PI < 0. The number PI has been shown to be equal to the topological pressure of f
with respect to the potential − log | det(Dfu)| on Λ; see [B] or [W] for more detail.

The next result gives conditions under which the numerical value of PI is explicitly
related to the rate of escape.

Theorem 2. [Y1, Theorem 4]2 Let f : M 	 be a C1+ǫ diffeomorphism of a compact Rie-
mannian manifold M , and let H ⊂M be an open set. We assume

1If f is not invertible, we take n ≤ 0 in the definition of Ω.
2This result follows from the large deviation results in Theorem 1 (not Theorem 2) of [Y1]. Take ϕ ≡ 1

on a closed set K and < 1 on M \K where Ω ⊂ int(K) ⊂ K ⊂ M \H , and ξ ≈ − log | det(Df |Eu)| on Ω.
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(i) Ω is compact with d(Ω, ∂H) > 0, and
(ii) f |Ω is uniformly hyperbolic.

Then ρ(µ) is well defined and equals PI .

In both of the settings above, PI = PE , and PI = Pν for some ν ∈ I. (The latter follows
from the continuity of x 7→ log | det(Df |Eu)| and upper semicontinuity of ν 7→ hν(f); see
[B]). Thus for uniformly hyperbolic survivor sets Ω with d(Ω, H) > 0, Q1–Q3 have all been
answered in the affirmative.

Several works went beyond Theorem 2 to give positive answers to Q1 and Q2 in a num-
ber of situations, including Anosov diffeomorphisms with Markov or small holes (with no
requirement on Ω ∩ ∂H) [CM1, CM2, CMT], uniformly expanding maps admitting Markov
partitions [CMS], piecewise expanding maps, and Collet-Eckmann maps of the interval with
singularities [BDM]. Q3 was partially addressed in [CM1, CMS, BDM]: a variational prin-
ciple was proved for an associated dynamical system, namely the symbolic dynamics of the
original map (but not for the map itself).

2 Statement of Results

Three sets of results are stated:

– Sect. 2.1 contains partial answers to Q3: lower bounds for ρ(m) are proved for very
general dynamical systems; no results on upper bounds are reported.

– Sects. 2.2 and 2.3 provide complete answers to Q1–Q3 for systems admitting Markov
tower extensions with some additional conditions.

– These results are applied to the periodic Lorentz gas with small holes (Theorem F).

2.1 Lower bounds on ρ(m) for general dynamical systems

Our results in this subsection will assert, in essence, that

for very general dynamical systems, ρ(m) ≥ PG for reasonable choices of G.
Since PG decreases with G, this inequality is not meaningful for G too small. Thus the
selection of a suitable G is an important part of the consideration. We start with E , the set
of ergodic invariant measures supported on the survivor set Ω. To obtain G, restrictions will
be placed on E on account of

I. the hole H ,
II. the initial distribution m, and
III. singularities of the map f , if present.

We discuss these 3 types of restrictions separately. The conditions we impose are admittedly
motivated by our proofs, but the fact that they lead to a full variational principle for a large
class of dynamical systems (see Sect. 2.3) suggests that these choices of G are reasonable.

In Paragraphs I and II below, f :M 	 is a C1+ǫ diffeomorphism; systems with singulari-
ties are discussed in Paragraph III. Throughout the paper, B(x, r) denotes the ball of radius
r in M centered at x ∈M , and Nε(·) denotes the ε-neighborhood of a set in M .
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I. Restrictions on G due to the hole H

The following definition gives a sense of which ν ∈ E we think impact the escape rate. Define

GH = {ν ∈ E | The following holds for ν-a.e. x: given any γ > 0,

∃r = r(x, γ) > 0 such that B(f ix, re−γi) ⊂M \H for all i ≥ 0} .
Notice that if ν ∈ E has the property that for some C, α > 0, ν(Nε(∂H)) ≤ Cεα for all
ε > 0, then ν is in GH (see Sect. 4.2, Paragraph 4).

The definition of GH can be relaxed in many ways; in particular, it is not necessary for
the entire ball B(f ix, re−γi) to be inM \H . We mention one formulation, leaving the reader
to contemplate others: Given x ∈ M , let W s

ε (x) denote the local stable manifold of x of
radius ε. We call an open set O a W s-neighborhood of x if O ∩W s

ε (x) 6= ∅ for every ε > 0.
All of our results remain valid if

(O) in the definition of GH , B(f ix, re−γi) is replaced by f i(O) ∩B(f ix, re−γi)
where O is a W s-neighborhood of x.

II. Restrictions on G due to the initial distribution m

Two types of initial distributions are considered.

(A) Initial distributions with densities, possibly localized

Let m = µϕ = ϕµ where ϕ ≥ 0 is in L1(µ). For such an initial distribution, we consider

Gϕ = {ν ∈ E : ∃ cν > 0 and an open set Z such that ν(Z) > 0 and ϕ|Z ≥ cν} .
Theorem A. Let (f,M ;H) be as above. Then

(i) ρ(µ) ≥ PGH
;

(ii) more generally, ρ(µϕ) ≥ PGH∩Gϕ.

Remark. Clearly, Gϕ = E if ϕ ≥ c for some c > 0; thus (ii) reduces to (i). Here we permit ϕ
to vanish on parts of M provided it is measurable with ess inf(ϕ) > 0 on an open set of M .
We do not claim that the restrictions imposed on Gϕ are necessary, but if the support of ϕ
is localized in the phase space, invariant measures supported elsewhere are clearly irrelevant
since they cannot be “seen” by the initial distribution µϕ.

(B) SRB measures as initial distributions

In (A), m = µϕ is not necessarily an invariant measure. If, however, a steady state is
reached before the leak begins, then it would be natural to take m to be an SRB measure
µSRB, as we now do. For simplicity, we assume µSRB has no zero Lyapunov exponents.

The challenge here is to identify a class of invariant measures GSRB that can be “seen”
by the SRB measure µSRB, which is often singular. We call Π ⊂M a µSRB-hyperbolic product
set if the following hold.

(W.1) Π = (∪Γu) ∩ (∪Γs) where Γu = {ω} and Γs = {ω′} are two sets of relatively open
local unstable and stable manifolds such that each ω ∈ Γu intersects every ω′ ∈ Γs in
precisely one point. In addition, there exist constants C > 0, λ < 1 such that

diam(T−nω) ≤ Cλn ∀ω ∈ Γu and diam(T nω′) ≤ Cλn ∀ω′ ∈ Γs,

where diam(·) denotes the diameter of the unstable or stable manifold.
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(W.2) µSRB|Π(A) > 0 for every relatively open A ⊂ Π.

(W.3) There exists a constant cΓ > 0 such that for µSRB-a.e. ω ∈ Γu, the conditional proba-
bility of µSRB on ω has density ψω ≥ cΓ.

We remark that (W.3) is a general property of SRB measures [LY]; we have listed it separately
only for emphasis. Define

GSRB = {ν ∈ E | ν(Π) > 0 for a µSRB-hyperbolic product set Π}.

Theorem B. Under the conditions above, ρ(µSRB) ≥ PGH∩GSRB
.

Remark 1. Observe that if f has an Axiom A attractor Λ and µSRB is the SRB measure on
the attractor, then GSRB imposes no restriction whatsoever on ν ∈ E , i.e. GSRB = E .
Remark 2. In the case where the pushforward of Lebesgue measure µ tends to µSRB, one
might be tempted to conclude that ρ(µ) = ρ(µSRB). This is not necessarily true, and the
reason is as follows: Suppose f has a Lebesgue measure zero invariant set Λ (such as a
horseshoe) away from the support of the SRB measure. The rate at which points escape
from a neighborhood of Λ will be reflected in ρ(µ) but not in ρ(µSRB); this can easily lead to
ρ(µ) > ρ(µSRB).

III. Restrictions on G due to the singularities of the map f

We state here a version of our results that can be applied to planar billiards; see Theorem
F below. Following [KS], we let U be an open smooth (at least C4) finite dimensional
Riemannian manifold, and assume thatM = U is a compact metric space of finite capacity,3

where U denotes the closure of U .
Let ι(x, U) be the radius of injectivity of the exponential map expx : TxU → U . We

assume that there exist constants s, c0, ς > 0 such that for each x, y ∈ U such that d(x, y) <
ι(x, U) and w = exp−1

x (y), we have

ι(x, U) ≥ min{s, d(x,M \ U)ς}, ‖D(expx)(w)‖ ≤ c0, and ‖D(exp−1
x )(y)‖ ≤ c0. (2)

Let V be an open subset of U and let f : V → U be a mapping which is a C2 diffeomor-
phism of V onto its image. Let S = M \ V . We think of S as the singularity set of f . We
assume that there exist constants C1, a > 0 such that for all x ∈ V ,

‖Dfx‖ ≤ C1d(x,S)−a and ‖Df−1
x ‖ ≤ C1d(x, fS)−a. (3)

Let f̂x = exp−1
fx ◦f ◦ expx denote the induced map on TxV wherever it is defined. We assume

that there exists b > 0 such that if x ∈ V , v ∈ TxV and f̂x(v) is well-defined, then

‖D2f̂x(v)‖ ≤ C1d(expx(v),S)−b. (4)

3This means there is some d < ∞ such that lim supr→0
logC(r)
− log r

= d where C(r) is the minimum cardinality

of a covering of M by open balls of radius r. For billiards with corners the set U is technically not a manifold
with boundary but a union of such glued together along some boundaries.
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Notice that for dispersing billiards with finite horizon, a = 1 and b = 3 (see [KS, CM3]). In
what follows, we will assume without loss of generality that b ≥ ς ≥ 1.

Into such a system we introduce a hole H ⊂ M . With regard to the choice of G,
in addition to the considerations above, we must also restrict to invariant measures that
respect the singularities (see [KS]). Define

GS = {ν ∈ E | ∃C, α > 0 such that ∀ε > 0, ν(Nε(S)) ≤ Cεα} .

Theorem C. Let (f,M ;H) be as above. Then

(i) for ϕ ∈ L1(µ), ρ(µϕ) ≥ PGH∩GS∩Gϕ, and

(ii) if f has an SRB measure µSRB with no zero Lyapunov exponents, then
ρ(µSRB) ≥ PGH∩GS∩GSRB

.

We finish with the following.

Remarks on upper bounds and the attractor case: No general results are known for
upper bounds on ρ(m), not even for m = µ. Consider the special case where Ω ⊂ M is an
attractor. Assume there is a neighborhood O of Ω such that f(O) ⊂ O and Ω = ∩n≥0f

n(O).
Let H = M \ O and m = µ, so that ρ(m) = 0 by definition. Since hν(f) ≤ λ+ν for all
ν ∈ E [R], showing that ρ(m) ≤ PG in this case is equivalent to proving PE = 0. The
latter is known to be false in general, an example being the Figure 8 attractor (see Fig. 1),
so one must rephrase the question to include some notion of “typicality”. Still, Pν = 0
means either λ+ν = 0 or ν is an SRB measure [LY], and whether attractors with nonuniform
expansion admit SRB measures is well known to be a very difficult question; see e.g. [Y4].
Since any result on upper bounds for ρ(m) must include this attractor case, we conclude
that in complete generality the question for upper bounds on escape rates is intractable at
the present time.

We will, however, identify a large class of dynamical systems for which ρ(m) = ρ(m) = PG

for some G. This is the content of Sects. 2.2 and 2.3.

Fig. 1. Figure 8 attractor. The only invariant measure is δp where p is the saddle point.

2.2 Escape rate formula

In this section, we assert for a class of dynamical systems the existence of ν̂ ∈ E the pressure
of which is equal to ρ(m), thereby answering Q1 and Q2 in the affirmative.

Let f : M 	 be a C1+ε diffeomorphism or a piecewise smooth diffeomorphism as in the
setting of Theorem C, and fix a hole H ⊂M . We assume

(A.1) (f,M) has a Markov tower extension (F,∆);

(A.2) (F,∆) has an exponential tail;

(A.3) (F,∆) respects the hole H ;
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(A.4) the transfer operator on the “tower with holes” has a spectral gap.

While (A.1) and (A.2) are by now quite standard, and (A.3) and (A.4) have also appeared
elsewhere, it will take a few pages to make precise this entire formal setting; we postpone that
to Sect. 5.1. Let µSRB denote the (unique) ergodic SRB measure on π(∆) where π : ∆ →M
is the projection, and let r < 1 be the leading eigenvalue of the transfer operator on the
tower with holes.

We will use the following notation: Let m = m(0) denote a probability measure on M .
For n ≥ 1, let m(n) denote the normalized surviving distribution at time n, i.e. m(n) =
fn
∗ (m|Mn)/m(Mn), assuming m(Mn) > 0. We call a measure m conditionally invariant with
eigenvalue t if m is supported on M \H and f∗(m|M1) = tm.

Theorem D. Assume (f,M ;H) satisfies (A.1)– (A.4). Then

(a) ρ(µSRB) is well defined and equals log r;

(b) µ
(n)
SRB converges weakly to a conditionally invariant measure µ∗ with eigenvalue r;

(c) there exists ν̂ ∈ GH ∩ GS such that

ρ(µSRB) = Pν̂ := hν̂(f)− λ+ν̂ ;

(d) ν̂ is defined by

ν̂(ϕ) = lim
n→∞

r
−n

∫

Mn

ϕdµ∗ for all continuous ϕ .

In addition, ν̂ enjoys exponential decay of correlations on Hölder observables.

Our construction of ν̂ generalizes that in [CMS, CM1], which assume the maps in question
admit finite Markov partitions. See [BDM] for the first generalization in this direction for
one-dimensional maps. Parts (a) and (b) of Theorem D are also known for the periodic
Lorentz gas [DWY]. We assert here that these results hold generally for any dynamical
system admitting a tower with the stated conditions.

2.3 A full variational principle

Combining the results of the previous two sections, we are able to state a full variational
principle (answering Q1–Q3 in Section 1) for maps admitting towers with a spectral gap as
described in Sect. 2.2. Let Λ ⊂ M be the reference hyperbolic product set which forms the
base of the tower ∆.

Theorem E. Assume (f,M ;H) satisfies (A.1)– (A.4), and let ν̂ be as in Theorem D.

(a) If µSRB = ϕµ where ϕ ≥ δ > 0 on a neighborhood of Λ, then ν̂ ∈ GH ∩ GS ∩ Gϕ and

ρ(µSRB) = Pν̂ = PGH∩GS∩Gϕ .

(b) If Λ is contained in a µSRB-hyperbolic product set, then ν̂ ∈ GH ∩ GS ∩ GSRB and

ρ(µSRB) = Pν̂ = PGH∩GS∩GSRB
.
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To our knowledge the condition in part (b) of Theorem E can be arranged in all known
tower constructions.

Remark on results for tower maps. We will, as an intermediate step to proving Theorems
D and E, prove the corresponding results for tower maps with Markov holes. These results
are stated as Theorems 4 and 5 in Sect. 5.2.

An illustrative example: The 2D periodic Lorentz gas

We conclude this section by stating an application of our results to a concrete example.
The setting here is as in [DWY]: Let f : M 	 be a billiard map associated with a two
dimensional periodic Lorentz gas with finite horizon whose scatterers are bounded by C3

curves with strictly positive curvature. The holes we introduce into M are derived from two
types of holes in the billiard table X . We say σ ⊂ X is a hole of Type I if σ is an open
segment of an arc in the boundary of one of the scatterers in X . We say σ is a hole of Type
II if it is an open convex set in X whose closure is disjoint from any of the scatterers. The
hole σ ⊂ X induces a hole Hσ ⊂ M which we also call a hole of Type I or Type II. See
[DWY] for more general holes and details on the geometry they induce in M .

Theorem F. Let f be the billiard map in the last paragraph. Let Hσ be a hole of Type I or
Type II, and assume it is small enough in the sense of [DWY]. Then

(a) ρ(µSRB) = PGH∩GS
;

(b) there exists ν̂ ∈ GH ∩ GS such that Pν̂ = ρ(µSRB).

Theorem F is an immediate consequence of Theorems D and E together with [DWY]:
In [DWY], towers with exponential tails respecting arbitrary holes of Types I and II are
constructed, and for small enough holes the spectral gap property is guaranteed. Thus the
conditions for Theorem D are satisfied.

For the Lorentz gas, µSRB = ϕµ where ϕ = c cos θ so that we are in the setting of
Theorem E(a); however, ϕ = 0 only when θ = ±π/2 so that Gϕ = E since the set {θ = ±π/2}
does not contain any invariant sets by the finite horizon condition and so cannot contain the
support of any invariant measure.

3 Ideas Common to the Proofs of Theorems A–C

In this section, we first give the ideas common to the proofs of Theorems A–C. Let f be the
mapping in question, let m be the reference measure (i.e. m = µϕ in Theorem A, m = µSRB

in Theorem B, and so on), and let G be the relevant set of ergodic invariant measures with
respect to which the pressure term is defined (i.e. G = GH ∩ Gϕ in Theorem A, and so on).
This “generic” notation is used throughout Sect. 3.

If G = ∅, then PG = −∞ and the theorem is vacuously true. Consider ν ∈ G. Leaving
precision for later, our proof will proceed as follows: For n ≥ 0, we introduce dynamical
balls in Mn of the form

B(x, n, g) = {y ∈M : d(f ix, f iy) < g(f ix), 0 ≤ i ≤ n} ∩Mn
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where Mn = ∩n
i=0f

−i(M \H) and g : M → R
+ is a suitable function to be specified (think

of it as g ≈ ε for the moment). We will prove

I. Relation to entropy: ν(B(x, n, g)) ∼ e−nhν(f).

II. Volume estimate: m(B(x, n, g)) & e−nλ+
ν where λ+ν is the sum of positive Lyapunov

exponents for ν-a.e. x.

From Estimate I, we deduce that Mn contains & enhν(f) disjoint sets of the type B(x, n, g).
This together with Estimate II gives

m(Mn) & enhν(f) · e−nλ+
ν . (5)

Taking log, dividing by n and letting n → ∞, gives ρ(m) ≥ hν(f) − λ+ν , which is what we
need.

We now proceed to make these ideas precise.

I. Relation to entropy. For this part we cite the following very general result.

Proposition 3.1. Let Φ : X 	 be a measurable transformation of a compact metric space
of finite capacity, and let θ be an ergodic invariant measure for Φ. Let ĝε be a family of
functions satisfying |ĝε|∞ ≤ ε and

∫

X
− log ĝε dθ < ∞, and define B̂(x, n, ĝε) = {y ∈ X :

d(Φix,Φiy) < ĝε(Φ
ix), 0 ≤ i ≤ n}. Then for θ-a.e. x,

lim
ε→0+

lim inf
n→∞

−1

n
log θ(B̂(x, n, ĝε)) = lim

ε→0+
lim sup
n→∞

−1

n
log θ(B̂(x, n, ĝε)) = hθ(Φ).

Proposition 3.1 follows from [M, Lemma 2] and [BK, Main Theorem]. Note that although
[BK] is phrased in terms of a continuous map, the proof does not use this fact.

In the proofs of Theorems A–C, Proposition 3.1 will be applied with Φ = f , θ = ν ∈ G
and

ĝε(x) := min{ε, d(x,S)}
(S = ∅ in Theorems A and B). Observe that intersecting B̂(x, n, ĝε) with M

n does not affect
its ν-measure since ν is supported on the survivor set. From ν(Nε(S)) ≤ Cεα, we have

∫

M

− log(ĝε) dν ≤ − log ε+
∞
∑

n=0

ν(Nεe−n(S) \Nεe−(n+1)(S))(n + 1− log ε)

≤ − log ε+

∞
∑

n=0

Cεαe−αn(n + 1− log ε) <∞
(6)

so our ĝε satisfies the hypotheses of Proposition 3.1.

II. Volume estimate. Let gε = 1
3
ĝε. Continuing to let m denote the initial distribution

and ν ∈ G, we state the following desired volume estimate:

Proposition 3.2. There exists a measurable set E ⊂ Ω with ν(E) > 0 such that for ν-
a.e. x ∈ E,

sup
ε>0

lim sup
n→∞

−1

n
logm(B(x, n, gε)) ≤ λ+ν . (7)
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Proof of Theorems A–C assuming Proposition 3.2: Let ν ∈ G be given. We fix δ > 0,
and let σ := ν(E) where E is as in Proposition 3.2. Using Propositions 3.1 and 3.2, we may
choose first ε > 0 sufficiently small, and then n0 = n0(δ, ε) ∈ Z

+ sufficiently large and a
measurable set E ′ ⊂ E with ν(E ′) ≥ σ/2 such that for every x ∈ E ′,

(i) ν(B(x, n, 3gε)) ≤ e−n(hν−δ) for all n ≥ n0;

(ii) m(B(x, n, gε)) ≥ e−n(λ+
ν +δ) for all n ≥ n0.

For n ≥ n0, let Cn ⊂ E ′ be a maximal set of points such that B(xi, n, gε)∩B(xj , n, gε) = ∅
whenever xi, xj ∈ Cn, xi 6= xj . By the maximality of Cn, for every y ∈ E ′, there exists xi ∈ Cn
such that B(y, n, gε) ∩ B(xi, n, gε) 6= ∅. We will show momentarily that y ∈ B(xi, n, 3gε).
This will imply E ′ ⊂ ∪xi∈CnB(xi, n, 3gε), and hence |Cn| ≥ σ

2
en(hµ−δ) by (i).

To show y ∈ B(xi, n, 3gε), it suffices to show d(fky, fkxi) < 3gε(f
kxi) ∀k ≤ n, since

y ∈ E ′ ⊂ Mn. Now B(y, n, gε) ∩ B(xi, n, gε) 6= ∅ means there exists z ∈ M such that
d(fkxi, f

kz) ≤ gε(f
kxi) and d(fkz, fky) ≤ gε(f

ky) for all 0 ≤ k ≤ n. Thus the assertion
above boils down to the following lemma.

Lemma 3.3. For any x, y ∈ M , if there exists z ∈ M with d(x, z) ≤ gε(x) and d(z, y) ≤
gε(y), then d(x, y) ≤ 3gε(x).

Proof of Lemma. It suffices to show gε(y) ≤ 2gε(x), for that will imply d(x, y) ≤ d(x, z) +
d(z, y) ≤ gε(x) + gε(y) ≤ 3gε(x), proving the lemma. Observe that

d(y,S) ≤ d(y, z) + d(z, x) + d(x,S)
≤ gε(y) + gε(x) + d(x,S) ≤ 1

3
d(y,S) + 4

3
d(x,S),

the last inequality following from gε(·) ≤ 1
3
d(·,S). Altogether, this gives d(y,S) ≤ 2d(x,S).

To finish, consider the following two cases:
Case 1: d(x,S) > ε. With gε(x) =

1
3
ε, gε(y) is automatically < 2gε(x) since it is ≤ 1

3
ε.

Case 2: d(x,S) ≤ ε. In this case gε(y) ≤ 1
3
d(y,S) ≤ 2

3
d(x,S) = 2gε(x).

For each x ∈ E ′, we have B(x, n, gε) ⊂ Mn by definition. Since the B(xi, n, gε) are
disjoint, we may estimate m(Mn) by

m(Mn) ≥
∑

xi∈Cn

m(B(xi, n, gε)) ≥ |Cn| · min
xi∈Cn

m(B(xi, n, gε)) ≥ σ

2
en(hν−δ)e−n(λ+

ν +δ).

This yields

lim inf
n→∞

1

n
logm(Mn) ≥ hν(f)− λ+ν − 2δ.

The theorem is proved since δ was chosen arbitrarily. �

To complete the proofs of Theorems A–C, it remains only to prove the volume estimate
in Proposition 3.2.
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4 Volume Estimates

In this section we prove Proposition 3.2 in the various settings of interest. The basic argu-
ment, which treats the case S = ∅, m = µ, and ν ∈ GH is presented in Sect. 4.1. Proofs of
other cases in Theorems A–C are presented as modifications of this one.

4.1 Proof of Proposition 3.2: Basic setup

We consider here the most basic setup, namely where S = ∅, m = µ, and ν ∈ GH (as
defined), and give a proof of Proposition 3.2.

I. Plan. From the pointwise nature of the result and the fact that the quantity on the left
of (7) increases as ε → 0, it suffices to show that given κ > 0, for ν-a.e. x and arbitrarily
small ε > 0, there exists c(x, ε) such that

m(B(x, n, gε)) ≥ c(x, ε)e−n(λ+
ν +κ) for all n ≥ 0 .

Here, gε(·) ≡ 1
3
ε; remember that B(x, n, gε) is a dynamical ball in Mn (and not in M). Such

an object is cumbersome to work with since it involves both the dynamics and the hole. To
remove the hole from consideration, we introduce

B∗(x, n, ε, γ) := {y ∈M : d(f ix, f iy) < εe−γi for 0 ≤ i < n} .

By definition of GH , for any γ > 0 and ν-a.e. x, B∗(x, n, 1
3
ε, γ) ⊂ B(x, n, gε) for small enough

ε. Thus it suffices to prove, for a suitably chosen γ and arbitrarily small ε > 0,

m(B∗(x, n, ε, γ)) ≥ c(x, ε, γ)e−n(λ+
ν +κ) for all n ≥ 0 . (8)

This is what we will do. Our strategy is to make these volume estimates in Lyapunov charts
and pass them back to the manifold.

II. Lyapunov charts and hyperbolic estimates. Let λ1 < . . . < λp be the distinct Lyapunov
exponents of (f, ν), with multiplicities m1, . . . , mp respectively, and let Ei(x) be the subspace
of TxM corresponding to λi. For each i, we let Ri(r) denote the ball of radius r centered
at 0 in R

mi, and let R(r) = Πp
i=1Ri(r). We recall below the following facts about Lyapunov

charts, following the exposition in [Y2].

Proposition 4.1. [Y2, Sect. 3.1] Let δ << mini 6=j |λi − λj | be fixed. Then there is a
measurable set V ′ ⊂ M , ν(V ′) = 1, a measurable function ℓ : V ′ → [1,∞) satisfying
ℓ(f±x)/ℓ(x) < e2δ, and a family of charts {Φx : R(δℓ(x)−1) → M}x∈V ′ with the following
properties:

(a) (i) Φx(0) = x;

(ii) DΦx({0} × · · · × R
mi × · · · × {0}) = Ei(x);

(iii) for all z, z′ ∈ R(δℓ(x)−1),

K−1d(Φxz,Φxz
′) ≤ |z − z′| ≤ ℓ(x)d(Φxz,Φxz

′)

where K is a constant depending only on the dimension of M .
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(b) Let f̃x = Φ−1
fx ◦ f ◦ Φx be defined where it makes sense. Then

(i) eλi−δ|v| ≤ |Df̃x(0)v| ≤ eλi+δ|v| for v ∈ {0} × · · · × R
mi × · · · × {0};

(ii) Lip(f̃x −Df̃x(0)) < δ;

(iii) Lip(Df̃x) < ℓ(x).

The following notation is used: Let TxM = Ecu(x)⊕Es(x) where Ecu(x) = ⊕i:λi≥0Ei(x)
and Es(x) = ⊕i:λi<0Ei(x). We will estimate the volume of the sets in question by looking at
slices parallel to Ecu, and will do so in Lyapunov charts. Let Rcu and Rs be the subspaces
in the charts corresponding to Ecu and Es, and let Rcu(r) and Rs(r) denote disks of radius
r centered at 0 in Rcu and Rs respectively. We will work with compositions of chart maps,
writing

f̃n
x := f̃fn−1x ◦ · · · ◦ f̃x ,

and study graph transforms by f̃n
x of functions from Rcu(r) to Rs(r). The precise assertions

are as follows:

(a) For all γ > 0 sufficiently small, there exist δ, σ > 0 small enough and a chart system
(with δ as in Proposition 4.1) such that the following holds for ν-a.e. x: Let r ≤ δℓ(x)−1,
and let g0 : Rcu(r) → Rs(r) be a C1 function with |g0(0)| < 1

2
r and ‖Dg0‖ < σ. Then

for i = 1, 2, · · · , there exists gi : R
cu(e−γir) → Rs(e−γir) defined on exponentially shrinking

domains and with ‖Dgi‖ < σ for all i such that inductively

f̃f i−1x(graph(gi−1)) ∩R(e−γir) = graph(gi) .

That is to say, if Γz is the graph transform by f̃z, then for each i, Γf i−1x(gi−1) = gi.

(b) For g : Rcu(r) → Rs(r) and y ∈ graph(g), let Tg(y) denote the tangent space to the
graph of g at y. If δ and σ in (a) are small enough, then for y ∈ graph(g0) such that
f̃ i
x(y) ∈ R(e−γir) for all i ≤ n,

| det[Df̃n
x (y)|Tg0(y)

]| < en(λ
++3kδ)

where λ+ =
∑

i:λi>0miλi and k =dim(Ecu).

Notice first that with 2δ < γ, we are assured that R(e−γir) lies in the chart at f ix; this
is because ℓ(f ix) > e−γiℓ(x); see Proposition 4.1. Since most of the other assertions in (a)
and (b) follow from standard (uniformly hyperbolic) graph transform estimates, we will only
sketch the arguments for a few key points. (A version of these estimates can be found in
[Y2, Sect. 3.1]; see also [Y1, Sect. B] for similar results.)

The “overflowing property” of the graph transforms can be justified as follows. Consider
first the case where g0(0) = 0. By Proposition 4.1(b)(i), |Df̃x(0)v| ≥ e−δ|v| ≈ (1 − δ)|v| for
v ∈ Rcu. By Proposition 4.1(b)(iii) together with chart size, we have, for all η ∈ R(r),

|Df̃x(η)v −Df̃x(0)v| ≤ Lip(Df̃x)r|v| < δ|v| .

This gives |Df̃x(η)v| > (1 − 3δ)|v| ≈ e−3δ|v| for v with a small enough component in Rs.
Thus with δ and σ sufficiently small relative to γ, the overflowing property is assured from
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step to step for g0 with g0(0) = 0. For graphs that do not pass through 0, we pivot them at
y ∈ W̃ s

loc∩graph(g0) where W̃ s
loc is the stable manifold of x in its chart. Since |f̃ i

x(y)| < e(λs+δ)i

where λs = max{λi : λi < 0}, movements of f̃ i
x(y) in theRcu-direction are negligible assuming

γ << |λs|.
The assertion in (b) is proved similarly: We view det(Df̃n

x ) as a product of determinants.
At each step, | det(Df̃f ix(0)|Rcu)| < eλ

++kδ, and we may assume that approximations of the
type in the last paragraph increase the error by a factor < e2kδ.

III. Completing the proof. Putting assertions (a) and (b) in II together, we arrive at the
following: Define

B̃∗(x, n, r, γ) = {y ∈ Rcu(r)×Rs(1
2
r) : f̃ i

x(y) ∈ R(e−γir) for i = 1, 2, · · · , n} .

We foliate B̃∗(x, 0, r, γ) with planes {P} parallel to Rcu(r)×{0}, and view them as graphs of
constant functions. By the overflowing property of the graph transform at each step, f̃ i

x(y) ∈
R(e−γir) for all i ≤ n is equivalent to f̃n

x (y) ∈ R(e−γnr). Pulling back f̃n
x (P )∩R(e−γnr), we

use the bound in assertion (b) to estimate the area of P ∩ B̃∗(x, n, r, γ). We then integrate
over {P} to obtain

Leb(B̃∗(x, n, r, γ)) ≥
(r

2

)d−k

· (re−γn)k · e−n(λ++3kδ) (9)

where d =dim(M).
We now return to the argument outlined at the beginning of the proof. Let κ > 0 be

given. Assuming always γ << |λs|, we now take it small enough that 4kγ < κ, and let δ be
small enough (with respect to γ) for assertions (a) and (b) to hold in the chart system {Φx}
associated with δ. For ν-typical x, we consider ε small enough that B(f ix, εe−γi)∩H = ∅ for
all i ≥ 0. Choosing r < ε/K where K is as in Proposition 4.1(a)(iii), we define B̃∗(x, n, r, γ)
in the chart at x as above, and observe that Φx(B̃

∗(x, n, r, γ)) ⊂ B∗(x, n, ε, γ). To finish, it
remains to pass the estimate in (9) back to M . Proposition 4.1(a)(iii) gives a bound on the
Jacobian of Φx, allowing us to conclude

m(Φx(B̃
∗(x, n, r, γ)) ≥ ℓ(x)−d · Leb(B̃∗(x, n, r, γ)) ≥ c e−n(λ++κ)

for some constant c depending on x, ε and γ. �

4.2 Adaptations of basic argument to various settings

We now explain how each of the other results in Theorems A–C is deduced from the proof
in Sect. 4.1.

1. The W s-neighborhood condition (O): We continue to assume S = ∅ and m = µ. To
relax the condition from the original definition of GH in Sect. 2.1 to the one given by (O), the
proof in Sect. 4.1 is modified as follows: Given κ, we fix γ, δ, a chart system {Φx}, and a ν-
typical x ∈M . Let O, aW s-neighborhood, and ε be such that f i(O)∩B(f ix, εe−γi) ⊂M \H
for all i. We need to show m(O ∩ B∗(x, n, ε, γ)) ≥ c(x, ε, γ)e−n(λ+

ν +κ). Let r < ε/K.
The following notation is used: For y ∈ R(r) and small η > 0, let R(y, η) = y + R(η); if

y = (ycu, ys) are the coordinates of y with respect to Rcu and Rs, we write Rcu(ycu, η) = ycu+
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Rcu(η), and so on. To define the analog of B̃∗(x, n, r, γ) in Sect. 4.1, let z ∈ O ∩W s
loc(x) be

sufficiently close to x, let z̃ := Φ−1
x (z), and let r′ < r be small enough that Φx(R(z̃, r

′)) ⊂ O.
Define B̃∗(x, n, z, r′, γ)

:= {y ∈ Rcu(z̃cu, r′)× Rs(z̃s, 1
2
r′) : f̃ i

x(y) ∈ R(f̃ i
x(z̃), e

−γir′) for i = 1, 2, · · · , n} .

Since z ∈ W s
loc(x), f̃

i
x(z̃) → 0 as i → ∞. It is straightforward to check that modulo a

constant, Leb(B̃∗(x, n, z, r′, γ)) is bounded below by the quantity on the right side of (9),
and that Φx(B̃

∗(x, n, z, r′, γ)) ⊂ (O ∩ B∗(x, n, ε, γ)). �

In the settings below, we will revert back to GH as defined, leaving it to the reader to
extend the proof to include the condition (O) if they so choose.

2. Initial distributions with densities: Continuing to assume S = ∅, we let m = µϕ

for some ϕ ∈ L1(µ). Let ν ∈ GH ∩ Gϕ, and let Z and cν have the meaning in the definition
of Gϕ. Observe that for ν-a.e. x ∈ Z and small enough ε, one has µϕ(B

∗(x, n, ε, γ)) ≥
cνm(B∗(x, n, ε, γ)). An argument identical to that in Sect. 4.1 proves Proposition 3.2 with
E = Z. �

3. SRB measures as initial distributions: Continuing to assume S = ∅, we letm = µSRB

as in Theorem B. Given ν ∈ GH∩GSRB, we fix a µSRB hyperbolic product set Π = (∪Γu)∩(∪Γs)
with ν(Π) > 0, and show that the volume estimate for m(B∗(x, n, ε, γ)) in Sect. 4.1 holds
for ν-a.e. x ∈ Π.

Let x ∈ ωu
x ∩ ωs

x ∈ Π be a ν-typical point, where ωu
x ∈ Γu and ωs

x ∈ Γs. Note that due to
the uniform contraction of T nωs

x and T−nωu
x required by (W.1) of Sect. 2.1.B, x can have no

zero Lyapunov exponents. Let W̃ u
loc denote the image of the local unstable manifold through

x in its chart. Since local unstable manifolds are unique (up to size), Φ−1
x (ωu

x) ⊂ W̃ u
loc, which

has the dimension of Ru and is tangent to it at 0. (Since no zero Lyapunov exponents is an
assumption for Theorem B, we have Ru instead of Rcu.) By conditions (W.1) and (W.2), for
all small enough r > 0, there exists Γ0 ⊂ Γu such that (i) µSRB(∪ω∈Γ0ω) > 0 and (ii) for every
ω ∈ Γ0, Φ

−1
x (ω)∩R(r) is the graph of a function from Ru(r) to Rs(r) with the properties of

g0 in Sect. 4.1. Define

B̃∗(x, n, r,Γ0, γ) = {y ∈ ∪ω∈Γ0Φ
−1
x ω : f̃ i

x(y) ∈ R(e−γir) for i = 0, 1, 2, · · · , n} .

With r small enough relative to ε, clearly Φx(B̃
∗(x, n, r,Γ0, γ)) ⊂ B∗(x, n, ε, γ). To estimate

the measure of this set, it is more convenient to bring µSRB to the chart (instead of doing it on
M): Let α be the measure (Φ−1

x )∗(µSRB|∪ω∈Γ0
ω) restricted to R(r). By (i) above together with

(W.3), α(B̃∗(x, 0, r,Γ0, γ)) > 0. We disintegrate α into conditional probability measures on
the leaves {Φ−1

x ω}, letting αT denote the measure in the transverse direction. To estimate
the α-measure of B̃∗(x, n, r,Γ0, γ), we do it one Φ−1

x ω-leaf at a time, integrating with respect
to αT afterwards. Condition (W.3) ensures uniform lower bounds of the type in (9) for
αT -almost all leaves. �

4. Maps with singularities: We discuss the case m = µ, leaving the others to the reader.

Let ν ∈ GH ∩ GS , and observe the following lemma.
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Lemma 4.2. Let Eε,γ = {x ∈ M : d(f ix,S) > εe−γi for all i ≥ 0}. Then for any fixed
γ > 0, limε→0 ν(Eε,γ) = 1.

Proof. This follows from the simple estimate,

ν(M \ Eε,γ) =
∑

i≥0

ν[f−i(Nεe−γi(S))] =
∑

i≥0

ν[Nεe−γi(S)] ≤
∑

i≥0

Cεαe−γαi ≤ C ′εα ,

the first inequality coming from the definition of GS . (See also [KS, Part I, Lemma 3.1].)

This means that for x ∈ Eε,γ, we again have B∗(x, n, 1
3
ε, γ) ⊂ B(x, n, gε), for gε(f

ix) =
1
3
min{ε, d(f ix,S)} ≥ 1

3
εe−γi.

Continuing to follow the proof in Sect. 4.1, we note that the definition of GS together
with (3) implies that

∫

M
log+ ‖Df±1

x ‖ dν < ∞ where log+ x = max{log x, 0}, so Lyapunov
exponents are well defined ν-a.e. In addition, the Lyapunov charts described in Proposition
4.1 exist for this class of maps with some modifications due to the presence of singularities.

Observe first that (a)(i), (a)(ii) and (b)(i) of Proposition 4.1 hold as stated since these
quantities depend only on Df at a typical point x (see [KS, Part I, Theorem 2.2]).4

The other items of Proposition 4.1 are modified as follows. Fix δ as in Proposition 4.1.
Then there exist a set V ′ with ν(V ′) = 1 and a measurable function ℓ(x) : V ′ → [1,∞),
with ℓ(f±x) < e2δℓ(x), such that for all ε > 0 sufficiently small, the charts Φx are defined
on R(δℓ(x)−1gε(x)

b), where b is the exponent from (4), and satisfy

(a) (iii′) For all z, z′ ∈ R(δℓ(x)−1gε(x)
b),

K−1d(Φxz,Φxz
′) ≤ |z − z′| ≤ ℓ(x)d(Φxz,Φxz

′)

where K is a constant depending only on the dimension of M and c0 from (2).

(b) Let f̃x = Φ−1
fx ◦ f ◦ Φx be defined where it makes sense. Then

(ii′) Lip(f̃x −Df̃x(0)) ≤ δ;

(iii′) Lip(Df̃x) ≤ ℓ(x)gε(x)
−b.

Although the construction of these charts is similar to that found in [P, KS], we include the
necessary arguments in the Appendix since the statements we need are somewhat different
from those found in the literature.

With the charts {Φx} in place, the proof follows a similar line to that given in Section
4.1, with slight modifications due to the singularities. For example, assertion (a) is no longer
a uniform statement for all x ∈ V ′; rather, we need to choose r ≤ δℓ(x)−1gε(x)

b, but only
after ε is fixed depending on the rate of approach of x to the singularities. We state precisely
these changes below.

Fix κ > 0 and choose γ << |λs| such that (b + 4)kγ < κ. Using Lemma 4.2, we choose
ε > 0 such that ν(Eε,γ) > 1 − κ. Next we choose δ > 0 with 2δ < γ, so that there exists a

4Although [KS] uses only a single splitting, TxM = Eα(x)⊕Eβ(x), one can just as easily split the tangent
space into ⊕iEi(x), one for each Lyapunov exponent, to obtain Proposition 4.1(b)(i) using an argument
identical to that in [Y2, Sect. 3.1].
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chart system {Φx}x∈V ′ with the modified properties as listed in (a)(iii′)-(b)(iii′) above. Note
that ν(V ′ ∩ Eε,γ) > 1− κ.

We now choose x ∈ V ′ ∩Eε,γ and prove the estimate (8). Note that B(f ix, εe−γi)∩ (H ∪
S) = ∅. Finally, choosing r ≤ δℓ(x)−1gε(x)

b guarantees that the assertions (a) and (b) of
Sect. 4.1 hold along the orbit of x with γ replaced by γ(b+1), for then R(re−iγ(b+1)) lies in the
chart at f ix by definition of Eε,γ and choice of r. In particular, f̃f ix is defined onR(re−iγ(b+1)).

We shrink r further if necessary so that r < ε/(3K) and define B̃∗(x, n, r, γ(b + 1)) as in
Sect. 4.1. Then by item (a)(iii′) above, Φx(B̃

∗(x, n, r, γ(b + 1))) ⊂ B∗(x, n, 1
3
ε, γ) and the

rest of the proof follows line by line with only minor changes to constants. For example, (9)
has the factor (re−γn(b+1))k as indicated above.

This proves Proposition 3.2 for all x ∈ Eε,γ. But since κ > 0 was chosen arbitrarily, by
Lemma 4.2 we conclude that Proposition 3.2 holds for ν-a.e. x. �

5 Towers with Holes

This section is exclusively about escape dynamics on towers. Sect. 5.1 reviews basic facts
and notation for towers making precise (A.1)–(A.4) in Sect. 2.2. In Sect. 5.2 we formulate
results analogous to Theorems D and E for towers with Markov holes. Proofs are given in
Sects. 5.3 and 5.4.

5.1 Review of definitions and basic facts

I. Closed systems (without holes)

Let f : M 	 is a (piecewise) C1+ǫ diffeomorphism. The material below is taken from
[Y3]. We recall only essential definitions, referring the reader to [Y3] for detail.

Generalized horseshoes: The idea of a generalized horseshoe with infinitely many branches
and variable return times, denoted (Λ, R), is as follows: Λ ⊂ M is a compact subset with
a hyperbolic product structure, i.e., Λ = (∪Γu) ∩ (∪Γs) where Γs and Γu are continuous
families of local stable and unstable manifolds, and µω{ω ∩ Λ} > 0 for every ω ∈ Γu where
µω is the Riemannian measure on the unstable manifold ω. We say Λs is an s-subset of Λ
if Λs = (∪Γu) ∩ (∪Γ̃s) for some Γ̃s ⊂ Γs, and u-subsets are defined similarly. Modulo a set
the restriction of which to each ω ∈ Γu has µω-measure zero, Λ is a countable disjoint union
of (closed) s-subsets Λj with the property that for each j, there exists Rj ∈ Z

+ such that
fRj (Λj) is a u-subset of Λ. The function R : Λ → Z

+ given by R|Λj
= Rj is called the return

time function to Λ.
The definition of a generalized horseshoe includes conditions on hyperbolicity formulated

as (P1)–(P5) in [Y3]. We will omit them and focus instead on the estimates derived from
these conditions that we will need. Let ωs(x) and ωu(x) denote respectively the elements of
Γs and Γu containing x.

• There is a separation time s : Λ → Z
+ with the property that (i) s(x, y) = s(x′, y′) for

x′ ∈ ωs(x), y′ ∈ ωs(y); (ii) for x, y ∈ Λj, s(x, y) ≥ Rj, and (iii) for x ∈ Λj, y ∈ Λj′,
j 6= j′, s(x, y) ≤ min(Rj , Rj′).
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• There are constants C > 0 and α ∈ (0, 1), related to the hyperbolicity and distortion
of f , such that if y ∈ ωs(x), then d(fnx, fny) ≤ Cαn for all n ≥ 0.

The following facts about the Jacobian in the unstable direction are useful. For ω, ω′ ∈ Γu,
the holonomy map Θω,ω′ : ω ∩ Λ → ω′ ∩ Λ is obtained by sliding along stable curves, i.e.

Θω,ω′(x) = ωs(x) ∩ ω′. Fix an arbitrary leaf ω̂ ∈ Γu. We let Θ̂(x) be the unique point in

ωs(x)∩ ω̂, and define a(x) = log
∏∞

i=0
detDfu(f ix)

detDfu(f i(Θ̂x))
, where detDfu(x) = det(Df(x)|Eu(x)) is

the unstable Jacobian of f . This function is used to define a family of reference measures
{mω, ω ∈ Γu}, where mω is the measure on ω whose density with respect to µω is ea · 1ω∩Λ.
For x ∈ ω∩Λi, let ω

′ be such that fRi(ω∩Λi) = ω′. We define Ju(fR)(x) = Jmω ,mω′
(fRi|(ω∩

Λi))(x), the Jacobian of fR with respect to the measures mω and mω′ .

Remark on notation: It is convenient in this section to follow the notation in [Y3], some
of which conflicts, however, with earlier notation. For example, m in the last paragraph is
not intended to signify any relation to initial distributions in escape dynamics, and C1 below
is not related to the same notation in Sect. 2.1, Paragraph III. We do not believe this will
lead to problems as the contexts are quite different.

Lemma 5.1. ([Y3, Lemma 1]) (1) For all ω, ω′ ∈ Γu, (Θω,ω′)∗mω = mω′.

(2) For each ω ∈ Γu and x ∈ ω, Ju(fR)(x) = Ju(fR)(y) for all y ∈ ωs(x).

(3) ∃C1 > 0 (depending on C and α) such that for each ω ∈ Γu, i ∈ Z
+ and all x, y ∈ Λi∩ω,

∣

∣

∣

∣

Ju(fR)(x)

Ju(fR)(y)
− 1

∣

∣

∣

∣

≤ C1α
s(fRx,fRy)/2. (10)

(4) supx∈Λ a(x) <∞ and |a(x)− a(y)| ≤ 4Cα
1
2
s(x,y) on each ω ∈ Γu.

We say (Λ, R) has exponential return times if there exist C0 > 0 and θ0 > 0 such that
for all ω ∈ Γu, µω{R > n} ≤ C0θ

n
0 for all n ≥ 0. This property (in fact, integrability of

R is sufficient) guarantees that f has a unique SRB measure µSRB with µSRB(Λ) > 0 ([Y3,
Theorem 1]).

“Hyperbolic” Markov towers: Given f with a generalized horseshoe (Λ, R), it is shown
in [Y3] that one can associate a Markov extension F : ∆ → ∆ which focuses on the return
dynamics to Λ. The set ∆ is the disjoint union ∪ℓ≥0∆ℓ where ∆ℓ, the ℓ

th level of the tower,
is defined to be ∆ℓ = {(x, ℓ) : x ∈ Λ, R(x) > ℓ}, and F is defined by F (x, ℓ) = (x, ℓ + 1)
for ℓ < R(x) − 1 and F (x, ℓ) = (fRx, 0) when ℓ = R(x) − 1; that is to say, F maps (x, 0)
successively up the tower until the return time for x is reached. A projection π : ∆ → M
with π ◦ F = f ◦ π is uniquely defined assuming the natural identification of ∆0 with Λ.

For notational simplicity, we will often refer to a point in ∆ as x when the level ℓ is made
clear by context.

The separation function s(·, ·) above defines a countable partition {∆ℓ,j} on ∆: for x, y ∈
∆0, s(x, y) = inf{n > 0 : F nx, F ny lie in different ∆ℓ,j}. It is easy to see that {∆ℓ,j} is a
Markov partition for F with ∆0 as a single element. Let ∆∗

ℓ,j = ∆ℓ,j ∩ F−1∆0. Note that

F |∆∗
ℓ,j

maps ∆∗
ℓ,j bijectively onto a u-subset of ∆0, and if we rename the collection {F−ℓ∆∗

ℓ,j}
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as {(∆0)i}, then {(∆0)i} is a countable collection of closed subsets of ∆0 the π-images of
which are precisely the {Λi} in the paragraph on generalized horseshoes.

Stable and unstable sets for ∆ℓ,j are defined as follows: Let Γs(π(∆ℓ,j)) and Γu(π(∆ℓ,j))
be the stable and unstable families defining the hyperbolic product set π(∆ℓ,j). We say
ω̃ ⊂ ∆ℓ,j is an unstable set of ∆ℓ,j if π(ω̃) = ω ∩ π(∆ℓ,j) for some ω ∈ Γu(π(∆ℓ,j)). Since
there can be no ambiguity, we will use Γu(∆ℓ,j) to denote the set of all such ω̃, and let
Γu(∆) = ∪ℓ,jΓ

u(∆ℓ,j). Stable sets of ∆ℓ,j and Γs(∆) are defined similarly.
Two reference measures µ̃ω and m̃ω are defined on ω ∈ Γu(∆) as follows: On ∆0, identi-

fying ω ∈ Γu(∆0) with ω
′∩Λ for ω′ ∈ Γu(Λ), µ̃ω is simply µω′|ω′∩Λ and m̃ω ismω′ . Once these

measures are defined on ω ∈ Γu(∆0), there is exactly one way to extend them to ∪ℓ>0Γ
u(∆ℓ)

so that if Ju
µ (F ) and J

u(F ) denote the Jacobians of F on unstable sets with respect to µ̃ω

and m̃ω respectively, then Ju(F ) = Ju
µ (F ) = 1 on ∆\F−1(∆0). Notice also that if we extend

a to ∪ℓ>0∆ℓ by a(x) = a(F−1x), then dm̃ω = ea dµ̃ω on all ω ∈ Γu(∆).

Quotient “expanding” towers: Associated with F : ∆ → ∆ is a quotient tower F : ∆ →
∆ obtained by collapsing stable sets to points, i.e., ∆ = ∆/∼ where for x, y ∈ ∆, x ∼ y if
and only if y ∈ ω(x) for some ω ∈ Γs(∆). Let π : ∆ → ∆ be the projection defined by ∼.
We will use the notation ∆ℓ = π(∆ℓ),∆ℓ,j = π(∆ℓ,j), and so on.

Lemma 5.1(1) and (2) together imply that there is a natural measure m on ∆ with
respect to which the Jacobian of F , JF , is well defined: specifically, we have JF ≡ 1 on

∆ \ F−1
(∆0), and for x ∈ ∆0, JF

R
(x) = Ju(fR)(y) for any y ∈ ωs(x). Finally, with the

definition of separation time inherited from ∆0, the distortion bound in Lemma 5.1(3) holds

for JF
R
on ∆0.

II. Systems with holes

The setting is as in Paragraph I. We fix an open set H ⊂M and call it “the hole.”

Towers with Markov holes (following [DWY]): Let (F,∆) be the tower arising from the
horseshoe (Λ, R). We say (F,∆) respects the hole H if the following conditions are satisfied:

(H.1) π−1H is the union of countably many elements of {∆ℓ,j}.
(H.2) π(∆0) ⊂ M \ H , and there exist δ > 0, ξ1 > 1 such that all x ∈ π(∆0) satisfy

d(fnx,S ∪ ∂H) ≥ δξ−n
1 for all n ≥ 0.

Because of (H.1), we refer to π−1H , the hole on ∆, as a “Markov hole.” This implies in
particular that for every i and ℓ with 0 ≤ ℓ < Ri, f

ℓ(Λi) either does not meet H or it is
completely contained in H . Equivalently, on the tower (F,∆), each (∆0)i either falls into
the hole completely on its way up the tower or returns to ∆0 intact.

Earlier on we have used (f,M ;H) to denote an open system. Observe that (F,∆; π−1H)
and (F ,∆;H) where H = π(π−1H) are open systems of the same type. As before, we write

∆n = ∩n
i=0F

−i(∆ \ π−1H) = {x ∈ ∆ : F ix /∈ π−1H for 0 ≤ i ≤ n} ,

and ∆∞ = ∩∞
i=0∆

n. In particular, ∆0 = ∆ \ π−1H . The notation F̊ n = F n|∆n for n ≥ 1 is
sometimes used to distinguish between the system with and without holes. Corresponding
objects for (F ,∆, H) are denoted by ∆

n
and ∆

∞
etc.
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III. Abstract towers and a notion of spectral gap

In Paragraphs I and II, we considered towers that arise from generalized horseshoes.
Towers can, in fact, be defined in the abstract. Leaving details to the reader, an abstract
expanding tower is a dynamical system F : ∆ → ∆ where ∆0 is a compact set, ∆ = ∪ℓ≥0∆ℓ

has a tower structure, F moves points up the tower until their return time R; there is a
countable Markov partition {∆ℓ,j} on ∆ which is a generator and a reference measure m

with respect to which we have (i) JF = 1 on ∆\F−1
(∆0) and (ii) modulo a set of m-measure

zero, ∆0 = ∪i(∆0)i where F
R
maps each closed set (∆0)i homeomorphically onto ∆0 with

the distortion bound in Lemma 5.1(3). Abstract expanding towers with Markov holes H are
defined in the obvious way, as are abstract hyperbolic towers.

Given (F ,∆) with m{R > n} < C0θ
n
0 for some C0 ≥ 1 and θ0 < 1,5 we fix β with

1 > β > max{θ0,
√
α} where α is as in Lemma 5.1(3), and define a symbolic metric on ∆ by

dβ(x, y) = βs(x,y). Since β >
√
α, Lemma 5.1(3) implies that JF is log-Lipshitz with respect

to this metric. Let B = {ψ ∈ L1(∆, m) : ‖ψ‖ <∞} where ‖ψ‖ = ‖ψ‖∞ + ‖ψ‖Lip and

‖ψ‖∞ = sup
ℓ,j

sup
x∈∆ℓ,j

|ψ(x)|βℓ, ‖ψ‖Lip = sup
ℓ,j

Lip(ψ|∆ℓ,j
)βℓ .

Lip(·) in the last displayed formula is with respect to the symbolic metric dβ, and (B, ‖ · ‖)
so defined is a Banach space.

Now consider the open system (F ,∆;H) where H is a Markov hole. Following [BDM],
we let L denote the transfer operator associated with F |

∆
1 defined on B, i.e., for ψ ∈ B and

x ∈ ∆,

Lψ(x) = 1
∆

0(x)
∑

y∈∆
0
∩F

−1
{x}

ψ(y)(JF (y))−1.

We say (F,∆;H) has a spectral gap if

(i) L is quasi-compact with a unique eigenvalue r of maximum modulus, and

(ii) r is real with β < r < 1; it is simple, with a one-dimensional eigenspace.

Notice that if h ∈ B satisfies Lh = rh, then hm defines a conditionally invariant measure for
F with eigenvalue r, i.e. F ∗(hm)|∆̄\H̄ = r · hm.

Finally, if (F,∆) is an abstract hyperbolic tower that projects onto (F ,∆), and H̃ ⊂ ∆ is
a Markov hole which projects onto H, then we say (F,∆; H̃) has a spectral gap if (F ,∆;H)
does.

The conditions (A.1)–(A.4) in Sect. 2.2 have now been made precise.

5.2 Variational principles for (F ,∆;H) and (F,∆; π−1H)

As noted earlier, our aim in this section is to prove, as an intermediate step for Theorems
D and E, a version of the corresponding results for the open system (F,∆; π−1H). These
results are deduced from some previously known results for (F,∆;H), which we first recall.

5Our default rule is to use the same symbol for corresponding objects for f, F and F when no ambiguity
can arise given context. Thus R is the name of the return time function on Λ,∆0 and ∆0.
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I. Results for expanding towers

We consider here an abstract expanding tower (F ,∆;H) with Markov holes. The fol-
lowing notation is used: Let B be the function space above, and define B0 to be the set of
bounded functions in B whose Lipschitz constant is also bounded, i.e. the definition of B0

is the same as that of B, but with the weights βℓ removed. Let MF (∆
∞
) denote the set of

invariant measures on ∆
∞
, and define

G∆ = {η ∈ MF (∆
∞
) | η(log JF ) <∞} .

Theorem 3. (mostly [BDM]; see Remark below) Assume m{R > n} < C0θ
n
0 , and (F ,∆;H)

has a spectral gap with largest eigenvalue r. Let h∗ ∈ B be the unique eigenfunction of r with
∫

h∗dm = 1. Then:

(a) There exist constants D > 0 and τ < 1 such that for all ψ ∈ B,

‖r−nLn
ψ − d(ψ)h∗‖ ≤ D‖ψ‖τn, where d(ψ) = lim

n→∞
r
−n

∫

∆
n
ψ dm <∞.

Assume additionally
(*): ∃ C̄ > 0 and θ̄ ∈ (r−1θ0, 1) such that log JF

n|∆0∩{R=n} ≤ C̄θ̄−n for all n ≥ 0.

(b) log r = PG∆
:= sup

η∈G∆

{

hη(F )−
∫

∆

log JFdη

}

.

(c) Let ν be defined by

ν(ϕ) = lim
n→∞

r
−n

∫

∆
n
ϕh∗ dm for all ϕ ∈ B0 .

Then ν ∈ G∆ and attains the supremum in (b).

(d) Other properties of ν are that (F , ν) is ergodic, and enjoys exponential decay of corre-
lations between ϕ and ψ ◦ F n

for ϕ ∈ B0 and ψ ∈ L∞.

Remark. The restriction η(log JF ) < ∞, which appears in the definition of G∆, is omitted
in [BDM], as is the condition (*), which is extremely mild,6 but a condition of this type is
needed to ensure that ν ∈ G∆. Since a main novelty of Theorem 3 is the noncompactness of
the phase space ∆, and these conditions are directly connected to the finiteness of various
quantities, we will provide sketches of corrected proofs of Theorem 3(b) and (c) in Sect. 5.3.
The proofs of parts (a) and (d) in [BDM] are unaffected.

II. Results for hyperbolic towers arising from (f,M ;H)

6We observe that (*) holds for all the towers constructed in [BDM]; indeed, in that setting,
log JF

n|∆0∩{R=n} ≤ Cn and all measures η ∈ MF (∆
∞
) satisfy η(log JF ) < ∞.
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We now return to the setting of Sect. 2.1, where f :M 	 is a C1+ǫ diffeomorphism with
or without singularities. Let H ⊂ M , and assume that the open system (f,M ;H) satisfies
(A.1)–(A.4) in Sect. 2.2.

We first recall the following result proved in [DWY] as part of our study of billiard
systems with holes. Let B̃ be the class of measures σ on ∆ with the following properties: (i)
σ has absolutely continuous conditional measures on unstable leaves; and (ii) π∗σ = ψσdm
for some ψσ ∈ B.

Theorem 4 ([DWY]). Under the conditions above, the following hold for (F,∆; π−1H):

(a) For all σ ∈ B̃ with d(ψσ) > 0, where d(ψσ) > 0 is as in Theorem 3(a),

log r = lim
n→∞

1

n
log σ(∆n) i.e. ρ(σ) = log r .

(b) There exists a conditionally invariant distribution µ̃∗ ∈ B̃, such that F̊∗µ̃∗ = r µ̃∗,
π∗µ̃∗ = h∗m, and for which the following hold: For all σ ∈ B̃,

lim
n→∞

r
−nF̊ n

∗ σ = d(ψσ) · µ̃∗ , and if d(ψσ) > 0, then lim
n→∞

F̊ n
∗ σ

F̊ n
∗ σ(∆)

= µ̃∗

where the convergence is in the weak* topology.

The measure µ̃∗ can be thought of as the physical measure for the leaky system (F,∆; π−1H).
We formulate in Theorem 5 the results which, along with Theorem 4, will give the analogs

of Theorems D and E for (F,∆, π−1H). Let MF (∆
∞) denote the set of invariant probability

measures supported on ∆∞, and define

G∆ = {η ∈ MF (∆
∞) | η(log Ju

µF ) <∞} .

Furthermore, let C0
b (∆) be the set of bounded functions on ∆ which are continuous on each

∆ℓ,j. We postpone the definitions of Lips(∆) and Lipu(∆) (other function spaces that will
appear) until after the theorem.

Theorem 5. Let (F,∆; π−1H) be as above. Then the following hold.

(a) log r = PG∆
= sup

η∈G∆

{

hη(F )−
∫

∆

log Ju
µFdη

}

.

(b) Let ν̃ be defined by

ν̃(ϕ) = lim
n→∞

r
−n

∫

∆n

ϕdµ̃∗ for all ϕ ∈ C0
b (∆) .

Then ν̃ ∈ G∆ and it attains the supremum in (a).

(c) Other properties of ν̃ are that (F, ν̃) is ergodic, and exhibits exponential decay of cor-
relations between ϕ and ψ ◦ F n for ϕ ∈ Lipu(∆) and ψ ∈ Lips(∆).
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The function spaces Lips(∆) and Lipu(∆) are defined as follows. For ωs ∈ Γs(∆) and
x, y ∈ ωs ⊂ ∆0, we denote by ds(x, y) the distance between π(x) and π(y) according to
the Riemannian metric on M , and extend ds to ω

s ∈ ∪ℓ>0Γ
s(∆ℓ) by setting ds(F

ℓx, F ℓy) =
αℓds(x, y) for all ℓ < R(x) and y ∈ ωs(x). It then follows from Sect. 5.1.I that ds(F

nx, F ny) ≤
Cαn for all n ≥ 0 and x, y ∈ ∆, y ∈ ωs(x). For ϕ ∈ C0

b , let |ϕ|s
Lip

be the supremum of
Lipshitz constants of ϕ|ωs with respect to ds, as ω

s ranges over all stable sets in Γs(∆). Then
Lips(∆) = {ϕ ∈ C0

b : |ϕ|s
Lip

< ∞}. The function space Lipu(∆) is defined similarly using
|ϕ|u

Lip
where |ϕ|u

Lip
is the Lipschitz constant of ϕ restricted to unstable sets in the metric dβ.

5.3 Outline of Proof of Theorem 3(b),(c): [BDM] amended

We assume part (a) of Theorem 3 has been proved, and proceed to the proofs of parts (b)
and (c), following mostly [BDM] and highlighting several finiteness issues.

1. Return map to ∆
∞

0 and the full shift T : Σ∞ 	

Since F is not defined everywhere on ∆, let us first make precise the definition of the
survivor set ∆

∞
. Recall from Sect. 5.1 that modulo a set of m-measure 0, ∆0 is the disjoint

union of a countable number of closed subsets (∆0)j with the property that

(i) in the absence of H, F
R
maps each (∆0)j homeomorphically onto ∆0, and

(ii) with H present, each (∆0)j either falls entirely into H on its way up the tower or
returns to ∆0 intact.

We rename the subcollection {(∆0)j} that return to ∆0 in (ii) as {Ai}, and define

∆
∞

0 := ∆
∞ ∩∆0 = ∩n≥0(F

R
)−n(∪iAi) .

It is easy to see that there is a bijection π0 : ∆
∞

0 → Σ∞ = Π∞
i=1{1, 2, 3, · · · } such that

π0 ◦ F
R

= T ◦ π0 where T : Σ∞ 	 the full shift. Moreover, with ∆
∞

0 given its relative
topology as a subset of ∆0, and Σ∞ given the topology defined by cylinder sets, π0 is a
conjugating homeomorphism.

Let Zn denote the set of cylinders in Σ∞ defined by coordinates 1, · · · , n, and write
Z = Z1. We introduce a metric d̂ on Σ∞ compatible with its topology defined by {Zn}:
For x, y ∈ Σ∞, define ŝ(x, y) = min{i ∈ N | T ix, T iy lie in different Z ∈ Z}, and let
d̂(x, y) = β ŝ(x,y) (where β is as in Sect. 5.1). We say a function φ : Σ∞ → R is locally Hölder
continuous if

sup
Z∈Z

{|φ(x)− φ(y)| · β−ŝ(x,y) : x, y ∈ Z} <∞.

2. Sarig’s abstract results on the pressure of T : Σ∞ 	

We recall here a few relevant results for T : Σ∞ 	. These results were proved in [S] in
more general settings of topologically mixing countable Markov shifts. Given φ : Σ∞ → R,
let Snφ =

∑n−1
i=0 φ ◦ T i. The Gurevic pressure of φ is defined to be

PG(φ, Z) = lim
n→∞

1

n
log

(

∑

Tnx=x;x∈Z

eSnφ(x)

)
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where Z is any fixed element of Z. For φ locally Hölder continuous, it is shown in [S],
Theorem 1, that the limit above exists and is independent of Z. This number is ≤ ∞ in
general, and is equal to ∞ for many φ given that T is an infinite shift.

We will also need the following definitions: The transfer operator associated with φ is
given by

Lφψ(x) =
∑

Ty=x

eφ(y)ψ(y), for bounded ψ.

Let MT (Σ∞) be the set of T -invariant Borel probability measures on Σ∞. Given a potential
φ : Σ∞ → R, we say η ∈ MT (Σ∞) is a Gibbs measure for φ if there exist constants C > 1
and Pη ∈ R such that for any n ≥ 1, Zn ∈ Zn and x ∈ Zn,

C−1eSnφ(x)−nPη ≤ η(Zn) ≤ CeSnφ(x)−nPη . (11)

The following version of results from [S] are adequate for our purposes:

Theorem 6. Let T : Σ∞ 	 be as above, and let φ : Σ∞ → R be locally Hölder continuous.
Assume |Lφ1|∞ <∞. Then:

(1) [S, Theorem 1] PG(φ) <∞;

(2) [S, Theorem 3]

PG(φ) = sup{hη(T ) +
∫

φdη | η ∈ MT (Σ∞) and η(−φ) <∞} .

(3) [S, Theorem 8] Suppose η is a Gibbs measure for φ, and η(−φ) <∞. Then

PG(φ) = Pη = hη(T ) +

∫

φdη.

It follows from (1) and (2) above that for η ∈ MT (Σ∞), hη(T ) <∞ provided |Lφ1|∞ <∞
and η(−φ) <∞.

Notation: In what follows, we will identify F
R
: ∆

∞

0 	 with T : Σ∞ 	 and use the two sets
of notation interchangeably. We also introduce the following notation: given η ∈ MF (∆

∞
),

let η0 denote the measure
(

1
η(∆

∞

0 )
η
)

|∆∞

0
. It is easy to see that η0 ∈ M

F
R(∆

∞

0 ).

3. Relating pressure on (F ,∆
∞
) to that on (F

R
,∆

∞

0 )

Let φ = − log(rRJF
R
). The aim of this step is to prove that for every η ∈ MF (∆

∞
)

with η(log JF ) <∞,

η(∆
∞

0 )−1
{

hη(F )− η(log JF )− log r
}

= hη0(F
R
) + η0(φ) ≤ PG(φ) <∞ . (12)

The last two inequalities follow from Theorem 6(a),(b) once we check (i) φ is locally
Hölder continuous with respect to the metric d̂, (ii) |Lφ1|∞ <∞, and (iii) η0(−φ) <∞.

For (i), notice that by Lemma 5.1, φ is locally Hölder continuous with respect to the
separation time metric dβ, and ŝ(x, y) ≤ s(x, y).
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For (ii), let Z(y) denote the element of Z containing y ∈ ∆
∞

0 . We fix x ∈ ∆
∞

0 and use

the bounded distortion of JF
R
given by Lemma 5.1(3) to write

Lφ1(x) =
∑

Ty=x

r
−R(y)(JF

R
(y))−1 ≤ C

∑

Ty=x

r
−R(y)m(Z(y))

≤ C
∑

n≥1

r
−nm{R = n} ≤ C ′

∑

n≥1

r
−nθn0 <∞ .

Here we have used r > θ0 and the fact that F
R
maps each Z ∈ Z bijectively onto ∆

∞

0 .

For (iii), we will show η(log JF ) <∞ implies η0(−φ) <∞: Since JF ≡ 1 on ∆\F−1
∆0,

∫

∆
∞

0

log JF
R
dη0 = η(∆

∞

0 )−1

∫

F
−1

∆
∞

0

log JF dη = η(∆
∞

0 )−1

∫

∆
∞

log JF dη .

Thus if η(log JF ) <∞, then, noting η(∆
∞

0 )
∫

Rdη0 = 1, we have

η0(−φ) =
∫

∆
∞

0

log(rRJF
R
) dη0 =

∫

∆
∞

0

R log r dη0 +

∫

∆
∞

0

log JF
R
dη0

=
(

log r+ η(log JF )
)

· η(∆∞

0 )−1 <∞ .

(13)

This completes the verification of (i)–(iii).
The equality in (12) follows from (13) together with the general formula of Abramov [A],

which says that hη(F ) = hη0(F
R
)η(∆

∞

0 ). In all the references we know of (e.g. [Pe, §6.1]),
this equality is proved assuming the invertibility of the transformation. In the situation
above, F is clearly not invertible, but the same result is easily deduced by passing to natural
extensions; see Appendix B.

4. Existence of a pressure-maximizing invariant measure ν

Let ν be the linear functional on C0
b (∆) defined by

ν(ψ) = lim
n→∞

r
−n

∫

∆

Ln
(h∗ψ) dm = lim

n→∞
r
−n

∫

∆
n
ψh∗ dm .

We refer the reader to [BDM] for verification that ν is a well defined, F -invariant probability
measure on ∆

∞
.

The aim of this step is to show that plugging η = ν into (12), we get

hν0(F
R
) + ν0(φ) = PG(φ) = 0 and hν(F )− ν(log JF ) = log r . (14)

Observe from the definition of φ in Step 3 that eSnφ(x) = r
−SnR(x)(J(F

R
)n(x))−1. The

following lemma shows that ν0 is a Gibbs measure for the potential φ, with Pν0 = 0.

Lemma 5.2. [BDM, Lemma 5.3] There exists a constant C > 1 such that for any n ≥ 1,
any n-cylinder Zn ∈ Zn, and any y∗ ∈ Zn,

C−1
r
−SnR(y∗)(J(F

R
)n(y∗))

−1 ≤ ν0(Zn) ≤ Cr−SnRn(y∗)(J(F
R
)n(y∗))

−1 .
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It remains only to check that ν(log JF ) < ∞, for this bound implies ν0(−φ) < ∞ (see
Step 3 above), and once we have that, Theorem 6(c) gives the first equation in (14). The
second equation follows from (12) and the first.

In what follows, C will be used as a generic constant the value of which is permitted to
vary from line to line. To prove ν(log JF ) <∞, we first estimate

ν0{R = n} =
∑

Z∈Z:R(Z)=n

ν0(Z) ≤
∑

Z∈Z:R(Z)=n

Cr−n(JF
R
(y∗))

−1

≤ C
∑

Z∈Z:R(Z)=n

r
−nm(Z) ≤ Cθn0 r

−n ,
(15)

where y∗ is an arbitrary point in Z. The first inequality comes from Lemma 5.2, the second
from Lemma 5.1(3), and the third from the tail bound for (∆, F ). Using the invariance of ν

and the fact that JF ≡ 1 on ∆ \ F−1
(∆), we obtain ν(log(JF ))

=
∑

n≥1

∑

R(Z)=n

∫

Z

log(JF
n
)dν =

∑

n≥1

ν{R = n}| log JF n|∞ ≤ C
∑

n≥1

(θ0r
−1)nθ̄−n <∞ .

The inequalities above come from condition (*) in Theorem 3; this is the only place in the
entire proof that uses this condition. We have also used the fact that ν{R = n} is bounded
by ν(∆

∞

0 ) times the last quantity in (15).

Parts (b) and (c) of Theorem 3 follow immediately from Steps 3 and 4. �

5.4 Proof of Theorem 5

We will prove this theorem by leveraging the corresponding results for expanding towers.

Variational principle (Theorem 5(a),(b)): First, we show

sup
η∈G∆

{

hη(F )−
∫

log Ju
µ (F )dη

}

≤ sup
η∈G∆

{

hη(F )−
∫

log J(F )dη

}

, (16)

which follows immediately from the following lemma:

Lemma 5.3. Let η ∈ G∆ and define η = π∗η. Then η ∈ G∆ and

(i)
∫

∆
log Ju

µF dη =
∫

∆
log JF dη;

(ii) hη(F ) = hη(F ).

Proof of Lemma 5.3. Let η ∈ G∆. The fact that η = π∗η ∈ MF (∆
∞
) is clear. That η ∈ G∆

will follow once we prove assertion (i) of the lemma: From Sect. 5.1I, we see that log Ju
µF

and JF are related by JF ◦ π = Ju
µF · ea◦F−a for a bounded function a (Lemma 5.1(4)). It

follows that
∫

∆

log Ju
µF dη =

∫

∆

(

log JF ◦ π + a− a ◦ F
)

dη =

∫

∆

log JF dη , (17)
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the invariance of η being used in the second equality.
Assertion (ii) follows from (a) the entropy of a transformation is equal to that of its

natural extension, and (b) the natural extension of (F, η) is isomorphic to that of (F , η). See
Appendix B for more detail on (b).

To complete the proof, we will show that (i) the results of Theorem 3 are applicable to
the quotient tower, and (ii) ν̃ as defined in part (b) is in G∆ and projects to ν. These two
steps together will show that (16) is in fact an equality, and the quantity on the right is
= log r.

To apply Theorem 3, it suffices to show that condition (*) holds in the present set-
ting, i.e. for the quotient tower of a hyperbolic tower arising from (f,M ;H) and satisfying
(A.1)–(A.4). Notice first that (*) holds if ‖Df‖ is bounded, for Ju

µF
n can grow at most

exponentially and JF
n
on the corresponding set is ≤ Ju

µF
n ·e|a|∞ where a is as in Lemma 5.3.

Thus there is a potential problem only in the setting of Theorem C, where ‖Df‖may become
arbitrarily large as one approaches the singularity set S. Here it is (H.2) of Section 5.1.II
and (3) in Sect. 2.1.III that give what we need: Since F−j∆j = {x ∈ Λ : R(x) > j}, we have
d(π∆j,S) ≥ δξ−j

1 for some δ > 0 and ξ1 > 1 by (H.2). This together with (3) implies that on
π(∆j), | det(Df |Eu)| ≤ (C1δ

−aξaj1 )p where p is the dimension of Eu. Thus on ∆0 ∩ {R = n},
we have

log Ju
µF

n =

n−1
∑

j=0

log | det(Df |Eu) ◦ f j| ≤ const n2 ,

which, as explained above, gives (*).
It remains to produce ν̃ with the properties in (ii). Let µ̃∗ be the physical conditionally

invariant distribution from Theorem 4. For ϕ ∈ Lipu(∆), define µ̃ϕ to be the measure such
that dµ̃ϕ = ϕdµ̃∗. Notice that since π∗µ̃∗ ∈ B and |ϕ|∞+ |ϕ|uLip <∞, we also have π∗µ̃

ϕ ∈ B.
Let ψϕ denote the density of π∗µ̃

ϕ with respect to m. Now using Theorem 4(b),

lim
n→∞

r
−n

∫

∆n

ϕdµ̃∗ = lim
n→∞

r
−nµ̃ϕ(1∆n) = lim

n→∞
r
−nF̊ n

∗ µ̃
ϕ(1) = d(ψϕ).

Let Q(ϕ) = d(ψϕ). Then Q is clearly linear in ϕ, positive and satisfies Q(1) = 1. Also,
|Q(ϕ)| ≤ |ϕ|∞Q(1) so that Q extends to a bounded linear functional on C0

b (∆). By the
Riesz representation theorem, there exists a unique Borel probability measure ν̃ satisfying
ν̃(ϕ) = Q(ϕ) for each ϕ ∈ C0

b (∆). Since 1∆n = 1∆n−1 ◦ F̊ , the invariance of ν̃ follows from

ν̃(ϕ ◦ F̊ ) = lim
n→∞

r
−nµ̃∗(ϕ ◦ F̊ · 1∆n) = lim

n→∞
r
−nF̊∗µ̃∗(ϕ · 1∆n−1) = lim

n→∞
r
1−nµ̃∗(ϕ · 1∆n−1) = ν̃(ϕ)

by the conditional invariance of µ̃∗.
Since (π∗µ̃∗)|∆n = (h∗m)|∆n for every n, it follows that π∗ν̃ = ν. To place ν̃ ∈ G∆, we

need to show ν̃(log Ju
µF ) <∞. This is true by (17) with η = ν̃ and the fact that the integral

on the right is known to be finite.

Other properties of ν̃. The ergodicity of ν̃ follows from that of ν. To show that ν̃ enjoys
exponential decay of correlations, we begin by decomposing ν̃ into conditional measures
ν̃s on ωs-leaves and a transverse measure ν̃T on the set of stable leaves in each ∆ℓ,j . For
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ϕ ∈ C0
b , define ϕ(x) =

∫

ωs(x)
ϕdν̃s. Since each ν̃s is a probability measure, we have ϕ ∈ C0

b .

By definition, ϕ is constant on ωs-leaves and ν̃(ϕ) = ν̃(ϕ) = ν(ϕ). Also if ϕ ∈ Lipu(∆), then
ϕ ∈ Lipu(∆) so that we may consider ϕ ∈ B0 as a function on ∆.

Now let ϕ ∈ Lipu(∆) and ψ ∈ Lips(∆) with ν̃(ϕ) = ν̃(ψ) = 0. Define ϕ as above and let
ψk(x) =

∫

ωs(x)
ψ ◦ F k dν̃s. Note that ν̃(ψk) = ν̃(ψ) = 0. Then setting n = k + ℓ, we write

ν̃(ϕψ ◦ F n) = ν̃(ϕ (ψ ◦ F n − ψk ◦ F ℓ)) + ν̃((ϕ− ϕ)ψk ◦ F ℓ) + ν̃(ϕψk ◦ F ℓ). (18)

Since ϕ and ψk are constant on ωs-leaves, we have ν̃(ϕψk ◦ F ℓ) = ν(ϕψk ◦ F
ℓ
) and ν(ϕ) =

ν(ψk) = 0. Then since ϕ ∈ B0 and ψk ∈ L∞(∆), the last term in (18) is ≤ Cτ ℓ‖ϕ‖B0 |ψ|∞
for some τ < 1 by Theorem 3(d) (see also [BDM, Prop. 2.8]).

The second term of (18) is identically 0 since,

ν̃(ϕψk ◦ F ℓ) =

∫

Γs(∆)

(

∫

ωs

ϕψk ◦ F ℓ dν̃s
)

dν̃T =

∫

Γs(∆)

(

∫

ωs

ϕdν̃s
)

ψk ◦ F ℓ dν̃T

=

∫

Γs(∆)

ϕψk ◦ F ℓ dν̃T = ν̃(ϕψk ◦ F ℓ).

To estimate the first term in (18), notice that |ψ ◦ F n − ψk ◦ F ℓ|∞ ≤ |ψ ◦ F k − ψk|∞. Then
since ψ ◦ F k is continuous on each ωs, there must exist x, y ∈ ωs such that ψ ◦ F k(x) ≤
ψk(ω

s) ≤ ψ ◦ F k(y). Thus

|ν̃(ϕ (ψ ◦ F n − ψk ◦ F ℓ))| ≤ |ϕ|∞ |ψ ◦ F k − ψk|∞ ≤ 2|ϕ|∞ |ψ|s
Lip
Cαk (19)

by definition of ds. Taking both k and ℓ to be approximately n/2 completes the proof.

6 Proof of Theorems D and E

We now return to the original open system (f,M ;H), where f is any dynamical system
admitting a tower with the properties in Sect. 2.2 (see Sect. 5.1 for detail).

6.1 Proof of Theorem D

Let µ̃SRB be the SRB measure for F on ∆ before the removal of the hole. Note that π∗µ̃SRB =
µSRB, the unique SRB measure for f with µSRB(Λ) > 0. It follows from [Y3, Section 2]
that µ̃SRB ∈ B̃, so that ρ(µ̃SRB) = log r by Theorem 4(a). Since µSRB(M

n) = π∗µ̃SRB(M
n) =

µ̃SRB(∆
n) for each n ≥ 0, we have ρ(µSRB) = log r and part (a) of Theorem D is proved.

To prove part (b), define µ∗ = π∗µ̃∗ where µ̃∗ is the conditionally invariant measure from
Theorem 4. We use f̊n = fn|Mn to describe the surviving dynamics at time n. It follows
from the relation f̊ ◦ π = π ◦ F̊ that for any Borel subset A of M \H , we have

µ∗(f̊
−1A) = µ̃∗(π

−1(f̊−1A)) = µ̃∗(F̊
−1(π−1A)) = r µ̃∗(π

−1A) = rµ∗(A) (20)

so that µ∗ is a conditionally invariant measure for f̊ with eigenvalue r. By Theorem 4(b),

lim
n→∞

f̊n
∗ µSRB

f̊n
∗ µSRB(M)

= lim
n→∞

π∗(F̊
n
∗ µ̃SRB)

F̊ n
∗ µ̃SRB(∆)

= π∗(µ̃∗) = µ∗,
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proving part (b).
To prove part (c), define ν̂ = π∗ν̃ where ν̃ is from Theorem 5. Arguing analogously

to (20), we see that ν̂ is an invariant measure for f supported on π(∆∞) ⊆ Ω. Write
Juf(x) = | det(Dfx|Eu(x))|. We will show

(i)
∫

∆
log Ju

µFdν̃ =
∫

M
log Juf dν̂, and

(ii) hν̃(F ) = hν̂(f).
Integrating over sets of the form ∪n−1

i=0 F
i(∆0 ∩{R = n}) before summing over n, we see that

the left side of (i) is equal to
∫

∆0
log Ju

µF
Rdν̃ and the right side is equal to

∫

M
log JufR dπ∗(ν̃|∆0),

the latter using the invariance of ν̃ and relation π∗(F
i)∗ = (f i)∗π∗. These two integrals are

easily seen to be equal: Let Juπ denote the Jacobian with respect to µ̃ω for ω ∈ Γu(∆) and
µω′ where π(ω) = ω′. Then on ∆0, J

uπ ≡ 1 as ∆0 is an isometric copy of Λ, so we have

JufR ◦ π = Ju
µF

R · J
uπ ◦ FR

Juπ
= Ju

µF
R .

For (ii), that hν̂(f) ≤ hν̃(F ) is obvious. The reverse inequality follows from [Bu, Proposi-
tion 2.8] since π is at most countable-to-one. Combining (i) and (ii) and using Theorem 5(b),

ρ(µSRB) = log r = hν̃(F )−
∫

∆

log Ju
µF dν̃ = hν̂(f)−

∫

M

log Juf dν̂ = Pν̂ .

The following lemma completes the proof of part (c).

Lemma 6.1. ν̂ ∈ GH ∩ GS

Proof. That ν̂ is ergodic follows immediately from the fact that ν̃ is ergodic. In order to
show that ν̂ ∈ GH ∩ GS , we will show that there exist C, α > 0 such that for each ε > 0,
ν̂(Nε(S ∪ ∂H)) ≤ Cεα. Once this is established, we conclude by an argument similar to
Lemma 4.2 that ν̂-a.e. point approaches S ∪ ∂H at an arbitrarily slow exponential rate.

To establish this bound, we need estimates on how ν̃ decays up the levels of the tower.
Recall ν = π∗ν̃. In the proof of Theorem 5, we established that d(π∆ℓ,S ∪ ∂H) ≥ δξ−ℓ

1 ,
ℓ ≥ 0, by using (H.2) of Section 5.1.II. Thus we have

ν̂(Nε(S ∪ ∂H)) ≤ ν̃
(

∪ℓ:δξ−ℓ
1 ≤ε∆ℓ

)

≤
∑

ℓ≥log(δ/ε)/ log ξ1

C ′θℓ0r
−ℓ ≤ C ′′(δ−1ε)log(rθ

−1
0 )/ log ξ1 ,

using (15) and ν̃(∆ℓ) = ν(∆ℓ).

Finally, we prove part (d). If ϕ is a continuous function on M , we define its lift to ∆ by
ϕ̃ = ϕ ◦ π. This lift is continuous on each ∆ℓ,j and |ϕ̃|∞ ≤ |ϕ|∞ so that ϕ̃ ∈ C0

b (∆). Using
Theorem 5(b), we have

ν̂(ϕ) = ν̃(ϕ̃) = lim
n→∞

r
−n

∫

∆n

ϕ̃ dµ̃∗ = lim
n→∞

r
−n

∫

Mn

ϕdµ∗,

since µ∗ = π∗µ̃∗.
To complete the proof of Theorem D, it remains to show that ν̂ enjoys exponential decay

of correlations. Let Cp(M) denote the Hölder continuous functions on M with exponent p.
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If ϕ ∈ Cp(M) and p ≥ log β/ logα, then ϕ ◦ π ∈ Lipu(∆). This can be proved as in [D,
Section 6]. Also, taking ψ ∈ Cp(M), for x ∈ ∆ℓ,j, y ∈ ωs(x) and x0 = F−ℓx, y0 = F−ℓy, we
have

|ψ ◦ π ◦ F n(x)− ψ ◦ π ◦ F n(y)| ≤ |ψ|Cpd(π(F n+ℓx0), π(F
n+ℓy0))

p

≤ |ψ|Cpd(fn+ℓ(πx0), f
n+ℓ(πy0))

p ≤ |ψ|CpCαnp.

So taking ϕ, ψ ∈ Cp(M), we may apply (19) to ψ ◦ π. We follow (18) and note that

ν̂(ϕψ ◦ fn) = ν̃(ϕ ◦ π · ψ ◦ fn ◦ π) = ν̃(ϕ ◦ π · ψ ◦ π ◦ F n),

to conclude that the exponential decay of correlations for ν̂ follows from that for ν̃.

6.2 Proof of Theorem E

As an immediate corollary of Theorem D, we have

ρ(µSRB) ≤ PGH∩GS
, (21)

since we have identified a measure, namely ν̂, in GH ∩ GS with Pν̂ = ρ(µSRB). We will call
upon the results in Sect. 2.1 to provide the reverse inequality – once we put ourselves in a
viable setup. Notice that ν̂ = π∗ν̃ necessarily gives positive measure to Λ = π(∆0).

(a) µSRB = ϕµ with ϕ ≥ δ > 0 on a neighborhood of Λ. In this case, ν̂ ∈ Gϕ since we
can simply take the set Z in the definition of Gϕ to be this neighborhood. By Theorem C,
ρ(µSRB) = ρ(µϕ) ≥ PGH∪GS∪Gϕ. This together with (21) gives the desired result.

(b) Λ is contained in a µSRB-hyperbolic product set. Taking this set to be Π in the definition
of GSRB, it is immediate that ν̂ ∈ GSRB. Theorem C and (21) then give the two halves of the
desired equality.

Appendix

A. Lyapunov charts for maps with singularities

In this section, we prove the statements (a)(iii′), (b)(ii′), and (b)(iii′) made in Section 4.2.4
regarding the Lyapunov charts {Φx}. All notation is as in Section 4.

We begin with ν ∈ GS and the set V ′ of regular points in the sense of Oseledec.
Each x ∈ V ′ has p distinct Lyapunov exponents λ1, . . . , λp with corresponding subspaces
E1(x), . . . , Ep(x) such that TxM = ⊕iEi(x). Let gε(x) =

1
3
min{ε, d(x,S)}.

Fix δ > 0. It follows by standard arguments (see [Y2, Sect. 3.1]) that for ν-typical x,
one can define an inner product, 〈·, ·〉′x, on the tangent space TxM such that item (b)(i) of
Proposition 4.1 holds. Denote by ‖·‖′x the norm induced by 〈·, ·〉′x and by ‖·‖x the Euclidean
norm on TxM . It follows from the same construction that there exists a measurable function
ℓ0(x) : V

′ → [1,∞), with ℓ0(f
ix) < e2δiℓ0(x) for i ≥ 0 and

p−1/2‖v‖ ≤ ‖v‖′ ≤ ℓ0(x)‖v‖ for all v ∈ TxM. (22)

30



Define a linear map Lx : TxM → R
d which takes Ei(x) to {0} × · · · × R

mi(x) × · · · × {0}
for each i and such that 〈Lxu, Lxv〉x = 〈u, v〉′x. Then Φx := expx ◦ L−1

x is a Lyapunov chart
satisfying properties (a)(i) and (a)(ii) of Proposition 4.1.

The construction outlined thus far is standard and is not affected by the presence of
singularities (see [KS, Part I, Theorem 2.2]). We now proceed to prove the statements of
Section 4.2.4 which are affected by the singularities. We drop the subscript x for simplicity
of notation and write ‖ · ‖ and ‖ · ‖′ in what follows.

Notice that in the notation of Sect. 4, R(r) = R(r; ‖ · ‖′) denotes the ball of radius r in
the (Lyapunov) norm ‖ · ‖′ since that is the norm of the Lyapunov charts Φx. To distinguish
between norms, we use R(r; ‖ · ‖) to denote the ball of radius r in the Euclidean norm on
TxM . We identify TxM and R

d and view Lx formally as a change of norm.

Proof of (a)(iii′). Recall the injectivity radius from Section 2.1, ι(x, U) ≥ min{s, d(x,M \
U)ς}, given by equation (2). Since we have assumed b ≥ ς, we have ι(x, U) ≥ gε(x)

b for
ε ≤ s. Thus again using (2), for y ∈ B(x, 0, gε(x)

b) and w =exp−1
x y, we have

‖D(expx)(w)‖ ≤ c0 and ‖D(exp−1
x )(w)‖ ≤ c0.

This implies that expx maps R(c−1
0 gε(x)

b; ‖ · ‖) injectively into B(x, 0, gε(x)
b). Thus for

u, v ∈ R(c−1
0 gε(x)

b; ‖ · ‖), we use (22) to estimate,

d(Φxu,Φxv) ≤ d(expx ◦ L−1
x u, expx ◦ L−1

x v) ≤ c0‖L−1
x u− L−1

x v‖ ≤ c0
√
p ‖u− v‖′

≤ c0
√
p ℓ0(x)‖u− v‖ ≤ c20

√
p ℓ0(x)d(Φxu,Φxv),

which establishes (a)(iii′) with K = c0
√
p and ℓ1(x) = c20

√
p ℓ0(x). Note that by (22),

R(ℓ−1
1 (x)gε(x)

b) ⊆ R(c−1
0 gε(x)

b ; ‖ · ‖), with room to spare.

Proof of (b)(iii′). Recall that

f̂x = exp−1
fx ◦ f ◦ expx while f̃x = Φ−1

x ◦ f ◦ Φx = Lfx ◦ f̂x ◦ L−1
x .

Taking u, v, h ∈ R(c−1
0 gε(x)

b; ‖ · ‖), we use (22) to estimate

‖Df̃x(u)h−Df̃x(v)h‖′
‖h‖′ ≤ ‖Df̂x(u)h−Df̂x(v)h‖

‖h‖
√
p ℓ0(x) ≤ ‖D2f̂x(z)‖‖u− v‖√p ℓ0(x)

(23)
for some z ∈ R(c−1

0 gε(x)
b; ‖ · ‖). By (4), ‖D2f̂x(z)‖ ≤ C1d(expx(z),S)−b. Since expx(z) ∈

B(x, 0, gε(x)
b), we have d(expx(z),S) ≥ gε(x), so that ‖D2f̂x(z)‖ ≤ C1gε(x)

−b. Finally, since
‖u− v‖ ≤ √

p ‖u− v‖′, we conclude that

Lip(Df̃x) ≤ p ℓ0(x)C1gε(x)
−b.

The statement follows by taking ℓ(x) to be the larger of pC1ℓ0(x) and ℓ1(x) = c20
√
p ℓ0(x).

Proof of (b)(ii′). We use (23) with v = 0 and u ∈ R(δℓ(x)−1gε(x)
b). This yields

‖Df̃x(u)−Df̃x(0)‖′ ≤ ℓ(x)gε(x)
−b‖u‖′ ≤ δ.

This implies that restricted to R(δℓ(x)−1gε(x)
b), we have Lip(f̃x −Df̃x(0)) ≤ δ as required.
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B. Natural extensions of tower maps

Let T : (X,A, ν) 	 be a measure-preserving transformation (mpt) of a probability space.
Recall that the natural extension of T : (X,Σ, ν) 	, denoted here by T ♯ : (X♯,Σ♯, ν♯) 	, is
defined as follows:

X♯ = {(x1, x2, · · · ) ∈ Π∞
i=0X : F (xi+1) = xi},

T ♯(x1, x2, · · · ) = (T (x1), x1, x2, · · · ),
Σ♯ is generated by cylinder sets with Σ in each coordinate, and

ν♯{x1 ∈ A1, · · · , xn ∈ An} = ν(An ∩ T−1An−1 ∩ · · · ∩ T n−1A1) .

These following facts about tower maps (see Sect. 5.1 for notation) are used:

(1) Consider F : (∆∞,Σ, η) 	 where η is any F -invariant Borel probability measure, and
let F : (∆

∞
,Σ, η) 	 be the corresponding quotient system. We claim that the natural

extensions of these two mpt’s are isomorphic.

Proof. Define π♯ : ∆♯ → ∆
♯
by π♯(x1, x2, · · · ) = (π̄(x1), π(x2), · · · ). Clearly, π♯ ◦F ♯ = F

♯ ◦π♯,
π♯
∗(η

♯) = η♯, and π♯ is onto. The assertion follows once we show π♯ is 1-1.
Suppose π♯(x1, x2, · · · ) = π♯(y1, y2, · · · ). Letting ωs(xn) denote the stable set of xn, we

have, by definition, x1 ∈ ∩∞
n=1F

n−1(ωs(xn)). The uniform contraction of F along stable sets
implies that this intersection consists of a single point. Likewise, {y0} = ∩∞

n=1F
n−1(ωs(yn)).

Since π(xn) = π(yn) is equivalent to ω
s(xn) = ωs(yn), we have proved x1 = y1. Applying the

same argument to the sequences (xk, xk+1, . . .) and (yk, yk+1, . . .), we conclude that xk = yk
for all k ≥ 1. �

(2) Next given F : (∆
∞
,Σ, η) 	 and ∆

∞

0 ⊂ ∆
∞
, we call F

R
: (∆

∞

0 ,Σ0, η0) 	 with η0 =

η|∆0
normalized its induced map on ∆0, and claim that the induced map of F

♯
on ∆

♯

0 =

{(x1, x2, · · · ) ∈ ∆
♯
: x1 ∈ ∆0} is the natural extension of F

R
. The proof is easy.

Fact. For an arbitrary mpt T : (X,A, ν) 	, it is proved in [Ro] that hν(T ) = hν♯(T
♯).
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