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Abstract

We prove that in systems undergoing Hopf bifurcations, the effects of periodic
forcing can be amplified by the shearing in the system to create sustained chaotic
behavior. Specifically, strange attractors with SRB measures are shown to exist.
The analysis is carried out for infinite dimensional systems, and the results are
applicable to partial differential equations. Application of the general results to a
concrete equation, namely the Brusselator, is given.
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CHAPTER 1

Introduction

In this paper, we show, in the context of a system undergoing a Hopf bifur-
cation, how the effects of periodic forcing can be amplified by the shearing in the
system to create sustained chaotic behavior. This is a general dynamical phenom-
enon, one that can occur in phase spaces of any dimension greater than or equal to
two. In particular, it can occur in systems described by ordinary as well as partial
differential equations. Moreover, this phenomenon is not specific to any particular
class of equations, as long as it supports Hopf bifurcations. To stress the applicabil-
ity of our results to evolutionary PDEs, we have elected to communicate this work
in the context of infinite dimensional systems. This setting provides us with the
opportunity to demonstrate how techniques from finite dimensional theory can be
leveraged in infinite dimensions, and to address the implications of SRB measures
in such systems.

Description of results.

Consider, for example, a 1-parameter family of semilinear parabolic equations

ut = DΔu+ fμ(u), x ∈ Ω, u ∈ R
m,

u(x, t) = 0, x ∈ ∂Ω, t ≥ 0.

Here Ω ⊂ R
d is a bounded domain with smooth boundary, μ is a parameter, D is

a diagonal matrix with positive entries, and fμ : Rd → Rm is a polynomial with
fμ(0) = 0 for all μ. We assume, in a sense to be made precise, that the solution
u(x, t) ≡ 0 is stable for μ < 0, and that it loses its stability at μ = 0. To this
equation, we add a forcing that is close to impulsive, i.e.,

(1.1) ut = DΔu+ fμ(u) + ρϕ(x)pT (t)

where ρ ∈ R is a constant, ϕ : Ω → Rm is a smooth function satisfying mild
conditions, pT =

∑∞
n=−∞ ε−1I[nT,nT+ε] and IA is the indicator function on A. As

a dynamical system on
(
H1

0 (Ω)
)m

, (1.1) is a special case of a system generated by
an equation of the form

(1.2) u̇ = Au+ fμ(u) + ρΦ(u)pT (t).

Of interest to us is the effect of the forcing on solutions near u = 0.
This paper is about evolutionary equations of the form (1.2); the exact form of

the PDE that gives rise to it is nonessential. We assume −A is a sectorial operator
on a Hilbert space H, D(A) ⊂ Hσ ⊂ H (see Sect. 1.1), and fμ : Hσ → H is smooth
with fμ(0) = 0. The phase space of our dynamical system is Hσ, and our main
assumption is that the unforced equation undergoes a generic supercritical Hopf
bifurcation at μ = 0. By a well known result of Andronov and Hopf [A, Ho], when
such a bifurcation occurs, a stable periodic solution emerges from the stationary

1
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point u = 0 as it becomes unstable. We will refer to this stable periodic solution
as the Hopf limit cycle. Given a forcing function Φ : Hσ → Hσ, the question before
us is: what is the effect of the forcing on this bifurcation?

It is not hard to see that for μ > 0, if T ≥ Cμ−1 where T is the period of
the forcing and C is large enough, then the time-T map FT of the forced system
has an attractor roughly where the Hopf limit cycle used to be. We call it the
Hopf attractor. By an attractor, we refer to a compact, FT -invariant set Λ ⊂ H

σ

with the property that for all u0 in a neighborhood of Λ, Fn
T (u0) converge to Λ

as n → ∞. These u0 are said to be in the basin of attraction of Λ. We will show
that under certain conditions on the unforced system and the forcing amplitude,
the Hopf attractor is chaotic. The term “chaos” in this paper refers exclusively to
dynamical complexity or complexity in the time evolution of the system (1.2). It is
not to be confused with spatial chaos.

The following is an example of what we mean by dynamical complexity. Let
U1 and U2 be two open sets in Hσ representing two different kinds of, say, density
profiles. Let us label the profiles in U1 as “H” (heads) and those in U2 as “T”
(tails). Following Smale, we say the system (1.2) has a horseshoe if for every
infinite sequence of heads and tails (e.g. HHHTHTT .....), there exists a solution
u(t) of (1.2) exhibiting the sequence of profiles in the order specified as it evolves
with time. In Theorem 1, we give conditions that guarantee that the Hopf attractor
contains horseshoes. This establishes the existence of many solutions with diverse
time evolutions.

In Theorem 2, we prove a stronger form of chaos, namely the presence of a
strange attractor. This result is proved under stronger assumptions on the unforced
equation. It asserts that “almost every” solution in the basin of attraction of the
Hopf attractor is unstable. Instability here is in the sense of positive Lyapunov
exponents. We postpone explaining the meaning of “almost every” to Section 2;
suffice it to say for now that it refers to a set in our function space whose complement
is very small, and that our statements apply to “typical” solutions.

The results in the last paragraph are proved by constructing on the attractor a
special invariant probability measure called an SRB measure. This measure is the
law that describes the statistics of time evolutions of almost all solutions starting
from the basin of attraction. The concept of SRB measures is well known in finite
dimensional dynamics. There is, however, no direct generalization of the ideas
surrounding SRB measures to infinite dimensions, due in part to the absence of
a notion of Lebesgue measure in function spaces. In this paper, we propose an
interpretation that we hope will be of interest for dissipative parabolic PDEs beyond
the phenomenon considered here.

Leaving precise definitions to Section 1, we proceed to explain what lies behind
the chaotic phenomena described above. Key to it all is a geometric invariant of
the unforced system we call its twist number. This invariant is captured in the third
order term of the normal form of the Hopf bifurcation at μ = 0. It acts as a form
of shear to amplify the deformations of the Hopf limit cycle due to the forcing,
causing the cycle to “fold” as the system relaxes (see Sect. 2.4). If the twist is
weak, the system is likely to remain non-chaotic; see Theorem 3. The larger the
twist, the more exaggerated the folds. This geometric mechanism is responsible for
the creation of horseshoes. It is necessary but not sufficient for the formation of
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strange attractors. Proving the existence of SRB measures is considerably more
subtle; one has to fight against the system’s tendency to form sinks.

We finish by demonstrating how the results above can be applied to a specific
set of equations, namely the Brusselator in one physical dimension:

ut = d1uxx + a− (b+ 1)u+ u2v,

vt = d2vxx + bu− u2v,
(1.3)

where x ∈ (0, 1). In this simplified model of autocatalytic chemical reaction in-
vented by Lefever and Prigogine [LP], u and v represent concentrations of two
chemicals, d1 and d2 are their diffusion constants, and a and b are constants rep-
resenting the concentrations of two other chemicals. Both Dirichlet and Neumann
boundary conditions are considered. It is well known that an Andronov-Hopf bi-
furcation occurs when a and b vary. We show that the twist number can be made
as high as one wishes by suitably adjusting a and b. Using a forcing that amounts
to periodically altering by external means the concentration of one of the chemicals
(namely u), we give conditions that lead to horseshoes and strange attractors in
the periodically forced systems.

Relation to existing literature.

There is an extensive literature on the complex behavior of systems defined by
ODEs that is clearly relevant to the present work. This literature is, however, too
vast a subject for us to review here. We will limit ourselves to the two topics closest
to this paper in terms of mathematical content, namely (I) attractors and chaotic
behavior for PDEs, and (II) attractors in finite dimensional hyperbolic theory.

With regard to the first topic, the existence of absorbing sets and attractors
has been established for large classes of dissipative PDEs, likewise for upper bounds
on Lyapunov exponents and Hausdorff dimension (see [Ha, T, BV], also [KR]);
these methods do not, in general, give information on the structure of the attract-
ing sets. A number of other results in the literature discuss the manifestation of
chaotic behavior for various specific PDEs, proving the existence of complicated
behavior such as horseshoes and homoclinic solutions (which suggest chaos); see
e.g. [C, G, HM, W, HL, HMO, LMSW, L, SZ, Z]. The method of re-
alization of vector field due to Poláčik gives a number of important results (see
[Po1, Po2, Po3, Po4, DPo, Ryb, Vak, VV]), which yield that for a given
ODE with a persistent hyperbolic invariant set such as horseshoe, there is a scalar
semilinear parabolic PDE such that the reduced system on its invariant manifold
has an equivalent hyperbolic invariant set. The strange attractors in the present
paper are nonuniformly hyperbolic and not structurally stable. More importantly,
this work is about a generic dynamical phenomenon that gives rise to strange at-
tractors and large sets of unstable periodic solutions for evolutionary PDEs with
Hopf bifurcation driven by a periodic forcing.

Moving to the second topic, in finite dimensions much progress have been made
in hyperbolic theory, by which we include both uniform hyperbolic theory and its
probabilistic or nonuniform version; see [Sm, S, B, P, R2], to cite only a few
of the major advances. An important idea that grew out of this theory is that of
an SRB measure; see [S, R1, LY]. These measures provide a good qualitative
understanding of the dynamical picture, but proving that they exist for concrete
systems is often challenging. Outside of the Axiom A and piecewise uniformly
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hyperbolic category, SRB measures were first constructed for the Hénon attractors
[BY]; this work is based on [BC], with some ideas going back to [J]. Borrowing
techniques from [BC], the authors of [WY1, WY4] developed a general theory of
rank one attractors, i.e., attractors with a single direction of instability and strong
contraction in all other directions. The attractors in this paper are rank one, and
we establish their existence by appealing to [WY1, WY4]. For other examples of
rank one attractors, see [MV, DRV, WY2, WY3, WO]. The present paper is
closely related to [WY3], which contains a prototypical version of a similar result
in two dimensions, where the kicking force in terms of delta function is used. The
kicking force in terms of delta function is also used in the numerical study of period
doubling for nonlinear oscillator, see [KTS] and references therein.

Finally, it remains to connect the two topics in the first paragraph. Finite
dimensional techniques are applicable through the use of center manifolds. SRB
measures, once constructed, give information on all solutions of the PDE starting
from “typical” initial conditions in an open set of a function space. The passage
from center manifold to this open set is made possible by the regularity of a strong
stable foliation. Much is known about center and stable manifolds (see e.g. [HPS,
CLL]), though more refined versions of some results are needed.

Acknowledgement. We would like to thank the referee for his/her valuable com-
ments and suggestions.
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CHAPTER 2

Basic Definitions and Facts

In this section, we introduce the main objects that appear in our results. Back-
ground information is provided for the benefit of readers who may not be familiar
with these aspects of dynamical systems theory. All of the material here can be
found in the standard literature.

2.1. Sectorial Operators

Let H be a Hilbert space with norm ‖ ‖. An operator A on H is called a
sectorial operator if it is closed, densely defined, and has the following properties:
There exist constants α ∈ (0, π/2), M ≥ 1, and b ∈ R such that

Ωα,b := {λ ∈ C | α ≤ | arg(λ− b)| ≤ π, λ 
= b} ⊆ ρ(A)

where ρ(A) is the resolvent set of A, and

‖(λI−A)−1‖ ≤ M

|λ− b| for all λ ∈ Ωα,b.

Sectorial operators generate analytic semigroups e−At, t ≥ 0. See [H, K].
Let A be a sectorial operator on H with domain D(A). Associated with A are

its fractional power spaces (Hσ, | |σ), 0 ≤ σ ≤ 1, defined as follows: Let a ≥ 0 be
an arbitrary (but fixed) number such that the real parts of the spectrum of (A+aI)
are positive. Then

H
σ = D((A+ aI)σ) and |u|σ = ‖(A+ aI)σu‖

where (A+ aI)σ is the inverse of

(A+ aI)−σ =
1

Γ(σ)

∫ ∞

0

tσ−1e−(A+aI)tdt

and Γ is the gamma function. The family H
σ, 0 ≤ σ ≤ 1, interpolates between H

and D(A). For σ1 > σ2, H
σ1 ⊂ Hσ2 with continuous inclusion.

2.2. Dynamical Systems Defined by Evolutionary Equations

Consider a nonlinear evolutionary equation of the form

(2.1) u̇ = Au+ F(u, μ)

where μ ∈ (−μ1, μ1) is a parameter, u ∈ H, and −A is a sectorial operator. We
assume for some 0 ≤ σ < 1 that

F : Hσ × (−μ1, μ1) → H

is Cr for some r ≥ 1. (Proofs of existence and uniqueness of solutions require σ < 1;
see [H].) Let St, t ≥ 0, denote the semi-group of time-t-maps defined by (2.1), i.e.
St(u0) = u(t) where t �→ u(t) is the mild solution of (2.1) satisfying u(0) = u0. It

5
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is known that St is a Cr mapping of (Hσ, | |σ) into itself (see e.g. [H]). Thus we
may view (Hσ, | |σ) as the phase space of a dynamical system generated by (2.1),
and will write the norm on H

σ as | | (omitting the subscript σ) once σ is fixed.
In applications, the choice of phase space is determined by the nonlinear term

F, which is often the Nemytski operator induced by a smooth scalar function such
as f(u) or f(
u, u). Such operators may not be smooth from H to itself. In the
equation u̇ = uxx + sinu with u(0) = 0 = u(1), for example, sin u induces an F

that is differentiable from H
1
2 = H1

0 ([0, 1]) to L2([0, 1]) but not from L2([0, 1]) to
L2([0, 1]).

Suppose now a time-dependent forcing term Φ(u, t) is added to (2.1), resulting
in

(2.2) u̇ = Au+ F(u, μ) +Φ(u, t).

Let St1,t2 be the time-(t1, t2) map for this forced system, i.e. St1,t2(û) = u(t2)
where t �→ u(t) is the solution of (2.2) with u(t1) = û. If Φ is time-periodic, i.e. if
there exists T > 0 such that Φ(u, t + T ) = Φ(u, t) for all u ∈ Hσ and t ≥ 0, then
the time evolution of (2.2) can be studied through the iteration of S0,T . In this
case we write ST = S0,T , and refer to it simply as the time-T map.

2.3. Hopf Bifurcations

Let the setting be as in Sect. 1.2, and assume additionally that F(0, μ) = 0 for
all μ, so that u(t) ≡ 0 is a stationary solution. We rewrite equation (2.1) as

(2.3) u̇ = Aμu+ fμ(u), fμ(0) = 0, ∂ufμ(0) = 0,

by letting Aμ = A+ ∂uF(0, μ) and fμ(u) = −∂uF(0, μ)u+ F(u, μ). The mapping
F, and hence fμ, are assumed to be C5.

We will say the system defined by (2.3) undergoes a generic supercritical Hopf
Bifurcation at μ = 0 if conditions (H1) and (H2) below hold:

(H1) The spectrum of Aμ, Σ(Aμ), is decomposed into Σc(Aμ) ∪ Σs(Aμ) where
Σc(Aμ) = {a(μ)± iω(μ)} consists of a conjugating pair of complex numbers satis-
fying a(0) = 0, ω(0) 
= 0 and a′(0) > 0, and Σs(Aμ) ⊂ {λ ∈ C : Re λ < −β∗ < 0}
for some β∗ > 0.

Corresponding to the eigenvalues a(μ)±iω(μ), equation (2.3) has a 2-dimensional
local center manifold W c at u = 0 (see e.g. [CLL]). Via a change of coordinates,
we may express the flow on W c, i.e. the so-called central flow, in normal form as

(2.4) ż = (a(μ) + iω(μ))z + k1(μ)z
2z̄ + k2(μ)z

3z̄2 + · · ·

where z, k1(μ), k2(μ), · · · ∈ C.

(H2) Re(k1(0)) < 0.1

A well known result of Andronov and Hopf [A, Ho] asserts that under condi-

tions (H1) and (H2), a stable periodic solution of diameter O(μ
1
2 ) bifurcates out of

u = 0 as μ increases past 0. This periodic solution will be referred to as the Hopf
limit cycle in this paper.

1Transforming z �→ cz, k1 is changed to |c|2k1. This is the only ambiguity for k1. In
particular, the sign of Re(k1(0)) and arg(k1(0)) are uniquely determined.
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2.4. A Few Ideas from Dynamical Systems

Let (E, | · |) be a Hilbert space, and consider the dynamical system generated
by iterating a C1 map F : E → E. We collect here a few ideas that are well known
for finite dimensional systems and whose generalizations to infinite dimensions are
straightforward.

For u0 ∈ E, we call un = Fn(u0), n = 0, 1, 2, · · · , the orbit of u0. We also refer
to a bi-infinite sequence {un, n ∈ Z} as an orbit if for every n, un+1 = F (un).

A compact set Λ ⊂ E is called an attractor if (i) F−1(Λ) = Λ; and (ii) there
is an open set U in E such that Λ ⊂ U , FN (U) ⊂ U for some N ≥ 1, and for all
u ∈ U , d(Fn(u),Λ) → 0 as n → ∞. Here d(Fn(u),Λ) = minv∈Λ |Fn(u) − v|. The
set B(Λ) := {u ∈ E : d(Fn(u),Λ) → 0 as n → ∞} is called the basin of attraction
of Λ.

Attractors are important because they capture the asymptotic behavior of large
sets of orbits. In general, Λ itself tends to be relatively small (compact and of finite
Hausdorff dimension) while B(Λ), which, by definition contains an open set, is
quite visible in the phase space. Notice that our attractors are not necessarily
global attractors in the sense of [Ha, T].

A manifestation of dynamical complexity is the presence of a great variety
of orbit types. The following is a topological version of Smale’s horseshoe: Let
X := Π∞

−∞{1, 2, · · · , r}, r ≥ 2, be endowed with the product topology, and let
S : X → X be the shift map, i.e. for a ∈ X, the nth coordinate of S(a) is the
(n + 1)st coordinate of a. We say F has a topological horseshoe if there is an
embedding Ψ : X → E such that Ψ ◦ S = F ◦ Ψ. Less formally, this implies there
are r pairwise disjoint open sets U1, · · · , Ur in E (representing r different types of
“profiles”) such that for every a = {an}∞n=−∞ ∈ X, there is an orbit {un}∞n=−∞
such that un ∈ Uan

for all n. In particular, if a is periodic, i.e. if for some p,
an+p = an for all n, then un+p = un for all n. Since X contains periodic sequences
of all periods, it follows that a map with a horseshoe has periodic orbits of all
periods.

Local instability is often expressed in terms of Lyapunov exponents. For u0 ∈ E,
we say F has a positive Lyapunov exponent at u0 if

lim sup
n→∞

1

n
log ‖∂Fn(u0)‖ > 0.

Here ∂F (u0) is the Fréchet derivative of F at u0. For a periodic orbit, having a pos-
itive Lyapunov exponent is synonymous with linear instability. This interpretation
extends to arbitrary orbits.

Finally, we remark that if F is the time-T map of equation (2.2) with Φ(u, t+
T ) = Φ(u, t), then the ideas above carry over to the solutions of (2.2) in the obvious
way. For example, if F has a topological horseshoe, then (2.2) has infinitely many
periodic solutions, at least one for each period nT , n ∈ Z+. Positive Lyapunov expo-
nents translate into corresponding exponential growths for the variational equations
associated with (2.2).

2.5. SRB Measures

There is no direct generalization of some of the ideas surrounding SRB measures
to function spaces. We review first the situation in finite dimensions.
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SRB measures were introduced by Sinai, Ruelle and Bowen in the context of
uniformly hyperbolic attractors [B, R1, S]. The idea has since been made quite
general: Let F be a C2 diffeomorphism of a compact n-dimensional manifold, and
let ν be an F -invariant Borel probability measure. We say ν is an SRB measure if
(i) F has a positive Lyapunov exponent ν-a.e. and (ii) the conditional measures of
ν on unstable manifolds are absolutely continuous with respect to the Riemannian
measures on these manifolds.

From (i), we see that SRB measures are associated with chaotic systems. We
now state a result that explains why these measures are important: A point x ∈ M
is said to be generic with respect to a measure ν if for every continuous function
ϕ : M → R,

lim
n→∞

1

n

n−1∑
i=0

ϕ(F i(x)) =

∫
ϕdν .

A theorem says that if ν is an ergodic SRB measure with no zero Lyapunov expo-
nents, then its generic points have positive Lebesgue measure. That is to say, if one
equates positive Lebesgue measure sets with observable events, then SRB measures
describe patterns of behavior that can be observed. In the case of an attractor in
a dissipative system, all invariant measures are singular with respect to Lebesgue,
so this is not a statement of the Birkhoff Ergodic Theorem, and the existence of
SRB measures cannot be taken for granted. For more information, see [Y2] and
the references therein.

While the formal definition of SRB measures can be transported verbatim to
infinite dimensional systems (when the relevant unstable manifolds are defined), it
is less clear what the analog of the observability result above would be. In Section
2, we propose a natural idea for dissipative parabolic PDEs that we hope will be
useful beyond the present paper.
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CHAPTER 3

Statement of Theorems

Two sets of results are stated in this section. The first describes the effect of
periodic forcing on the dynamics of general evolutionary equations undergoing Hopf
bifurcations. These results are stated in Sects. 2.1 and 2.2. A concrete application
is given in Sect. 2.3.

3.1. Setting and Standing Hypotheses

Let H be a Hilbert space.

Unforced system. We consider an equation of the form

(3.1) u̇ = Au+ F(u, μ), u ∈ H, μ ∈ (−μ1, μ1) ⊂ R,

where −A is a sectorial operator and F : H
σ × (−μ1, μ1) → H is C5 for some

σ ∈ [0, 1) (definitions are given in Sects. 1.1 and 1.2). We assume F(0, μ) = 0 for
all μ, and rewrite (3.1) to obtain

(3.2) u̇ = Aμu+ fμ(u), fμ(0) = 0, ∂ufμ(0) = 0.

The system defined by (3.2) is assumed to undergo a generic supercritical Hopf
bifurcation at u = 0; more precisely, it is assumed to satisfy Conditions (H1) and
(H2) in Sect. 1.3.

Periodically forced system. To the right side of (3.2) we now add a forcing term
of the form ρΦ(u)pT,ι(t), resulting in a new equation

(3.3) u̇ = Aμu+ fμ(u) + ρΦ(u)pT,ι(t).

Here ρ, ι, T are constants, Φ : Hσ → Hσ is assumed to be C5 with uniformly
bounded C5-norms, and

pT,ι(t) =

∞∑
n=−∞

pι(t− nT ) with pι(t) =

{
ι−1 0 ≤ t < ι,
0 elsewhere.

We assume that ι is small and T is large. That is to say, the forcing has period
T , and is close to an impulse followed by a long relaxation. Let Es

μ and Ec
μ be

the Aμ-invariant subspaces associated with Σs(Aμ) and Σc(Aμ) respectively (see
Sect. 1.3). Other than its regularity, our only real assumption on Φ is Φ(0) 
∈ Es

0 .
Without loss of generality, let us set

(H3) |P c
0 (Φ(0))| = 1 where P c

0 is the projection of Hσ onto Ec
0.

This completes the description of the setting for our general results. Through-
out this paper, the following 3 items, namely (i) the unforced equation, (ii) the
form of the forcing term, and (iii) the forcing function Φ, are regarded as given
and fixed, while the 4 numbers, μ, ρ, T and ι, are treated as parameters that can
be varied. We view (3.3) as defining a time-periodic dynamical system on Hσ, and

9
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study its time evolution by iterating its time-T map Fμ,ρ,T,ι. When we wish to
emphasize the dependence on a parameter, such as T , we will write FT instead of
Fμ,ρ,T,ι. Observe that FT = GT−ι ◦S0,ι where St1,t2 is the time-(t1, t2) map of (3.3)
and Gt is the time-t map of (3.2). Since both S0,ι and GT−ι are C5, so is FT .

Two geometric invariants. Crucial geometric information is contained in the
following two numbers; they both appear in the statements of all of our results.

(i) The first is the twist number τ of the unforced system (3.2), defined to be

τ :=
Im(k1(0))

−Re(k1(0))

where k1(0) is the coefficient of the third order term in the normal form of the
central flow associated with (3.2) at μ = 0 (see Sect. 1.3).

(ii) The second is the kick ratio γ, defined formally as

γ := ρ(dμ
1
2 )−1.

Here dμ
1
2 is approximately the radius of the Hopf limit cycle in the unforced system

in the direction of the forcing; the formal definition of d is given in Sect. 7.1. The
geometry for γ < 1 and γ > 1 are somewhat different; see Sect. 3.4. With γ
bounded away from 1, our analysis applies to both cases. For definiteness, we will
state and prove our results under the assumption

(H4) γ < 1
2 .

3.2. General Results for Periodically Forced Hopf Bifurcations

Let Dc(ε) = {v ∈ Ec
0 : |v| < ε}, Ds(ε) = {w ∈ Es

0 : |w| < ε}, and

N (ε) = {u = v + w : v ∈ Dc(ε), w ∈ Ds(ε)}.

A priori bounds. A set of a priori bounds that limit our considerations to certain
regions of Hσ and to certain parameter ranges will be assumed throughout. We
explain the nature of these bounds without giving explicit values. Let ε0, μ0, ι0, ρ0
and M0 be numbers depending only on a′(0) (a(μ) is as in (H1)), the unforced
system (3.2) at μ = 0 and the forcing function Φ. The dynamics of interest will
take place inside N (ε0) for parameters

0 < μ < μ0, 0 < ι < ι0, 0 ≤ ρ < ρ0 and T > M0μ
−1.

These constants are chosen with the following considerations:

– N (ε0) is chosen so that structures associated with the linear part of the
system at 0, namely center manifolds and strong stable foliations, are
defined on N (ε0);

– μ0 is small enough that the Hopf limit cycles and attractors are well inside
N (ε0);

– ρ is primarily restricted through (H4);
– ι is small enough so that the net effect of the impulsive force is close to
u �→ u+ ρΦ(0);

– T > M0μ
−1 is large enough so that the effect of the weak contraction of

the Hopf limit cycle is played out sufficiently between kicks.
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The numbers ε0, μ0, ι0, ρ0 and M0 are determined by what is needed in our proofs
and are revised a finite number of times (ε0, μ0, ι0, ρ0 downward and K0 upward)
as we go along.

Let B(A) denote the attractive basin of an attractor A.

Proposition 3.1. (Trapping region and attractor) Assuming M0 is suf-
ficiently large, there is, for each μ ∈ (0, μ0), an open set U = U(μ) ⊂ N (ε0) with
the properties that

(i) for the unforced equation: Ω ⊂ U ⊂ B(Ω) where Ω is the Hopf limit cycle;
(ii) for the forced equation: For all T > M0μ

−1, there exists N ∈ Z
+ such

that FN
T (U) ⊂ U . It follows that

Λ := ∩n≥0F
n
T (U)

is an attractor of FT with U ⊂ B(Λ).

As we will see in Sect. 4.3, U can be taken to be a fairly large subset of N (ε0).
Under the conditions of Proposition 2.1, Λ is what becomes of the Hopf limit cycle
when the forcing is applied. We call it the Hopf attractor.

Theorem 3.2. (Existence of horseshoes) Assume

|τ | > 20γ−1.

Then there exists T1(μ) > M0μ
−1 such that for all T > T1, FT has a topological

horseshoe in Λ. This implies in particular that the system ( 3.3) has infinitely many
periodic solutions with arbitrarily large periods.

While Theorem 3.2 asserts the existence of many solutions with different time
evolutions, it does not assert the dynamical complexity for solutions starting from
“most” or “almost all” initial conditions. In finite dimensions, such a result is
often deduced from the existence of an SRB measure together with the absolute
continuity of stable foliations. The following proposition plays a key role in bridging
the gap between finite and infinite dimensions.

Proposition 3.3. (Strong stable foliation) FT has a codimension-2 stable
foliation Wss defined on an open set containing N (ε0). This foliation is Lipschitz
continuous, and its leaves are roughly parallel to Es

0 .

A precise formulation of Proposition 2.2 is given in Sect. 3.2. Since Wss is a
foliation that is Lipschitz continuous, there is a well defined Lebesgue measure class
transversal to its leaves. We say a property holds almost everywhere transver-
sal to Wss if for every embedded 2-dimensional surface S transversal to the leaves
of Wss, it holds almost everywhere with respect to the Riemannian measure on S.
Where no ambiguity arises, such as when referring to open subsets of N (ε0), we
will abbreviate the terminology above as “a.e.”

The definition of an SRB measure is as in finite dimensions; it is given in Sect.
1.5.

Theorem 3.4 (Strange attractors with SRB measures). There exists a
constant L0 > 1 (not depending on specifics of the unforced system or the forcing)
such that if

|τ | > L0γ
−1,

then there is a positive measure set Δ ⊂ (T2,∞), T2(μ) >> M0μ
−1, with the prop-

erty that for every T ∈ Δ, the time evolution of ( 3.3) has the following description:
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(i) for a.e. u0 ∈ U , the solution u(t) of ( 3.3) with u(0) = u0 is unstable in
the sense of having a positive Lyapunov exponent;

(ii) FT has an ergodic SRB measure ν with respect to which a.e. u0 ∈ U is
generic.

Every subinterval of (T2,∞) of length greater than the period of the Hopf limit cycle
meets Δ in a set of positive Lebesgue measure.

In the rest of this paper, we will use the phrase “FT has a strange attractor”
as shorthand for (i) and (ii) in Theorem 2. Theorems 1 and 2 are the main results
of this paper. To provide contrast, we finish with a result in the opposite direction.

Theorem 3.5. (Non-chaotic dynamics) Assume

|τ | < (100γ)−1.

Then there exists T0(μ) such that for all T > T0, the attractor Λ of FT is dif-
feomorphic to a circle, and for every u0 in U , there exists v0 ∈ Λ such that
|Fn

T (u0)− Fn
T (v0)| → 0 as n → ∞.

3.3. An Application: The Brusselator

The Brusselator, as described by the equations below, is a simplified model of
an autocatalytic chemical reaction with diffusion [LP]:

ut = d1Δu+ a− (b+ 1)u+ u2v,

vt = d2Δv + bu− u2v.
(3.4)

We consider this model in one physical dimension, i.e. u = u(x, t) and v = v(x, t) for
x ∈ [0, 1], and let Δ = ∂xx. Here a and b are constants representing concentrations
of certain initial substances, u and v are variables representing concentrations of
two intermediates, and d1, d2 > 0 are their respective diffusion coefficients. The
term u2v represents the autocatalytic step in the reaction. Two other chemicals
are produced; they play no role in this reaction and are not represented.

One sees immediately that (u(t), v(t)) ≡ (a, ba−1) is a stationary solution. It
is well known that a Hopf bifurcation occurs as the parameters a and b are varied.

We claim that our results in Sect. 2.2 apply when the system (3.4) is periodi-
cally forced. Letting U = u − a, V = v − ba−1, and u = (U, V ), we write (3.4) as
an evolutionary equation

(3.5) u̇ = Aa,bu+ fa,b(u),

where

Aa,b =

(
d1

∂2

∂x2 + (b− 1) a2

−b θd1
∂2

∂x2 − a2

)
, θ =

d2
d1

, d1 
= 0;

and

fa,b(u) =

(
UV 2 + ba−1U2 + 2aUV
−UV 2 − ba−1U2 − 2aUV

)
.

Two types of boundary conditions are considered, with forcings chosen to respect
them:
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Neumann boundary conditions. We consider

ut = d1Δu+ a− (b+ 1)u+ u2v + ρ(1 + cosπx)pT,ι(t),

vt = d2Δv + bu− u2v ;

∂xu(0, t) = ∂xu(1, t) = 0, ∂xv(0, t) = ∂xv(1, t) = 0 .

(3.6)

In (U, V )-coordinates, −Aa,b is a sectorial operator with compact resolvent in H =
L2([0, 1]) × L2([0, 1]), D(Aa,b) = (H2([0, 1]) ∩ {∂x = 0 at x = 0, 1})2, and fa,b :
Hσ → H is smooth for σ ∈ ( 12 , 1). Using a standard cut-off procedure to modify
fa,b outside of a small neighborhood of 0, we may assume it is globally Lipschitz
continuous.

Recall that the twist number τ of the unforced equation is an important factor
in determining the type of dynamics that ensue when the system is forced.

Proposition 3.6 ((Hopf bifurcation)). For each d1 > 0 and θ < 1, the
following hold for the unforced equation, i.e. system (3.6) without the forcing
term:

(i) for each fixed a > 10, as b is increased, a supercritical Hopf bifurcation
satisfying Conditions (H1) and (H2) occurs at b = a2 + 1;

(ii) |τ |, which depends only on a, tends to ∞ as a → ∞.

Using Proposition 3.6, we verify that there are regions of parameters for which
Theorems 1–3 apply. In particular, we have

Theorem 3.7 ((Effects of forcing)). Let d1 > 0, θ < 1 be fixed. Then for
a sufficiently large, there is an open set of ρ, ι and b (depending on d1, θ and a),
b ≈ a2 + 1, for which

(i) the time-T map FT has a horseshoe for all large T ;
(ii) FT has a strange attractor for a positive measure set of large T .

Dirichlet boundary conditions: We consider

ut = d1Δu+ a− (b+ 1)u+ u2v + ρ sinπx pT,ι(t),

vt = d2Δv + bu− u2v ;

u(0, t) = u(1, t) = a, v(0, t) = v(1, t) = ba−1.

(3.7)

As before, we write (3.7) in (U, V )-coordinates. Here, −Aa,b is a sectorial operator
with compact resolvent in H = L2([0, 1]) × L2([0, 1]) and D(Aa,b) = (H2([0, 1]) ∩
H1

0 ([0, 1]))
2. Moreover, fa,b : H

1
2 = H1

0 ([0, 1]) × H1
0 ([0, 1]) → H is smooth and

globally Lipschitz continuous with the usual cutoff.
The computation of τ in this case is considerably more involved than for Neu-

mann boundary conditions. We limit ourselves in this paper to the special case
d1 = π−2.

Proposition 3.8. (Hopf bifurcation) Let d1 = π−2. Then for each θ with
0 < θ << 1, the following hold for the unforced equation, i.e. system (3.7) without
the forcing term:

(i) there exists A0 = A0(θ) > 1 such that for each a ∈ (1, A0), as b is
increased, a supercritical Hopf bifurcation satisfying Conditions (H1) and
(H2) occurs at b = 2 + a2 + θ;

(ii) |τ |, which depends on θ and a but not on b, tends to ∞ as a → A0.
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Using Proposition 3.8, we verify that there are regions of parameters for which
Theorems 1–3 apply. In particular, we have

Theorem 3.9 ((Effects of forcing)). Let d1 = π−2, 0 < θ << 1. Then there
are open sets of a, b, ρ and ι, where a is close to A0, b is close to a2 + 2 + θ, for
which

(i) the time-T map FT has a horseshoe for all large T ;
(ii) FT has a strange attractor for a positive measure set of large T .

3.4. Discussion of Results

A. Geometric mechanism in production of chaos.

To make transparent the underlying geometry, we consider the following sim-
plified situation: Assume (i) the phase space is 2-dimensional, (ii) the Hopf limit
cycle for parameter μ is the circle centered at 0 of radius

√
μ, and (iii) the forcing

is impulsive, and is a rigid translation of the entire phase plane by a distance ρ.
Assuming the limit cycle is positively oriented, the implication of τ > 0 is that the
angular velocities of orbits revolving around 0 increase with distance from 0.

t=0+ t=3 t=6

t=6+ t=9 t=12

Figure 3.1. Hopf attractor with γ = ρμ− 1
2 = 1

2 , τ = 10 and T = 6

In Figure 3.1, the circle shown in grey is the Hopf limit cycle; its images at
the various times are shown in black. This figure shows how folds are created:
The kick sends different points on the Hopf limit cycle to locations with unequal
distances from 0. In the presence of a strong enough twist, the different angular
velocities of these points after the kick then cause the circle to become deformed.
During the period of relaxation, the “tail” is further elongated as the folded image
of the kicked cycle returns to a neighborhood of the unkicked cycle. The process
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is repeated. Folds created this way are shown to give rise to horseshoes. They also
provide the geometry behind the formation of strange attractors; see Part B.

It is not hard to see that if the kick is weak, or if the twist is not strong
enough, then the fold seen in Figure 1 will not materialize, resulting in non-chaotic
dynamics.

In the present simplified setting, γ > 1 corresponds to a kick that sends the
Hopf cycle to an image disjoint from itself; see Figure 3.2. The mechanism for
producing chaos in this case is as before, but the geometry is a little different:
upon relaxation the cycle wraps around itself from the outside, i.e. the action of
the time-T map on the Hopf cycle when projected back to itself has degree 0, while
the corresponding action for γ < 1 has degree 1.

t = 0+ t = 1 t = 3

Figure 3.2. Hopf attractor with kick ratio γ > 1

B. Horseshoes versus strange attractors.

Let us stress that, in this paper, chaos refers to complexity in time evolutions,
not spatial chaos. Two different types of chaotic behaviors are asserted in Theorems
1 and 2:

The presence of horseshoes implies the existence of a Cantor set of initial con-
ditions with complicated time evolutions. By continuous dependence on initial
conditions, a solution starting near this set will appear chaotic initially. As time
goes on, it may or may not remain chaotic; for example, it may tend to a stable
equilibrium. The phenomenon in which the latter occurs is known as transient
chaos.

Strange attractors represent a considerably stronger form of chaos, a kind that
is both sustained in time and ubiquitous in the phase space, meaning it is seen in
solutions starting from a large set of initial conditions and the chaotic behavior
last indefinitely. The formation of strange attractors requires a subtle balance not
required for horseshoes. As a result, proving the existence of SRB measures also
presents a much greater challenge.

Notation used in the rest of this paper:

(1) The letter K is used as a generic constant that may depend on the unforced
equation and the forcing function Φ but is independent of the parameters μ, ρ, ι
or T . Its value may vary from line to line. When there is a need to distinguish
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between two constants in the same statement, or if a specific value is used in more
than one place, K1,K2, · · · may be used instead of K.

(2) Let H and H
′ be Hilbert spaces, and let gμ : U → H

′ be a family of Cr maps
on U ⊂ H parametrized by μ. The notation “gμ = Or(μ

k)” is our shorthand for
‖gμ‖Cr < Kμk for some K > 0. By ‖gμ‖Cr , we mean the Cr-norm of the mapping
gμ with respect to phase variables; smoothness with respect to the parameter μ is
not assumed.

(3) Partial derivatives are denoted by ∂, not subscripts. For example, if f is a map-
ping from (x, y)-space into (u, v)-space, then fu and fv are the u- and v-components
of f , while ∂xfu is the partial derivative of fu with respect to x.
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CHAPTER 4

Invariant Manifolds

A dynamical picture associated with the linear parts of FT near 0 is presented in
this section. The main objects are a center manifold and a strong stable foliation.
These structures are parameter-dependent but quite robust. The more delicate
dynamics occur on the center manifold; they are treated in later sections.

4.1. Standardizing the Linear Part of the Unforced Equation

First we introduce μ-dependent changes of coordinates that enable us to work
in a space E with the following properties:

(i) there is a single splitting E = Ec ⊕ Es left invariant with respect to Aμ

for all μ;
(ii) Aμ restricted to Ec is in canonical form.

Let E := R2 ⊕Es
0 be endowed with the following inner product: The metric on

R
2 is Euclidean, Es

0 has the inner product inherited from H
σ, and the two subspaces

are orthogonal. For each μ, we define a linear transformation Lμ : Hσ → E as
follows: Let e(μ) = v1(μ)+ iv2(μ) be a continuous family of eigenfunctions of Aμ of
norm 1 associated with the eigenvalue a(μ)− iω(μ). We denote the coordinates on
E by (x, y, w) where (x, y) ∈ R

2 and w ∈ Es
0 , and define Lμ(u) = (x, y, w) where

P c
μu = xv1(μ) + yv2(μ) and w =

(
P s
μ|Es

0

)−1
P s
μu.

Clearly, Lμ(E
c
μ) = R2 and Lμ(E

s
μ) = Es

0 . Note also that both Lμ and L−1
μ are

continuous and their operator norms are uniformly bounded. This is because we
may assume ‖P s

μ − P s
0 ‖ ≤ η <

√
2 − 1 for all μ ∈ (−μ0, μ0); consequently, P

s
μ|Es

0
:

Es
0 → Es

μ is an isomorphism with ‖P s
μ‖ ≤ 1 + η and ‖

(
P s
μ|Es

0

)−1 ‖ ≤ 1
1−η . Also,

since P c
μ and P s

μ depend smoothly on μ, we have

‖P c
μ − P c

0‖ = O(μ), ‖P s
μ − P s

0 ‖ = O(μ).

Furthermore,
(
P s
μ|Es

0

)−1
P s
μ is continuous in μ.

We write E = Ec ⊕ Es where Ec = R2 and Es = Es
0 , and use | · | to denote

the norm on E. Let Dc(ε) = {u ∈ Ec : |u| < ε}, Ds(ε) = {u ∈ Es : |u| < ε} and
N (ε) = Dc(ε) ×Ds(ε). (Under L−1

μ , the image of N (ε) as defined here is not the
set in Hσ with the same name but it contains a neighborhood in Hσ of the same
kind for a smaller ε.)

Similarly, we introduce a space Ě := R2 ⊕ Ěs
0 where Ec

μ ⊕ Ěs
μ is the splitting in

H corresponding to Σc
μ and Σs

μ. We put on Ě a weak norm ‖ · ‖ defined as follows:

on R2 it is Euclidean, on Ěs
0 it is the norm ‖ · ‖ inherited from H, and the two

subspaces are orthogonal. A linear change of coordinates Ľμ : H → Ě analogous

to Lμ is defined. In particular, Ľμ(u) = (x, y, w̌) where w̌ = (P̌ s
μ|Ěs

0
)−1P̌ s

μu and

17
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P̌ s
μ : H → Ěs

μ is the projection. Since Es
μ = Ěs

μ ∩Hσ, we may view E as a subspace

of Ě with Lμ = Ľμ|Hσ .
From this point on, we view the phase space of our dynamical system as E (with

further coordinate changes to follow). Results on E are easily translated back to
Hσ. For simplicity, we will use the same symbols as before to denote corresponding
objects. For example, we will write Aμ and fμ instead of ĽμAμ(Lμ|D(A))−1 and

ĽμfμL
−1
μ , call the time-T map FT instead of LμFTL

−1
μ , and so on. Let Ac

μ and As
μ

denote the restriction of Aμ on Ec and Es respectively. Then on E, equation (3.3)
has the form

ẋ = ax− ωy + fx + ρΦxpT,ι(t),

ẏ = ωx+ ay + fy + ρΦypT,ι(t),

ẇ = Asw + fw̌ + ρΦwpT,ι(t),

(4.1)

where f = (fx, fy, fw̌) and Φ = (Φx,Φy,Φw) are the component functions of f and
Φ. All quantities depend on μ, although this dependence has been suppressed.

4.2. Invariant Manifolds

The results in this section are consequences of the following exponential di-
chotomy: For v ∈ Ec, we have

(4.2) |eActv| ≤ 2ea(μ)|t||v| for t ∈ R,

and there exists β0 with 0 < β0 < β∗ (see Sect. 1.3) such that for all w ∈ Es,

(4.3) |eAstw| < Ce−β0t|w| and |eAstw| < C
1

tσ
e−β0t‖w‖ for t > 0.

We may assume a(μ) < a0 << β0 for all μ < μ0.
In Propositions 3.1–3.3 below, the assertions are to be understood to be pre-

ceded by the statement “There exist ε0, ρ0, μ0, ι0 and M0 such that the following
hold”. (See Sect. 2.1, paragraph on a priori bounds.) Because the structures dis-
cussed in this section are robust, the conditions imposed on these constants are
relatively mild compared to the ones imposed in connection with the more delicate
dynamics in later sections.

Proposition 4.1. (Center manifolds) For each T > M0μ
−1, there is a C1

mapping hc : Dc(ε0) → Es with the property that the 2-dimensional manifold

Wc = {v + hc(v) | v ∈ Dc(ε0)}
is FT -invariant, i.e. FT (Wc) ⊂ Wc, and ‖hc‖C1 < K(ρ+ ε0) for some K > 0.

Let us denote hc above as hc
ρ to indicate the dependence on ρ. The center man-

ifold of the unforced equation is therefore represented by {v + hc
0(v), v ∈ Dc(ε0)}.

Our next proposition compares hc
ρ and hc

0.

Proposition 4.2. ‖hc
ρ − hc

0‖C1 < e−
β0
2 T .

We now give precise definitions of the objects involved in the formulation of
Proposition 2.2 in Sect. 2.2. Let G : N (ε0) × Ds(ε0) → Ec be a C1 map, and
for each u ∈ N (ε0), let Λu be the graph of the map w �→ G(u,w). We assume
that Λu passes through u, i.e. if u = uc + us where uc ∈ Ec and us ∈ Es, then
G(u, us) = uc.
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(i) We say that {Λu, u ∈ N (ε0)} defines a codimension two foliation if the
following hold: for all u, ū ∈ N (ε0), either Λu = Λū or Λu ∩ Λū = ∅;

(ii) the co-dimensional two foliation {Λu, u ∈ N (ε0)} is FT -invariant if, for
all u ∈ N (ε0) ∩ F−1

T (N (ε0)), FT (Λu) ⊂ ΛFT (u);
(iii) Λu is a codimension 2 strong stable manifold through u, writtenWss

u = Λu,
if the following hold: for every u ∈ N (ε0) and ū ∈ Λu,

|Fn
T (ū)− Fn

T (u)| < e−a0n|ū− u| for all n > 0

where a0 is as in the beginning of Sect. 3.1.

Notice that (i) implies that Wss
u is uniquely characterized by the property in (iii).

If all the Λu are strong stable manifolds, then we say G defines a codimension 2
strong stable foliation Wss on N (ε0) for FT .

We need one more definition. For g : Dc(2ε0) → Es(ε0), let Σg = {u + g(u) :
u ∈ Dc(2ε0)} be the graph of g. We say Wss is Lipschitz continuous if there exists
K > 0 such that the following holds for every C1 map g as above with ‖∂g‖ ≤ 1:
for each u ∈ N (ε0), Wss

u meets Σg at a unique point η, and the mapping u �→ η(u)
satisfies |η(u1)− η(u2)| < K|u1 − u2|.

The following is a more precise formulation of Proposition 2.2.

Proposition 4.3. (Strong stable foliations) There is a codimension 2 strong
stable foliation Wss on N (ε0) for FT . Moreover, if G : N (ε0)×Ds(ε0) → Ec is the
mapping defining Wss, then

(a) for all u ∈ N (ε0), ‖∂wG(u,w)‖L(Es,Ec) < K(ρ+ ε0); and
(b) the strong stable foliation Wss is Lipschitz continuous.

To prove the assertions in Theorem 2 regarding properties that hold “almost
everywhere transversal to Wss”, we will prove the following: For every C1 mapping
g : Dc(2ε0) → Es(ε0) with ‖∂g‖ ≤ 1, if Σg is the graph of g and mg is the
Riemannian measure on Σg, then the properties in question holds mg-a.e. It can
be shown that this is equivalent to the formulation in Sect. 2.1, technical details
are left to the reader. One may, if one so chooses, take the above as the definition
of “a.e.”

The arguments used in the proofs of Propositions 3.1–3.3 are quite standard,
though we know of no references that treat exactly the present setting. (Most proofs
of center manifolds assume a priori knowledge of a fixed point through which the
manifold passes; we do not have that.) We will omit the proof of Proposition 3.1,
referring the reader to e.g. [CLL]. Sketches of Propositions 3.2 and 3.3 are given in
Appendix A.

4.3. Trapping Regions

The following are the two goals of this section: (a) We will identify a trapping
region U ⊂ E which occupies a large part of N (ε0), and a small annular region
A ⊂ Wc containing the Hopf attractor. (b) Using invariant manifolds, we will show
how to pass from U to A; in particular, we will explain how “a.e.”-point in U is
related to a point in A typical with respect to Lebesgue measure. Once this passage
is carried out, one can focus on the dynamics on A alone. At this time, however,
we do not have all the technical estimates needed for a complete proof. We will
proceed nonetheless assuming two estimates (that are quite reasonable based on
what we already know), and provide technical verifications later on.
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Continuing to work in the space E, we denote phase points by u = (v, w), v ∈
Ec, w ∈ Es. For each μ, ρ, ι and T , we let Wc = Wc(μ, ρ, ι, T ) denote the center
manifold of the system with these parameters, often omitting the parameters when
they are implicitly understood. Strong stable manifolds are denoted similarly. The
special notation W c (respectively W ss) is reserved for the unforced equation.

In the coordinates of E, it is easy to see that for each small μ > 0, the limit

cycle Ω of the unforced equation is approximately a round circle of radius d̃μ
1
2 on

W c with d̃ := ( a′(0)
−Re(k1(0))

)
1
2 (see Sect. 1.3). We will show in later sections that the

Hopf attractor for the forced system lies in an O(
√
μ)-neighborhood of this limit

cycle. Let

A(δ,Wc) = {|v − d̃μ
1
2 | < δ} ∩Wc .

Recall that FT = GT−ι ◦ S0,ι where St1,t2 is the time-(t1, t2)-map of (3.3) and Gt

is the time-t-map of the unforced equation. We will refer to κ := S0,ι as the kick
map. Recall also that the sizes of admissible kicks are regulated by (H4).

Provisional assumptions:

(1) For the unforced equation, Ω ⊂ A(δ,W c) for some δ = O(μ).

(2) For all u = (v, w) ∈ N (ε0), if κ(u) = (v′, w′), then |v − v′| < 51
100 d̃μ

1
2 .

(1) is verified in Sect. 4.3; (2) is verified in Sect. 6.1. We now proceed assuming
(1) and (2).

Lemma 4.4. For u0 = (v0, w0) ∈ Wc = Wc(μ, ρ, ι, T ), let FT (u0) = (v′0, w
′
0).

The following hold for all admissible μ, ρ, ι, and T > M0μ
−1, M0 sufficiently large:

(i) If 3d̃μ
1
2 ≤ |v0| ≤ ε0, then |v′0| < 1

2 |v|.
(ii) If 3

5 d̃μ
1
2 < |v0| < 3d̃μ

1
2 , then FT (u0) ∈ A( 1

100 d̃μ
1
2 ,Wc).

Proof: We give the proof of (ii); the proof of (i) is similar and uses only cruder
estimates.

Consider u0 ∈ Wc. We will estimate the location of FT (u0) via the following
sequence of points: u1 = κ(u0), i.e., u1 is the image of u0 under the kick map; u2

is the unique point in W c ∩ W ss
u1
, u3 = GT−ι(u2), and u4 is the unique point in

W ss
u3

∩Wc. By the quasi-invariance of the W ss-foliation in the unforced dynamics,
FT (u0) ∈ W ss

u3
. By the invariance of Wc under FT , FT (u0) ∈ Wc. Thus u4 =

FT (u0).

Let us write ui = (vi, wi). By Assumption (2), |v1 − v0| < 51
100 d̃μ

1
2 , and |w1 −

w0| < K
√
μ. By Proposition 3.2, the C1 distance between Wc and W c is <

e−
1
2β0T << 1

T = O(μ). These facts together with the Lipschitz bound on the
functions defining individual W ss-leaves (Proposition 3.3(a)) imply that |v2−v1| <
K ′ε0

√
μ. Given that 3

5 d̃μ
1
2 < |v0| < 3d̃μ

1
2 , we have 1

20 d̃μ
1
2 < |v2| < 4d̃μ

1
2 assuming

ε0 is small enough. From Assumption (1), we can arrange to have 199
200 d̃μ

1
2 < |v3| <

201
200 d̃μ

1
2 by taking M0 large enough and T ≥ M0μ

−1. This is because the rate of

attraction to Ω in { 1
20 d̃μ

1
2 < |v| < 4d̃μ

1
2 } ∩W c is of order μ, a known fact about

Hopf limit cycles (see also (5.16) in Sect. 5.3). In the notation above, then, we

have shown that u3 ∈ A( 1
200 d̃μ

1
2 ,W c). Passing back to Wc by sliding along W ss,

we obtain the desired conclusion for u4. �
Next we name an open set U(μ) that is a common trapping region for Fμ,ρ,ι,T

for all admissible ρ, ι and T . The advantage of having a common trapping region
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is that one can imagine how, as ρ increases, the limit cycle is “broken” and turned
into more complicated attractors. There are many choices of U with the properties
in Proposition 3.1. For example, we may take

U(μ) := N (ε0) \ {(v, w) : |v| ≤
2

3
d̃μ

1
2 +Kε0|w|}

where Kε0 is a Lipschitz constant for the functions defining individual Wss-leaves.

Proof of Proposition 3.1: Let U be as above.
(i) For the unforced equation, since Ω has radius ≈ d̃μ

1
2 and W c is tangent to

Ec at (0, 0) so that |w| = O(μ) on Ω, we have Ω ⊂ U . For ε0 small enough, all
points in N (ε0) not in W ss

0 are contained in B(Ω), the basin of attraction of Ω.
The Kε0|w| term in the definition of U ensures that W ss

0 ∩ U = ∅. It follows that
U ⊂ B(Ω).

(ii) For the forced equation, let Γ = ∪{Wss
u : u = (v, w) ∈ Wc, 3

5 d̃μ
1
2 <

|v| < ε0}. By Lemma 3.1, FT (Γ ∩ Wc) ⊂ { 99
100 d̃μ

1
2 < |v| < ε0} ∩ Wc, which one

checks easily is well within U . Since Wss-leaves are contracted, it follows that
FN
T (Γ) ⊂ U for some N . Now an argument similar to that in the last paragraph

gives Wss
u ∩ U = ∅ for every u = (v, w) ∈ Wc with |v| ≤ 3

5 d̃μ
1
2 . Thus Γ ⊃ U . This

together with FN
T (Γ) ⊂ U implies FN

T (U) ⊂ U . �
The following proposition, which for us is the culmination of the ideas in Sects.

3.2 and 3.3, contains information we will need later on. Let A = A( 1
100 d̃μ

1
2 ,Wc).

Proposition 4.5. The following hold for all admissible μ, ρ, ι and T > M0μ
−1:

(a) For every u ∈ U , there exists n ∈ Z+ and û ∈ A such that Fn
T (u) ∈ Wss(û).

(b) Let Â ⊂ A be any Borel measurable subset having full Lebesgue measure.
Then for

a.e. u ∈ U transversal to Wss, one may take û ∈ Â.

Proof: By Proposition 3.3(a), the Wss-leaf through u meets Wc in a point ũ, and
by Lemma 3.1, Fn

T (ũ) ∈ A for some n. This together with the quasi-invariance of
Wss-leaves proves (a). The assertion in (b) uses in addition the Lipshitz property
of the Wss-foliation (Proposition 3.3(b)), together with the fact that restricted to
Wc, FT is a smooth map and therefore preserves the class of Lebesgue measure
functions. �
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CHAPTER 5

Canonical Form of Equations
Around the Limit Cycle

This section contains a sequence of μ-dependent coordinate changes that will,
in the end, render the Hopf limit cycle (of the unforced system) as a unit-size
circle in a transformed space. Accompanying changes of the relevant equations are
computed for future use.

5.1. Normal Form of Hopf Bifurcation

Our starting point is equation (4.1) in Sect. 3.1. Setting ρ = 0, we obtain

ẋ = ax− ωy + fx, ẏ = ωx+ ay + fy, ẇ = Asw + fw̌.

Let W c be the center manifold of the unforced equation on Dc(ε0). Then W c is
the graph of a C5 function W ≡ hc

0 : Dc(ε) → Es with W (0, 0) = 0, ∂xW (0, 0) =
∂yW (0, 0) = 0, and (x, y,W ) ∈ W c satisfies

AsW + fw̌ = (ax− ωy + fx)∂xW + (ωx+ ay + fy)∂yW.

Coordinate change #1: “flattening” W c. Let

(5.1) w̄ = w −W (x, y).

(Each time a coordinate change is made on E, there is an accompanying one on
Ě which we leave implicit.) In (x, y, w̄)-coordinates, the center manifold is w̄ = 0,
and equation (4.1) is transformed to

ẋ = ax− ωy + fx(x, y,W ) + Δfx + ρΦxpT,ι(t),

ẏ = ωx+ ay + fy(x, y,W ) + Δfy + ρΦypT,ι(t),

˙̄w = Asw̄ +
[
Δfw̌ −Δfx∂xW −Δfy∂yW

]
+ ρ

[
Φw − Φx∂xW − Φy∂yW

]
pT,ι(t),

(5.2)

where

Δfx(x, y, w̄) = fx(x, y, w̄ +W (x, y))− fx(x, y,W (x, y)),

Δfy(x, y, w̄) = fy(x, y, w̄ +W (x, y))− fy(x, y,W (x, y)),

Δfw̌(x, y, w̄) = fw̌(x, y, w̄ +W (x, y))− fw̌(x, y,W (x, y)).

These terms have very simple forms, which we make precise in the next lemma.
Let L(X,Y ) be the space of linear maps from X to Y .

23
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Lemma 5.1. There are C4 maps Bx, By : (x, y, w̄) �→ L(Es,R) and Bw̌ :

(x, y, w̄) �→ L(Es, Ěs) with Bx(0, 0, 0) = By(0, 0, 0) = Bw̌(0, 0, 0) = 0 such that

Δfx(x, y, w̄) = Bx(x, y, w̄)w̄ , Δfy(x, y, w̄) = By(x, y, w̄)w̄ ,

(Δfw̌ −Δfx∂xW −Δfy∂yW )(x, y, w̄) = Bw̌(x, y, w̄)w̄ .

Proof: We write, for example,

Δfx(x, y, w̄) =

∫ 1

0

∂wfx(x, y, τ w̄ +W (x, y))w̄ dτ = Bx(x, y, w̄)w̄,

and note that Bx(0, 0, 0) = 0 because fx(x, y, w̄) = O(|(x, y, w̄)|2). Other terms are
treated similarly. �
Coordinate change #2: normal form. For the unforced system, the flow on the
center manifold w̄ = 0 is defined by

(5.3) ẋ = ax− ωy + fx(x, y,W (x, y)), ẏ = ωx+ ay + fy(x, y,W (x, y)).

Standard normal form theory [GH] assures us that there exist hx(x, y) and hy(x, y)
satisfying hx(0, 0) = hy(0, 0) = 0 and ∂xhx(0, 0) = ∂yhx(0, 0) = ∂xhy(0, 0) =
∂yhy(0, 0) = 0 such that the change of variables

(5.4) x̄ = x+ hx(x, y), ȳ = y + hy(x, y)

transforms equation (5.3) into

˙̄x = ax̄− ωȳ − α(x̄2 + ȳ2)x̄− β(x̄2 + ȳ2)ȳ + f̄x(x̄, ȳ),

˙̄y = ωx̄+ aȳ + β(x̄2 + ȳ2)x̄− α(x̄2 + ȳ2)ȳ + f̄y(x̄, ȳ),
(5.5)

where f̄x, f̄y are of order ≥ 5 in x̄ and ȳ. Comparing (5.5) for the unforced equation

and (2.4) in Sect. 1.3, we see that the twist number τ = β
α .

Using (x̄, ȳ, w̄) as new variables, equation (5.2) is transformed into

˙̄x = ax̄− ωȳ − α(x̄2 + ȳ2)x̄− β(x̄2 + ȳ2)ȳ + f̄x + B̄xw̄ + ρΦ̂xpT,ι(t),

˙̄y = ωx+ ay + β(x̄2 + ȳ2)x̄− α(x̄2 + ȳ2)ȳ + f̄y + B̄yw̄ + ρΦ̂ypT,ι(t),

˙̄w = Asw̄ + B̄w̌w̄ + ρΦ̂wpT,ι(t),

(5.6)

where f̄x, f̄y are as above, B̄x, B̄y and B̄w̌ are operator-valued functions satisfying
B̄x(0, 0, 0) = B̄y(0, 0, 0) = B̄w̌(0, 0, 0) = 0; and

Φ̂x = (1 + ∂xhx(x, y))Φx + ∂yhx(x, y)Φy,

Φ̂y = ∂xhy(x, y)Φx + (1 + ∂yhy(x, y))Φy,

Φ̂w = Φw − ∂xW (x, y)Φx − ∂yW (x, y)Φy.

(5.7)

Coordinate change #3: polar coordinates. Let x̄ = r cos θ, ȳ = r sin θ. In (r, θ, w̄)-
coordinates with θ ∈ R/(2πZ) and r > 0, equation (5.6) is transformed to

ṙ = (a− αr2)r + r5fr(r, θ) +Br(r, θ, w̄)w̄ + ρΦ̂r(r, θ, w̄)pT,ι(t),

θ̇ = ω + βr2 + r4fθ(r, θ) +
1

r
Bθ(r, θ, w̄)w̄ + ρ

1

r
Φ̂θ(r, θ, w̄)pT,ι(t),

˙̄w = Asw̄ +Bw̌(r, θ, w̄)w̄ + ρΦ̂w(r, θ, w̄)pT,ι(t),

(5.8)
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where Br, Bθ, Bw̌ are operator-valued functions of order at least one in r and w̄, fr
and fθ are smooth functions of r and θ, and

(5.9) Φ̂r = cos θΦ̂x + sin θΦ̂y, Φ̂θ = cos θΦ̂y − sin θΦ̂x.

5.2. Blow-ups

Coordinate change #4: blow-up by ∼ μ− 1
2 . It follows from (5.8) that for μ > 0,

a stable periodic solution of radius ≈
√

a(μ)
α ≈ constant·√μ emerges on the center

manifold w̄ = 0. To normalize the radius of this limit cycle, we introduce new
variables

(5.10) η =

√
α

a(μ)
r, and w =

√
α

a(μ)
w̄.

We now rewrite equation (5.8) in these new variables paying attention to the orders
of magnitudes of the various terms in relation to μ:

η̇ = a(μ)(1− η2)η +

(
a(μ)

α

)2

f̂r(η, θ) +O4(
√
μ)w

+ ρ

√
α

a(μ)
Φ̂r

(√
a(μ)

α
η, θ,

√
a(μ)

α
w

)
pT,ι(t),

θ̇ = ω +
β

α
a(μ)η2 +

(
a(μ)

α

)2

f̂θ(η, θ) +O4(
√
μ)w

+ ρ
1

η

√
α

a(μ)
Φ̂θ

(√
a(μ)

α
η, θ,

√
a(μ)

α
w

)
pT,ι(t),

ẇ = Asw +O4(
√
μ)w + ρ

√
α

a(μ)
Φ̂w

(√
a(μ)

α
η, θ,

√
a(μ)

α
w

)
pT,ι(t),

(5.11)

where

f̂r(η, θ) = η5fr(

√
a(μ)

α
η, θ), f̂θ(η, θ) = η4fθ(

√
a(μ)

α
η, θ),

and “O4(
√
μ)w” above means Bw where as an operator-valued function, B satisfies

‖B‖C4(V̂ ) < K
√
μ on a bounded domain V̂ of the form

V̂ := {(η, θ,w) : K−1
1 ≤ η ≤ K1, |w| ≤ K1}.

See Sect. 5.4 for a suitable choice of K1. We note that in order for a term in
equation (5.11) to be O4(

√
μ), all it takes is for it to have a factor

√
μ in front

after the rescaling (5.10) is performed on the previous equation (and for the rest to
have bounded C4 norm). Derivatives with respect to parameters including μ are
not relevant here.

5.3. Final Adjustments

We finish with 3 adjustments that involve only the 2-dimensional part.
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(i) After coordinate change #4, the Hopf limit cycle is close to η = 1. First we let
η̄ = η − 1. Equation (5.11) is transformed to

˙̄η = −a(μ)(η̄ + 1)(η̄ + 2)η̄ +

(
a(μ)

α

)2

f̂r(η̄ + 1, θ) +O4(
√
μ)w

+ ρ

√
α

a(μ)
Φ̂rpT,ι(t),

θ̇ = ω̂ +
β

α
a(μ)(η̄ + 2)η̄ +

(
a(μ)

α

)2

f̂θ(η̄ + 1, θ) +O4(
√
μ)w

+ ρ
1

η̄ + 1

√
α

a(μ)
Φ̂θpT,ι(t),

ẇ = Asw +O4(
√
μ)w + ρ

√
α

a(μ)
Φ̂wpT,ι(t),

(5.12)

where ω̂ = ω + β
αa(μ).

Lemma 5.2. Let η̄ = φ(θ) be the Hopf limit cycle. Then ‖φ‖C4 < Kμ.

Proof: Note that the Hopf limit cycle is on the center manifold w = 0, and φ(θ)
satisfies

− a(μ)(φ(θ) + 1)(φ(θ) + 2)φ(θ) +

(
a(μ)

α

)2

f̂r(φ(θ) + 1, θ)

= φ′(θ)

[
ω̂ +

β

α
a(μ)(φ(θ) + 2)φ(θ) +

(
a(μ)

α

)2

f̂θ(φ(θ) + 1, θ)

]
.

First, |φ′(θ)| < Kμ for all θ since the left side of the equality above is O(μ). Since
φ(θ) is periodic, there exists θ0 such that φ′(θ0) = 0. For this value of θ, we obtain
|φ(θ0)| < Kμ. Putting these facts together, we conclude that |φ(θ)| < Kμ for all
θ. Estimates on higher derivatives are obtained by differentiating both sides of the
equality above. �

Note that provisional assumption (1) in Sect. 4.3 follows from Lemma 5.2.

(ii) We set

(5.13) ξ = η̄ − φ(θ),

so that the Hopf limit cycle is given by ξ = 0. In the new variables (ξ, θ,w),
equation (5.12) is given by

ξ̇ = −a(μ)(2 + 3ξ + ξ2 +O4(μ))ξ +

(
a(μ)

α

)2 (
Δf̂r − φ′(θ)Δf̂θ

)
+O4(

√
μ)w

+ ρ

√
α

a(μ)
(Φ̃ξ(ξ, θ,w) +O4(μ))pT,ι(t),

θ̇ = ω̂ +
β

α
a(μ)(ξ + φ(θ) + 2)(ξ + φ(θ)) +

(
a(μ)

α

)2

f̂θ(ξ + φ(θ) + 1, θ) +O4(
√
μ)w

+ ρ
1

ξ + φ(θ) + 1

√
α

a(μ)
Φ̃θ(ξ, θ,w)pT,ι(t),

ẇ = Asw +O4(
√
μ)w + ρ

√
α

a(μ)
Φ̃w(ξ, θ,w)pT,ι(t),

(5.14)
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where

Δf̂r = f̂r(ξ + φ(θ) + 1, θ)− f̂r(φ(θ) + 1, θ),

Δf̂θ = f̂θ(ξ + φ(θ) + 1, θ)− f̂θ(φ(θ) + 1, θ) ,

and Φ̃ξ in these coordinates is given by

(5.15) Φ̃ξ(ξ, θ,w) = Φ̂r

(√
a

α
(ξ + 1 + φ(θ)), θ,

√
a

α
w

)
,

with Φ̃θ and Φ̃w defined similarly. Using Lemma 4.2 and reasoning as in Lemma

4.1, we obtain Δf̂r,Δf̂θ = O4(μ)ξ. Hence, we may write equation (5.14) as

ξ̇ = −a(μ)(2 + 3ξ + ξ2 +O4(μ))ξ +O4(
√
μ)w

+ ρ

√
α

a(μ)
(Φ̃ξ +O4(μ))pT,ι(t),

θ̇ = ω̂ + μ2g(θ) +
β

α
a(μ)(ξ + 2 +O4(μ))ξ +O4(

√
μ)w

+ ρ

(
1

ξ + 1
+O4(μ)

)√
α

a(μ)
Φ̃θpT,ι(t),

ẇ = Asw +O4(
√
μ)w + ρ

√
α

a(μ)
Φ̃wpT,ι(t)

(5.16)

where

(5.17) μ2g(θ) =

(
a(μ)

α

)2

f̂θ(φ(θ) + 1, θ) +
β

α
a(μ)(φ(θ) + 2)φ(θ).

(iii) Our final coordinate change is an O4(μ)-perturbation which makes the angular
velocity on the limit cycle ξ = 0 constant: Let

Θ∗ =
1

2π

∫ 2π

0

1

1 + ω̂−1μ2g(ψ)
dψ,

and let

(5.18) Θ =
1

Θ∗

∫ θ

0

1

1 + ω̂−1μ2g(ψ)
dψ.

In (ξ,Θ,w)-coordinates, the second equation in (5.16) becomes

(5.19) Θ̇ =
ω̂

Θ∗ +
β

α
a(μ)(ξ + 2 +O4(μ))ξ +O4(

√
μ)w +ΦΘ(ξ,Θ,w)pT,ι(t) .

Here we have rewritten Φ̃θ(ξ, θ,w) as ΦΘ(ξ,Θ,w). To obtain the corresponding

equations for ξ and w, we rewrite Φ̃ξ as Φξ, Φ̃w as Φw. The equations for ξ and w
are otherwise unchanged. See (5.22).

We finish by computing a useful form of Φξ,ΦΘ and Φw. Let Φ = (Φx,Φy,Φw)

be as in Sect. 3.1, and let c0 be such that tan c0 =
Φy(0)
Φx(0)

.

Lemma 5.3.

Φξ =
√
Φ2

x(0) + Φ2
y(0) cos(Θ− c0) +O4(

√
μ),

ΦΘ = −
√
Φ2

x(0) + Φ2
y(0) sin(Θ− c0) +O4(

√
μ),

Φw = Φw(0) +O4(
√
μ).

(5.20)



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

28 5. CANONICAL FORM OF EQUATIONS AROUND THE LIMIT CYCLE

Proof: By (5.9) and (5.15),

Φ̃ξ(ξ, θ,w) = cos θΦ̂x

(√
a(μ)

α
r cos θ,

√
a(μ)

α
r sin θ,

√
a(μ)

α
w̄

)

+ sin θΦ̂y

(√
a(μ)

α
r cos θ,

√
a(μ)

α
r sin θ,

√
a(μ)

α
w̄

)
where r = ξ + 1 + φ(θ). Since a(μ) ∼ √

μ, it follows that the expression above is
equal to

cos θΦ̂x(0) + sin θΦ̂y(0) +O4(
√
μ) .

Replacing Φ̃ξ, Φ̂x, Φ̂y and θ by Φξ,Φx,Φy and Θ respectively does not change this
expression as the differences are absorbed into the O4(

√
μ) term. The asserted

formula for Φξ follows from this in a straightforward way. The other two terms are
treated similarly. �

5.4. Summary of Coordinate Transformations and Relevant Domains

Let D = (− 99
100 ,∞) × S1 × Es be the product of the cylinder (− 99

100 ,∞) × S1

and Es with coordinates (ξ,Θ,w). We have described for each μ a μ-dependent
diffeomorphism between D and an open subset of E. All of the action of interest
take place in D; the more delicate parts of the dynamics revolve around the limit
cycle {0}×S1×{0}. The O4-bounds in the formulas for our coordinate changes and
transformed equations are valid on a bounded subset V̄ ⊂ D. An explicit choice of
V̄ is given below, but first we summarize the results from previous sections.

The coordinate changes in this section can be summarized as (5.18) together
with

x+ hx(x, y) =

√
a

α
(ξ − 1− φ(Θ) +O4(μ

2)) cos(Θ +O4(μ
2))

y + hy(x, y) =

√
a

α
(ξ − 1− φ(Θ) +O4(μ

2)) sin(Θ +O4(μ
2))

w −W (x, y) =

√
a

α
w,

(5.21)

where w = W (x, y) is the equation of the center manifold of the unforced equation
(coordinate change #1), hx and hy are used in putting the central flow into normal
form (change #2), and φ measures the deviation of the periodic solution from η = 1
(Lemma 4.1). The final form of the equation in (ξ,Θ,w) is

ξ̇ = −a(μ)(2 + 3ξ + ξ2 +O4(μ))ξ +O4(
√
μ)w

+ ρ

√
α

a(μ)
(Φξ +O4(μ))pT,ι(t),

Θ̇ =
ω̂

Θ∗ + τa(μ)(ξ + 2 +O4(μ))ξ +O4(
√
μ)w

+ ρ

(
1

ξ + 1
+O4(μ)

)√
α

a(μ)
ΦΘpT,ι(t),

ẇ = Asw +O4(
√
μ)w + ρ

√
α

a(μ)
ΦwpT,ι(t)

(5.22)
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where (Φξ,ΦΘ,Φw) can be thought of as given by Lemma 4.3 and τ = β
α is the

twist number.
We finish by specifying a valid choice of V̄ for purposes of establishing the

estimates in the next two sections. Let K0 > 0 and C0 > 1 be two constants
defined as follows:

(i) K0: By (H3), |P c
0Φ(0)| = 1. Let

K0 =
1√

Φ2
x(0) + Φ2

y(0)
|P sΦ(0)|

where Φx,Φy and P s are defined using coordinates in E. That is to say, K0 is the
ratio of the magnitudes of the forcing in the Es- and Ec-directions.

(ii) C0: We let C0 = (CC̃)2 where C ≥ 1 is the constant in (4.3) and C̃ ≥ 1 is the
constant in the generalized Gronwall’s inequality which says that if u : [0,∞) →
[0,∞) satisfies

u(t) ≤ M +K

∫ t

0

(t− s)−σu(s) ds,

then there is a constant C̃ > 1 depending only on σ such that

(5.23) u(t) ≤ MC̃eqt,

where q = (KΓ(1− σ))1/(1−σ) and Γ is the usual Γ-function. (See e.g. [H].)

Then define V̄ ⊂ D by

V̄ = {(ξ,Θ,w) : − 99

100
< ξ < 100; |w| < 100(K0 + 1)C0}.

The constantK1 at the end of Sect. 5.2 is chosen so that the set V̂ there corresponds
to a set in D containing V̄ .
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CHAPTER 6

Preliminary Estimates on Solutions of the
Unforced Equation

The purpose of this section is to derive some relevant information on the time-t
map of the unforced equation, which in the coordinates at the end of Section 4 may
be written as

ξ̇ = −a(μ)(2 + 3ξ + ξ2 +O4(μ))ξ +O4(
√
μ)w,

Θ̇ =
ω̂

Θ∗ + τa(μ)(ξ + 2 +O4(μ))ξ +O4(
√
μ)w,

ẇ = Asw +O4(
√
μ)w.

(6.1)

We let ut = (ξt,Θt,wt) denote the solution of (6.1) with initial condition u0 =
(ξ0,Θ0,w0). In order to apply the theory of rank one maps in [WY1], we need
to estimate the derivatives of ut with respect to u0 and t up to order three for all
large t.

6.1. C0 Estimates

Let

Vr1,r2 = {(ξ,Θ,w) ∈ D : |ξ| < r1, |w| < r2}.
Recall from Sect. 4.4 that the O4(

√
μ) estimates in (6.1) are valid on a fixed region

V̄ ⊂ D, and let C0, C, C̃ and K0 be as defined there.

Proposition 6.1. There exist K1 > 1, 0 < c < β0,
1 and μ0 > 0 such that for

all μ ∈ (0, μ0), the following estimates hold for all u0 ∈ V 3
5 ,C0(1+K0) and all t > 0:

(6.2) |wt| < C0e
−ct|w0|, |ξt| < e−

1
3a(μ)t(|ξ0|+K1

√
μ).

In particular, (i) ut ∈ V̄ for all t > 0, and (ii) ut converges to the limit cycle
{ξ = 0,w = 0} as t → ∞. It follows that if M0 is large enough, then ut ∈ V 1

100 ,
1

100

for all t > M0μ
−1.

Proof: For u0 ∈ V 3
5 ,C0(1+K0), let

t0 = sup{τ ∈ [0,∞) : ut ∈ V 31
50 ,C

2
0 (1+K0) for 0 ≤ t < τ}.

We first prove (6.2) for t < t0, then notice at the end that t0 = ∞.
From the third equation of (6.1), we have, for all t < t0,

(6.3) wt = eA
stw0 +

∫ t

0

eA
s(t−τ)O4(

√
μ)wτdτ,

1See the exponential dichotomy in Sect. 4.2 for β0.

31
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so that

|wt| ≤ Ce−β0t|w0|+ CK
√
μ

∫ t

0

1

(t− τ )σ
e−β0(t−τ)|wτ |dτ.

Thus, by the generalized Gronwall’s inequality, we have

(6.4) |wt| ≤ CC̃|w0|e−β0te(CK
√
μΓ(1−σ))1/(1−σ) t

where C̃ is a constant depending only on σ. Now we choose μ0 small enough so
that for μ < μ0,

−β0 + (CK
√
μΓ(1− σ))1/(1−σ) < −c < 0.

Since C0 = (CC̃)2 by definition, we have

(6.5) |wt| < C0e
−ct|w0| ≤ C2

0 (1 +K0) .

As for ξt, from the first equation of (6.1) we have, for t < t0,

ξt = e
∫ t
0
−a(μ)(2+3ξs+ξ2s+O(μ))ds

(
ξ0 +

∫ t

0

O(
√
μ)wse

∫ s
0
a(μ)(2+3ξτ+ξ2τ+O(μ))dτds

)
.

Observe that for |ξs| < 31
50 ,

2 + 3ξs + ξ2s +O(μ) >
1

3
.

Using (6.5) for |wt|, we have, for μ0 sufficiently small,

(6.6) |ξt| ≤ e−
1
3a(μ)t(|ξ0|+K1

√
μ) <

31

50
.

Since the boundary of V 31
50 ,C

2
0 (1+K0) is not reached in finite time, we conclude that

t0 = ∞. �

6.2. C3 Bounds

A. Derivatives with respect to ξ0,Θ0 and w0.

We first treat the C3-norms of the mapping u0 �→ ut for arbitrary but fixed
t > 0. The notation ∂k below represents a (specific) partial derivative of order k
with respect to the components of u0.

Proposition 6.2. There exist K2 > 1, and μ0 > 0 small enough depending on
K2 such that for each μ ∈ (0, μ0], the following estimates hold for u0 ∈ V 3

5 ,C0(1+K0)

for all t ≥ 0 and 1 ≤ k ≤ 3:

(6.7) |∂kξt| < K2e
− a(μ)t

2 , |∂kΘt| < K2, |∂kwt| < K2e
− ct

2 .

Since the convergence to the limit cycle {ξ = 0,w = 0} is exponential, and
bounds of the type in (6.7) are valid on the limit cycle, one may expect them to
hold also for orbits in a bounded region of the basin. Proposition 6.2 asserts more:
it asserts that the constant K2 is independent of μ for μ small. This is somewhat
more delicate, for a(μ), the rate of contraction in the ξ-direction, tends to zero as
μ → 0.

Proof of Proposition 6.2: Our plan of proof is as follows. We will show that
there is a constant K∗ > 1 with the property that for any R > 1, there exists
μ(R) > 0 such that for every μ ∈ (0, μ(R)) and t0 > 0, if

(6.8) |∂kξt| < Re−
a(μ)t

2 , |∂kΘt| < R, |∂kwt| < Re−
ct
2
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for all t ∈ (0, t0), then (6.8) holds with R replaced by K∗ on the same t-interval.
We stress that K∗ is independent of R. Having proved this, we define

t∗ = sup{τ : (6.8) with R = 2K∗ holds for all t ∈ (0, τ ) and μ ∈ (0, μ(2K∗))},
and claim that t∗ = ∞: If not, then (6.8) with R = 2K∗ would hold for t < t∗ while
one of the inequalities would fail at t = t∗. This is incompatible with the fact that
(6.8) with R = K∗ is in fact valid for t < t∗. The Proposition is therefore proved
with K2 = 2K∗ and μ0 = μ(2K∗).

Notation: The generic constant K is assumed to be independent of R (as well
as μ).

I. First derivatives. We pick an arbitrary R, assume (6.8) holds on the time interval
(0, t0), and for t ∈ (0, t0), compute bounds on the partial derivatives of wt, ξt and
Θt with respect to ξ0,Θ0 and w0 in terms of R, μ and K. The values of K∗ and
μ(R) will become clear from these bounds.

For ∂wt, we have, from (6.3),

∂wt = eA
st∂w0 +

∫ t

0

eA
s(t−τ) (O3(

√
μ)∂ξτ +O3(

√
μ)∂Θτ +O3(

√
μ)∂wτ )wτdτ

+

∫ t

0

eA
s(t−τ)O4(

√
μ)∂wτdτ.

We use (6.8) to bound ∂ξt, ∂Θt, ∂wt and Proposition 6.1 to bound w in the first
integral, obtaining an upper bound of K(1+R

√
μ)e−ct for the sum of the first two

terms. Applying the generalized Gronwall’s inequality to

|∂wt| ≤ K(1 +R
√
μ)e−ct +K

√
μ

∫ t

0

1

(t− τ )σ
e−c(t−τ)|∂wτ |dτ,

we obtain

(6.9) |∂wt| ≤ K(1 +R
√
μ)e−

c
2 t

provided that μ << c.

To estimate ∂ξt we write the first equation of (6.1) as

d

dt
ξ = −a(μ)Λξ +O4(

√
μ)w and Λ = 2 + 3ξ + ξ2 +O4(μ).

Then

(6.10) ξt = e−
∫ t
0
a(μ)Λds

(
ξ0 +

∫ t

0

O4(
√
μ)wse

∫ s
0
a(μ)Λdŝds

)
,

and

(6.11)
d

dt
∂ξ = −a(μ)Λ̂∂ξ + g1 + g2

where

Λ̂ = 3ξ + 2ξ2 + Λ

g1 = a(μ)ξ · (O3(μ)∂ξ +O3(μ)∂Θ)

g2 = O4(
√
μ)∂w + (O3(

√
μ)∂ξ +O3(

√
μ)∂Θ+O3(

√
μ)∂w)w.

From (6.11),

(6.12) ∂ξt = e−a(μ)
∫ t
0
Λ̂ds(∂ξ0 +G1 +G2)
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where

Gi =

∫ t

0

gie
a(μ)

∫ s
0
Λ̂dŝds, i = 1, 2.

We now estimate G1 and G2. Substituting in (6.10) for ξs and writing a(μ) = O(μ),
we have

G1 =∫ t

0

(O3(μ
2)∂Θs +O3(μ

2)∂ξs) ·
(
ξ0 +

∫ s

0

O4(
√
μ)wŝe

∫ ŝ
0 a(μ)Λdˆ̂sdŝ

)
· ea(μ)

∫ s
0 (Λ̂−Λ)dŝ ds.

Using our assumption on |∂Θs| and |∂ξs|, the first of the 3 factors in the integrand
is < KRμ2. For |ξt| and |wt| in the other two factors, we use Proposition 6.1. Then
the middle factor inside brackets is O(1), for the integral is < K

√
μ. The third

factor is also O(1), for Λ̂− Λ = 3ξ + 2ξ2, so

a(μ)

∫ t

0

|Λ̂− Λ|ds < K .

Thus

(6.13) |G1| < KRμ2t.

The estimates for G2 are easier since the rates of decrease for wt and ∂wt in time
are ≥ 1

2c >> μ and independent of μ. We have in fact

(6.14) |G2| < K
√
μR.

Putting (6.12), (6.13) and (6.14) together, we have

(6.15) |∂ξt| < e−a(μ)
∫ t
0
Λ̂ds(1 +K

√
μR+Kμ2Rt)

for all t ∈ (0, t0).

We now estimate

E := e−a(μ)
∫ t
0
Λ̂ds

for u0 ∈ U 3
5 ,C0(1+K0). First we note that |ξt| < 2

3 for all t > 0 from Proposition 6.1.

It follows that Λ̂ > −2. We consider separately the following two cases:

(i) For t < 10a−1(μ), E < e20 < e30e−a(μ)t.

(ii) For t > 10a−1(μ), we have E < e20e
∫ t
10a−1(μ)

−a(μ)Λ̂dt
. From Proposition 6.1,

|ξt| < 1
100 for t > 10a−1(μ). This implies Λ̂ > 1 for t > 10a−1(μ). Therefore we

have

E < Ke−a(μ)(t−10a−1(μ)) < Ke−a(μ)t.

From these estimates on E and (6.15), we obtain

(6.16) |∂ξt| < e−a(μ)
∫ t
0
Λ̂ds(1 +K

√
μR+Kμ2Rt) < KR

√
μ · e− 1

2a(μ)t.

We point out that we have used here the fact that μte−a(μ)t < Ke−
1
2a(μ)t for some

K independent of μ. Since this inequality is not valid without the copy of μ on the
left side, the assertion in (6.16) requires that the power of μ in our bound for G1

be at least 3
2 .

We proceed to the estimate of ∂Θt. From (5.19),

d

dt
∂Θ = 2τa(μ)(1 + ξ +O4(μ))∂ξ + g + g2
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where

g = τa(μ)ξ · O3(μ)∂Θ

and g2 is as in (6.11). It follows that

∂Θt =

∫ t

0

2τa(μ)(1 + ξs +O4(μ))∂ξsds+

∫ t

0

gds+

∫ t

0

g2ds.

The magnitude of the first term is < 3τa(μ)
∫ t

0
|∂ξs|ds. Using (6.16) for ∂ξs and

noticing that the factor of μ−1 from integrating ∂ξs is cancelled by a(μ), we see
that this term is < K. For the integral of g, we use R to bound |∂Θ|. Again

using a(μ)
∫ t

0
ξsds = O(1), we obtain |

∫
g| < KRμ. The third term is estimated as

before. Altogether, we get

(6.17) |∂Θt| < K(1 +R
√
μ) .

From (6.9), (6.16) and (6.17), we see that as far as first derivatives go, it suffices
to require μ(R) < 1

R , and to take K∗ = 2K where K is as in these estimates.

II. Higher derivatives. Let us start with ∂kwt. From the third equation of (6.1),

d

dt
∂kw = As∂kw +

∑
O(

√
μ)Pk

where the summation is over a finite collection of terms Pk each of which is a
monomial in ∂i1ξ, ∂i2Θ and ∂i3w where i1, i2 and i3 are all ≤ k. Observe that for
each term in the summation, Pk has either ∂i3w, 1 ≤ i3 ≤ k, as a factor or it has
a factor of w. That is, we can rewrite the equation for ∂kw as

(6.18)
d

dt
∂kw = As∂kw +

∑
O(

√
μ)Pkw +

∑
O(

√
μ)Pk−i3∂

i3w

where 1 ≤ i3 ≤ k. From (6.18), for k = 2, 3,
(6.19)

∂kwt =
∑∫ t

0

eA
s(t−τ)O(

√
μ)Pkwτdτ +

∑ ∫ t

0

eA
s(t−τ)O(

√
μ)Pk−i3∂

i3wτdτ.

Using (6.8) for t ∈ (0, t0), the terms |O(
√
μ)Pk| and |O(

√
μ)Pk−i3 | above are <

O(
√
μ)Rk, and are easily made independent of R by shrinking μ0. We therefore

have

|∂kwt| <
∑ ∫ t

0

e−c(t−τ)O(
√
μ)Pk|wτ |dτ +

∑ ∫ t

0

e−c(t−τ)O(
√
μ)Pk−i3 |∂i3wτ |dτ.

(6.20)

From the generalized Gronwall’s inequality, we again have

|∂kwt| < Ke−
c
2 t

provided μ is small enough.

As before, estimates for ∂kξt are trickier because the slow decay rate a(μ) leads
to a factor of μ−1 when integrated. Let us start with ∂2ξt. From (6.11) we have

(6.21)
d

dt
∂2ξ = −a(μ)Λ̂∂2ξ − a(μ)∂Λ̂∂ξ + ∂g1 + ∂g2,

from which we obtain

(6.22) ∂2ξt = e−
∫ t
0
a(μ)Λ̂ds((I) + (II) + (III))
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where

(I) = −
∫ t

0

a(μ)∂Λ̂∂ξse
∫ s
0
a(μ)Λ̂dŝds

(II) =

∫ t

0

∂g1e
∫ s
0
a(μ)Λ̂dŝds

(III) =

∫ t

0

∂g2e
∫ s
0
a(μ)Λ̂dŝds.

(6.23)

We focus on the involvement of R in (I)-(III). (I) involves only first derivatives, so
we may use previous estimates, i.e. there is no need to involve R. In (II) and (III),
however, there are terms in ∂2Θ and ∂2wt. For these terms we first use (6.8), then

observe that there is always a factor of μ
1
2 that cancels the effect of R from (6.8).

(III) is easier because every term in ∂g2 contains either a factor w or ∂w, both
of which decay with a rate bounded from below by a constant c independent of
μ. This ensures that the factor

√
μ, which appears in all terms of g2, compensates

for the effect R from (6.8). The estimate for (II) is trickier though the problem is
by now familiar: the integration over ξ or ∂ξ (with decay rate ∼ μ) contributes a
factor μ−1; this is taken care of by the μ2 that appears in every term in g1.

In general, we write the variational equations for ∂kξ as

d

dt
∂kξ = −a(μ)Λ̂∂kξ +

∑
a(μ)P̂k−i1∂

i1ξ

+
∑

O(μ2)Pk−i2∂
i2ξ +

∑
O(

√
μ)Pk−i3∂

i3w
(6.24)

where 0 ≤ i1, i2, i3 ≤ k − 1. Here P̂k−i1 are monomials of ∂iξ, 1 ≤ i ≤ k − 1,
for which the sums of the degrees of the derivatives are k − i1; and Pk−i2 , Pk−i3

are monomials of ∂iξt, ∂
iΘt and ∂iwt, for which the sums of the degrees of the

derivatives are k − i2 and k − i3 respectively. Note that the terms in the second
sum may involve ∂iΘ, for which the factor in front is, by direct computation, of
order μ2 (instead of μ). The involvement of ∂iΘ in the terms in the third sum is of
less concern because of the appearance of ∂i3wt. From (6.24), we have for k = 2, 3,

∂kξt = e−
∫ t
0 a(μ)Λ̂ds

(∑ ∫ t

0

a(μ)P̂k−i1∂
i1ξse

∫ s
0 a(μ)Λ̂dŝds

+
∑ ∫ t

0

O(μ2)Pk−i2∂
i2ξse

∫ s
0 a(μ)Λ̂dŝds

+
∑ ∫ t

0

O(
√
μ)Pk−i3∂

i3wse
∫ s
0 a(μ)Λ̂dŝds

)
.

(6.25)

We will prove inductively that for 1 ≤ i ≤ 3,

(6.26) ∂iξt = e−
∫

t
0
a(μ)Λ̂ds(K +

i∑
j=1

O(μj+ 1
4 )tj).

First, observe that under the assumption that (6.26) holds for 1 ≤ i ≤ k − 1 and

our previous computation for E := e−
∫ t
0
a(μ)Λ̂ds, we have

(6.27) |∂iξt| < Ke−
a(μ)

2 t

for 1 ≤ i ≤ k−1. Second, observe that the following hold for i = k: The first sum in
(6.25) is independent of R and it is bounded by a constant K (using (6.26) for ∂i1ξ
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and (6.27) for P̂k−i1). The third sum, thanks to the occurrence of ∂i3w, is easily

bounded by O(
√
μ)R3 < Kμ

1
4 < 1. These two sums contribute to the constant

in (6.26). Using (6.26) for ∂i2ξt, the second sum is clearly in form of (6.26): ∂iΘt

contributes a factor < R3 and this is absorbed by one copy of μ
3
4 . (Here we need

μ2 instead of μ in front). Note that we also need to distinguish the case of i1, i2 = 0

from i1, i2 
= 0, treating the differences between Λ̂ and Λ for the former. This has
been considered in our earlier estimates of the first derivatives.

To compute ∂kΘt we differentiate (5.19), obtaining

∂kΘt = ∂kΘ0 +

∫ t

0

Pkds

where Pk is a sum of finitely many terms from differentiating (i)O(μ2)ξ, (ii) a(μ)(ξ+
2)ξ, and (iii) O(

√
μ)w. Terms from (i) give quantities of O(μ)R3, and those from

(iii) are bounded by O(
√
μ)R3. These bounds are easily made independent of R

by shrinking μ0. For contributions from (ii), there is no dependency on R at all
because we can now use (6.27) for ∂iξ. Altogether this gives

(6.28) |∂kΘt| < K

where K is independent of R. �
B. Derivatives with respect to ξ0,Θ0,w0 and t. Derivatives with respect to
t may not be defined at t = 0.

Proposition 6.3. There existK3, μ0, and n0 > 0 such that for each μ ∈ (0, μ0]
and t ≥ n0, the following estimates hold for all u0 ∈ V 11

20 ,C0(1+K0):

(6.29) |∂kξt| < K3e
− a(μ)t

2 , |∂kΘt| < K3, |∂kwt| < K3e
− ct

2 .

Here ∂k, k = 1, 2, 3, is any kth partial derivative in ξ0,Θ0,w0 or t.

Proof: Instead of reproving Proposition 6.2 to include derivatives in t, we combine
the results of Proposition 6.2 with bounds on derivatives in t for a bounded range
of t. As before, let Gt be the time-t map of the unforced equation (6.1). Note
that Gt is 2π-periodic in Θ0. By Corollary 3.4.6 of [H] (pp 66), the mapping
(ξ0,Θ0,w0, t) �→ Gt(ξ0,Θ0,w0) is C

3 for all t > 0. The proof of Theorem 3.4.4 in
[H] implies that all partial derivatives of order up to 3 are uniformly bounded for
|ξ0| ≤ r1, Θ0 ∈ R, |w0| ≤ r2, 0 < t1 ≤ t ≤ t2, and μ ∈ (0, μ0), where r1, r2, t1, and
t2 are positive constants.

Let μ0 be as in Proposition 6.2 and with 11
20 +K1

√
μ0 < 3/5 where K1 is as in

Proposition 6.1. By Proposition 6.1, there exists n0 large enough so that for each
fixed μ ∈ (0, μ0], Gn0

maps V 11
20 ,C0(1+K0) into V 3

5 ,C0(1+K0). Let arbitrary t0 ≥ n0

be fixed. Then writing s = t− (t0 − n0), we have

∂tξt |t=t0 = ∂s(ξt0−n0
◦Gs) |s=n0

= {(∂ξξt0−n0
◦Gs)∂sξs + (∂Θξt0−n0

◦Gs)∂sΘs

+ (∂wξt0−n0
◦Gs)∂sws} |s=n0

.

Thus, using Proposition 6.1 and Proposition 6.2, we obtain

|∂tξt |t=t0 | ≤ K2e
− a(μ)

2 t0e
a(μ)

2 n0 max{|∂sξs| |s=n0
, |∂sΘs| |s=n0

, |∂sws| |s=n0
}.
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Note that max{|∂sξs| |s=n0
, |∂sΘs| |s=n0

, |∂sws| |s=n0
} is uniformly bounded for

u0 ∈ V 11
20 ,C0(1+K0). Other derivatives can be treated the same way. Moreover, in

∂kξt |t=t0 , since each term involves a factor of the form ∂jξt0−n0
, we also have the

asserted exponential decay with respect to t0. Derivatives of Θ and w are treated
similarly. �

6.3. Approximate Form of Θt for Large t

For t >> 1, we estimate Θt as follows: From equation (6.1),

(6.30) Θt = Θ0 +
ω̂

Θ∗ t+ τa(μ)

∫ t

0

(ξs + 2 +O4(μ))ξsds+

∫ t

0

O4(
√
μ)wds.

We introduce a new function

(6.31) Θt,∞ = Θ0 +
ω̂

Θ∗ t+ τa(μ)

∫ ∞

0

(ξs + 2 +O4(μ))ξsds+

∫ ∞

0

O4(
√
μ)wds.

In view of Proposition 6.1, these improper integrals make sense for (ξ0,Θ0,w0) ∈
V 11

20 ,C0(K+1).

Proposition 6.4. There exists μ0 > 0 such that for all μ ∈ (0, μ0) and t > 0,

Θt,∞ = Θ0 +
ω̂

Θ∗ t+ τ ln(ξ0 + 1) +O3(
√
μ),

where O3(
√
μ) is a function of (ξ0,Θ0,w0).

Proof: The first equation in (6.1) implies

dξ

ξ + 1
= −a(μ)(ξ + 2)ξds+O4(μ

2)ξds+O4(
√
μ)

w

ξ + 1
ds,

from which we deduce∫ ∞

0

a(μ)(ξ + 2)ξds = ln(ξ0 + 1) +

∫ ∞

0

O4(μ
2)ξds+

∫ ∞

0

O4(
√
μ)

w

ξ + 1
ds .

We have, therefore,

Θt,∞ = Θ0 +
ω̂

Θ∗ t+ τ

(
ln(ξ0 + 1) +

∫ ∞

0

O4(
√
μ)

w

ξ + 1
ds

)

+

∫ ∞

0

O4(μ
2)ξds+

∫ ∞

0

O4(
√
μ)wds.

(6.32)

The assertion in the proposition follows from (6.32) together with∫ ∞

0

O4(μ
2)ξds = O3(μ),

∫ ∞

0

O4(
√
μ)wds = O3(

√
μ),∫ ∞

0

O4(
√
μ)

w

1 + ξ
ds = O3(

√
μ),

which follow from Propositions 6.1-6.3. �
We also have the following estimate:

Proposition 6.5. For t ∈ [M0μ
−1,∞), expression Θt,∞ −Θt, considered as a

function of ξ0,Θ0,w0 on V 11
20 ,C0(K0+1), satisfies

‖Θt,∞ −Θt‖C3 < Kμe−
a(μ)

4 t.
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Proof: This result essentially follows from Propositions 6.1–5.4: derivative es-
timates of Θt,∞ − Θt are relatively straightforward exercises and are left to the
reader. �
Remark. Propositions 6.4 and 6.5 have the following geometric interpretation:
Since all eigenvalues of the equation linearized along the limit cycle Ω = {ξ =
0,w = 0} have strictly negative real parts, and V 11

20 ,C0(1+K0) is contained in its

basin of attraction, by standard theory [CLL] there is a codimension 1 stable
foliation Ws on V 11

20 ,C0(1+K0) whose leaves are defined by

Ws
ū0

= {u0 : |ut − ūt| → 0 as t → ∞}, ū0 ∈ Ω .

We claim that the approximate form of Ws
ū0

can be deduced from Propositions 6.4

and 6.5. Let ū0 = (0, Θ̄0, 0) ∈ Ω. By the quasi-invariance of Ws, a point u0 =
(ξ0,Θ0,w0) is in Ws

ū0
if and only if Θn(2πΘ∗ω̂−1) → Θ̄ as n → ∞, 2πΘ∗ω̂−1 being

the period of the limit cycle. By Proposition 6.5, Θn(2πΘ∗ω̂−1) ≈ Θn(2πΘ∗ω̂−1),∞
for large n, and by Proposition 6.4, Θn(2πΘ∗ω̂−1),∞ ≈ Θ0 + τ ln(ξ0 + 1) for small μ.

Thus as μ → 0, Ws
ū0

tends to the hypersurface {(ξ,Θ,w) : Θ + τ ln(ξ + 1) = Θ̄}.
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CHAPTER 7

Time-T Map of Forced Equation
and Derived 2-D System

In Sects. 6.1 and 6.2, we derive an approximate form of the time-T map FT of
the forced system. By restricting FT to a suitable region of a center manifold, we
obtain a 2-dimensional self-map of an annulus. As explained in Sect. 3.3, these 2-D
systems hold the key to all of our results. Proofs of Theorems 1 and 3 are given
in Sect. 6.3. The last section contains some technical preparation needed for the
proof of Theorem 2.

7.1. Approximate Form of Kick Map

First, we complete the definition of the kick ratio γ := ρ(d
√
μ)−1 introduced in

Sect. 2.1 by specifying the number d. Returning to Hσ, let P c
μ and P s

μ denote the

projections of Hσ onto Ec
μ and Es

μ respectively, and let EΦ denote the codimension

1 subspace spanned by (Ec
0)

⊥ and P c
0 (Φ(0)). Let p±(μ) be the points of intersection

of EΦ with the Hopf limit cycle. Then

d := lim
μ→0

|p±(μ)|√
μ

.

It is easy to verify that d is well defined and 
= 0 under Conditions (H1) and (H2).
The next lemma gives an approximation of γ in terms of familiar quantities.

Lemma 7.1. Let γ̃ := ρ
√

α
a

√
Φ2

x(0) + Φ2
y(0). Then γ̃ = γ · (1 +O(

√
μ)).

Proof: Let v1 and v2 be as in Sect. 3.1, and v⊥1 and v⊥2 be unit vectors in Ec

orthogonal to v1 and v2. Let x±, y± be the (x, y)-coordinates of p± in E. By
definition we have

x± =
p± · v⊥1
v2 · v⊥1

|p±|
(
P c
0 (Φ(0)) · v⊥1
v2 · v⊥1

+O(
√
μ)

)
= |p±|(Φx(0) +O(

√
μ)).

Similarly, y± = |p±|(Φy(0) +O(
√
μ)). Thus

(7.1) |(x±, y±)| = |p±|(
√
Φ2

x(0) + Φ2
y(0) +O(

√
μ)).

On the other hand, from (5.21) and equation (6.1) we have,

(7.2) |(x±, y±)| =
√

a

α
(1 +O(

√
μ)).

The desired result follows from the last two lines combined with the definition of
d. �

Provisional assumption (2) in Sect. 4.3 follows from Lemma 7.1 and equation
(4.1).

41
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We return now to the coordinates at the end of Section 4 to study the effect of
the forcing. For 0 < t ≤ ι, equation (5.22) can be written as

ξ̇ = −a(μ)(2 + 3ξ + ξ2 +O4(μ))ξ +O4(
√
μ)w +

1

ι
ρ

√
α

a(μ)
(Φξ +O4(μ)),

Θ̇ =
ω̂

Θ∗ + τa(μ)(ξ + 2 +O4(μ))ξ +O4(
√
μ)w +

1

ι
ρ

(
1

ξ + 1
+O4(μ)

) √
α

a(μ)
ΦΘ,

ẇ = Asw +O4(
√
μ)w +

1

ι
ρ

√
α

a(μ)
Φw.

(7.3)

Let us denote the solution of this equation with initial condition (ξ0,Θ0,w0) as

(ξ̂t, Θ̂t, ŵt). Recall that our O4-bounds are valid on a domain V̄ (see Sect. 4.4).

For u0 = (ξ0,Θ0,w0) ∈ V̄ , we let κ(u0) = (ξ̂ι, Θ̂ι, ŵι) provided the solution starting
from u0 remains in V̄ up to time ι; κ is called the “kick map”. Let Vr1,r2 = {|ξ| <
r1, |w| < r2} as in Sect. 5.1.

Proposition 7.2. Assume that μ and ι are sufficiently small. Then

κ(V 1
100 ,

1
100

) ⊂ V 11
20 ,C0(1+K0),

and for u0 ∈ V 1
100 ,

1
100

, we have

ξ̂ι =
√
(1 + ξ0)2 + γ̃(γ̃ + 2(1 + ξ0) cos(Θ0 − c0))− 1 +O4(ι+ μ

1
2 ) ,

tan Θ̂ι =
(1 + ξ0) sinΘ0 + γ̃ sin c0
(1 + ξ0) cosΘ0 + γ̃ cos c0

+O4(ι+ μ
1
2 ) ,

(7.4)

where tan c0 =
Φy(0)
Φx(0)

, and

|ŵι| ≤ C0(|w0|+ ρ

√
α

a
(|P s

0Φ(0)|+O4(
√
μ))) .

Proof: For ξ̂ι and Θ̂ι, by Lemmas 5.3 and 7.1, we may write equation (7.3) as

ξ̇ = O4(1) + γ̃ · 1
ι
(cos(Θ− c0) +O4(

√
μ))

Θ̇ = O4(1)− γ̃ · 1
ι
(sin(Θ− c0) +O4(

√
μ))

where γ̃ is as in Lemma 7.1. Observe that because we are integrating over a time
interval of length ι, the contribution from the O4(1) terms are O4(ι). In addition,
the contributions from the O4(

√
μ) terms in the forcing part of the equation are of

the form O4(
√
μ). Hence for the desired estimates, it suffices for us to consider the

equations without these perturbation terms and to add an error term of the form
O4(ι+

√
μ) to the result afterwards. To integrate these two equations, it is easier

to go back to (x, y)-coordinates, in which the equations are

(7.5) ẋ =
1

ι
ρΦx(0), ẏ =

1

ι
ρΦy(0)

and their solutions are x(ι) = x0 + ρΦx(0) and y(ι) = y0 + ρΦy(0). It remains to
go back to (ξ,Θ)-coordinates.

Applying the variation of constants formula to the equation for w, we obtain

(7.6) ŵι = eA
sιw0 +

∫ ι

0

eA
s(ι−τ)

(
O4(

√
μ)w + ρ

√
α

a
· 1
ι
(P s

0Φ(0) +O4(
√
μ))

)
dτ,

from which the bound in the proposition follows via Gronwall’s inequality.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

7.2. THE MAP FT AND A DERIVED 2-D SYSTEM 43

To prove κ(V 1
100 ,

1
100

) ⊂ V 11
20 ,C0(1+K0), we substitute |w0| < 1

100 and the formula

for γ̂ into this bound, getting

|ŵι| < C0

( 1

100
+ γ̂

1√
Φ2

x(0) + Φ2
y(0)

|P s
0 (Φ(0))|+O4(

√
μ)

)

< C0

( 2

100
+

1

2
K0

)
< C0(1 +K0).

The Assumption (H4) is used in the second inequality. As for the ξ-direction, one

verifies easily from (7.4) that for ι,
√
μ << 1 and |ξ0| < 1

100 , we have |ξ̂ι| < 11
20 . �

7.2. The Map FT and a Derived 2-D System

Let us continue to use FT to denote the time-T map of the forced equation
(in spite of the many coordinate changes in between). Then FT = G ◦ κ where
κ is the kick map in Sect. 6.1, and G = GT−ι where Gt is the time-t map of
the unforced system. Let V = V 1

100 ,
1

100
. We have shown that FT (V ) ⊂ V for

T > M0μ
−1: by Proposition 7.2, κ(V ) ⊂ V 11

20 ,C0(1+K0), and by Proposition 6.1,

G(V 11
20 ,C0(1+K0)) ⊂ V .

We now combine the results in Section 5 and Sect. 6.1 to derive a more
explicit expression for the map FT . Writing its component functions as FT =
((FT )ξ, (FT )Θ, (FT )w), we have, first, that FT contracts in the ξ and w directions,
namely

(FT )ξ(ξ,Θ,w) = e−
a(μ)

4 T ·Hξ(ξ,Θ,w;T ) ,

(FT )w(ξ,Θ,w) = e−
c
4T ·Hw(ξ,Θ,w;T ) .

As functions of ((ξ,Θ,w), T ) ∈ V × [M0μ
−1,∞), Hξ and Hw are (uniformly)

bounded in C3; the precise form of these two mappings is unimportant.

The component (FT )Θ is more interesting: Let (ξ̂ι, Θ̂ι, ŵι) = κ(ξ,Θ,w). Then
by Propositions 6.4 and 6.5, we may write

(FT )Θ(ξ,Θ,w) = ΘT−ι,∞(ξ̂ι, Θ̂ι, ŵι) + e−
a(μ)

4 T · ĤΘ(ξ̂ι, Θ̂ι, ŵι;T )

where

(7.7) Θt,∞(ξ̂ι, Θ̂ι, ŵι) = Θ̂ι +
ω̂

Θ∗ t+ τ (ln(1 + ξ̂ι) +O3(
√
μ)) ,

the O3(
√
μ) term here being a function of (ξ̂, Θ̂, ŵ), and ĤΘ is uniformly bounded

in C3. Substituting in the formulas for (ξ̂ι, Θ̂ι, ŵι) from Proposition 7.2, we obtain
(7.8)

(FT )Θ(ξ,Θ,w) = φ(ξ,Θ,w)+
ω̂

Θ∗ (T − ι) + τ lnψ(ξ,Θ,w)+ e−
a(μ)

4 THΘ(Θ, ξ,w;T )

where HΘ has bounded C3 norm with respect to the four variables ξ,Θ,w and T ,
and the functions φ and ψ are defined by

(7.9) tanφ =
(1 + ξ) sinΘ + γ̃ sin c0
(1 + ξ) cosΘ + γ̃ cos c0

+O4(ι+ μ
1
2 )

and

(7.10) ψ =
√
(1 + ξ)2 + γ̃(γ̃ + 2(1 + ξ) cos(Θ− c0)) +O4(ι+ μ

1
2 ).
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Here γ̃ = γ(1 + O(
√
μ)) (Lemma 7.1). We remark that both φ and ψ depend on

the variable w through the O4(ι +
√
μ) terms on the right-hand side of (7.9) and

(7.10).

We now introduce the 2-dimensional systems FT : A → A equivalent to the
restriction of FT to a region of a center manifold. Let A = {(Θ, ξ) : |ξ| < 1

100}, and
let Wc

T be a family of center manifolds for FT (such as those given by Proposition
3.1)1 defined on A, i.e. Wc

T = graph(WT ) for some WT : A → Es. We let
�cT : A → A × Es be the lift from A to Wc

T , i.e. �cT (Θ, ξ) = (ξ,Θ,WT (Θ, ξ)), and
let πc : A×Es → A be the projection map. Then the family of interest FT is given
by

FT = πc ◦ FT ◦ �cT .

Notice that we have written Θ as the leading coordinate in A; this is to reflect the
fact that from this point on, Θ will play a more important role than ξ.

To get a sense of the geometric properties of FT , let Wc be given by Proposition
3.1 for the moment. Since ‖WT ‖C1 << 1, it follows that

FT ≈ ((FT )Θ, (FT )ξ) |V ∩{w=0}

in the C1 metric. In particular, when T is sufficiently large relative to a(μ)−1, FT is
strongly contractive in the ξ-direction. When this contraction is sufficiently strong,
and ι and μ are sufficiently small, FT is approximated by a 1-dimensional map of
the form

(7.11) Θ �→ tan−1

(
sinΘ + γ̃ sin c0
cosΘ + γ̃ cos c0

)
+Ω0 + τ ln

√
1 + γ̃(γ̃ + 2 cos(Θ− c0))

where Ω0, c0, γ̃ and τ are constants. Notice that when τ = 0, the mapping in (7.11)
is a circle diffeomorphism. In particular, it remains injective when |τ |γ̃ is small,
and loses its injectivity (developing two critical points) as |τ |γ̃ is increased. Larger
values of |τ |γ̃ lead to more expansion in the circle map. We point out that this is
consistent with the assumptions on τ in the hypotheses of Theorems 1, 2 and 3; see
Sect. 2.1.

7.3. Proofs of Theorems 3.2 and 3.5

The C1 information on FT from the last section is sufficient for proving The-
orems 1 and 3. First, we have two estimates that are results of straightforward
computations:

Lemma 7.3. For (Θ, ξ) ∈ A, under the assumption that γ < 1
2 , we have

(i) 1
2 <

∣∣ ∂
∂Θφ(ξ,Θ,WT (Θ, ξ))

∣∣ < 2.

(ii) ∂
∂Θ lnψ(ξ,Θ,WT (Θ, ξ)) = −γ̃(1 + ξ) sin(Θ− c0)ψ

−2 +O(ι+
√
μ).

Proof of Theorem 3.2: Let A1 = {(Θ, ξ) ∈ A : |Θ − ( 12π − c0)| < π
4 } and

A2 = {(Θ, ξ) ∈ A : |Θ− ( 32π−c0)| < π
4 }. Assuming γ < 1

2 and |τ | > 20γ−1, Lemma
7.3 says that for (Θ, ξ) ∈ (A1 ∪ A2),∣∣∣∣ ∂

∂Θ
(φ+ τ lnψ)(Θ, ξ,WT (Θ, ξ))

∣∣∣∣ > 5.

1Center manifolds are, in general, not unique.
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Consequently, FT wraps each of the rectangles A1 and A2 all the way around A in

the Θ-direction. Assuming a(μ)
4 T is large enough so that the contraction in the ξ-

direction is sufficiently strong, a standard construction [Mo, Sm] gives an invariant
set conjugate to the full 2-shift, i.e. a horseshoe. This in turn implies FT has a
topological horseshoe in the Hopf attractor Λ. �

Proof of Theorem 3.5: With |τ | < (100γ)−1, the term τ lnψ is dominated by
φ. By Lemma 7.3(i), | ∂

∂Θφ| > 1
2 . If contraction in the ξ-direction is sufficiently

strong, then by standard textbook arguments [HPS], FT has a center manifold
which is an invariant circle C1-near {ξ = 0} and a transversal stable foliation with
1-dimensional leaves defined on a neighborhood of the invariant circle. By iterating
forward, it follows that every point in A lies on one such stable leaf. We denote
the �cT -image of this invariant circle by W̃ c, and the �cT -image of the 1-dimensional

stable foliation by W̃ s. Then Λ = W̃ c is the Hopf attractor for FT . To complete
the proof of Theorem 3, it remains to produce for every u0 ∈ U , a point v0 ∈ Λ such
that |Fn

T (u0)−Fn
T (v0)| → 0 as n → ∞. By Proposition 3.4, there exist n ∈ Z+ and

û0 ∈ V ∩Wc such that Fn
T (u0) ∈ Wss(û0). Then v0 ∈ Λ ∩ W̃ s(û0) has the desired

properties. �

7.4. Further Analytic Preparation for Theorem 2

There are two remaining estimates needed for the proof of Theorem 2 that we
wish to dispose of before moving to the next set of ideas:

Proposition 7.4. There exists C1 > 1 independent of T (but possibly depend-
ing on μ) such that for all z, z′ ∈ A,

| det(DFT (z))|
| det(DFT (z′))|

< C1 .

Proof: We will work with FT |Wc∩V instead FT , which clearly suffices. The crux
of the idea lies in the fact that all orbits of the unforced flow Gt are asymptotic to
the limit cycle Ω = {ξ = 0,w = 0}. We divide the proof into two parts:

Part 1. Let Gc
t = Gt|W c be the 2-dimensional flow on {w = 0}. We claim that for

all u0, u
′
0 ∈ W c ∩ V and t > 0,

(7.12)
det(DGc

t(u0))

det(DGc
t(u

′
0))

< C ′

for some C ′ depending possibly on μ. To see this, observe first that (7.12) holds
for u0, u

′
0 ∈ Ω. This is because u′

0 = Gt0(u0) for some t0 < p, the period of Ω, so

DGc
t(u0) = (DGc

t0)
−1(Gc

t(u
′
0)) ·DGc

t(u
′
0) ·DGc

t0(u0),

and det(DGc
s), |s| < p, are bounded above and below. Next we know from the last

paragraph of Sect. 5.3 that (i) every point v0 ∈ W c ∩ V lies in a 1-dimensional
stable curve W s

u0
for some u0 ∈ Ω, (ii) |Gt(u0)−Gt(v0)| → 0 exponentially fast, and

(iii) this convergence is uniform in v0. We therefore have (7.12) for the pair u0 and
v0, with the constant depending possibly on μ, the convergence rate. Finally, to
prove (7.12) for any v0, v

′
0 ∈ W c ∩V , we first compare v0 to u0 ∈ Ω with v0 ∈ W s

u0
,

then v′0 to u′
0 ∈ Ω with v′0 ∈ W s

u′
0
, and finally u0 and u′

0.
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Part 2. We view FT via the following sequence of transformations: Starting from
u0, we first apply the kick map. Then slide along a Wss-leaf to obtain v0 ∈
W c ∩ Wss(κ(u0)). Next we apply GT−ι to v0, and finally slide along Wss at
GT−ι(v0) back to Wc to obtain FT (u0). The GT−ι part is treated in Part 1. It
remains to show that each of the other transformations changes infinitesimal area
(on the relevant surfaces) by factors that are bounded above and below. From
Sect. 6.1, we see that κ restricted to Wc ∩ V has the desired property, and it maps
Wc ∩ V to a surface that is a graph of a function from A to Es with bounded
slope. Next, we apply Proposition 3.3(b) to conclude that since the holonomy map
between κ(Wc∩V ) and W c obtained by sliding along Wss-leaves is bi-Lipschitz, it
transforms area in a bounded way. The same reasoning applies to the last sliding
map. �

Unlike Theorems 1 and 3, the proof of Theorem 2 requires C3 estimates for the
maps FT . We have obtained the needed estimates for FT but not yet for �cT , or
equivalently, WT .

Proposition 7.5. There is a family of center manifolds Wc
T for FT with the

properties that
(a) Wc

T = graph(WT (Θ, ξ)) for some WT : A → Es;
(b) as a function on A× (M0μ

−1,∞),

‖WT ‖C3 < Ke−
c
3T

where c is as in Proposition 6.1.

Proposition 7.5 is proved in Appendix B. Notice that the center manifold of
Proposition 7.5 is not necessarily part of the center manifold Wc in Proposition
4.1, as center manifolds are not necessarily unique. The family FT depends on the
choice of Wc, and we will assume from here on that they have the smoothness in
Proposition 7.5. The results in Proposition 4.5 carry over easily to these new center
manifolds since two different center manifolds are connected by Wss-leaves and the
Lebesgue measure classes on them are preserved by the holonomy map defined by
sliding along Wss-leaves (Proposition 3.3(b)).
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CHAPTER 8

Strange Attractors with SRB Measures

This section is devoted to the proof of Theorem 2. Via the use of invariant
manifolds, the problem has been reduced to considering the 2-dimensional family
FT : A → A introduced in Sect. 6.2. Results for this family are proved, in turn, by
appealing to the general theory of rank one maps developed in [WY1] and [WY4].
In these two papers, conditions guaranteeing the existence of strange attractors with
SRB measures and other dynamical properties are identified. These conditions are
reviewed in Sect. 7.1 and verified for the family FT in Sect. 7.2. The logic of the
entire proof is recapitulated at the end of Sect. 7.2.

8.1. Review of Results from [WY1] and [WY4]

The results below are valid in n dimensions for any finite n ≥ 2. We review
only the 2-dimensional version since it is all that is needed for present purposes.
Notation in this section is independent of the rest of this paper, although (Θ, ξ)
will correspond exactly to the variables in A.

The setting is as follows. Let M = S1 × [−1, 1], and let Fa,b : M → M be
a family of maps with parameters a, b. Here a ∈ [a0, a1] ⊂ R, and b ∈ B0 where
B0 ⊂ R \ {0} is an arbitrary subset with 0 as an accumulation point. Points in M
are denoted by (Θ, ξ) with Θ ∈ S1 and ξ ∈ [−1, 1]. A number of conditions are
imposed on this family.

(C0) Regularity conditions
(i) For each b ∈ B0, the function (Θ, ξ, a) �→ Fa,b(Θ, ξ) is C3;
(ii) for each a ∈ [a0, a1] and b ∈ B0, Fa,b is an embedding of M into

itself;
(iii) there exists C > 0 independent of b such that for all (a, b), b 
= 0,

| detDFa,b(Θ, ξ)|
| detDFa,b(Θ′, ξ′)| ≤ C ∀(Θ, ξ), (Θ′, ξ′) ∈ M.

(C1) Existence of singular limit There exist Fa,0 : M → S1 × {0}, a ∈
[a0, a1], such that the maps (Θ, ξ, a) �→ Fa,b(Θ, ξ) converge in the C3 norm
to the map (Θ, ξ, a) �→ Fa,0(Θ, ξ) as b → 0.

Identifying S1×{0} with S1, we refer to Fa,0 as well as its restriction to S1×{0},
i.e. the family of 1D maps fa : S1 → S

1 defined by fa(Θ) = Fa,0(Θ, 0), as the
singular limit of Fa,b. The rest of our conditions are imposed on the singular limit
alone.

(C2) Existence of a sufficiently expanding map from which to perturb
There exists a∗ ∈ (a0, a1) such that f = fa∗ has the following properties:
f has nondegenerate critical points, so that its critical set C = {f ′ = 0} is

47
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finite. We assume there are numbers c1 > 0, N1 ∈ Z+, and a neighborhood
I of C such that
(i) f is expanding on S

1 \ I in the following sense:
(a) if Θ, fΘ, · · · , fn−1Θ 
∈ I, n ≥ N1, then |(fn)′Θ| ≥ ec1n;
(b) if Θ, fΘ, · · · , fn−1Θ 
∈ I and fnΘ ∈ I, any n, then |(fn)′Θ| ≥

ec1n;
(ii) fnΘ 
∈ I ∀Θ ∈ C and n > 0;
(iii) derivatives on I are controlled as follows:

(a) |f ′′| is bounded away from 0;
(b) for every Θ ∈ I \C, there exists an n(Θ) ≥ 1 such that f jΘ 
∈ I

for 0 < j < n(Θ) and |(fn(Θ))′Θ| ≥ ec1n(Θ).

We remark that (C2) is not assumed in [WY1]. Instead, the authors of [WY1]
had originally used the assumption that fa∗ is a Misiurewicz map. This assumption
involves a number of properties some of which are hard to check or not needed. In
[WY2], this condition was replaced by (C2), which is more directly checkable
though cumbersome to state. That the results in [WY1] remain valid when the
Misiurewicz condition is replaced by (C2) is proved in Lemma A.1 in the Appendix
of [WY2]. (C2) is also used in [WY4], which contains generalizations of some of
the results in [WY1] to higher dimensions.

To state the next condition, we need a notion of smooth continuation for certain
orbits. Let Ca denote the critical set of fa. For Θ̂ = Θ̂(a∗) ∈ Ca∗ , the continuation

Θ̂(a) of Θ̂ to a near a∗ is defined to be the unique critical point of fa near Θ̂. If p is
a hyperbolic periodic point of fa∗ , then p(a) is the unique periodic point of fa near
p having the same period. It is a fact that in general, if p is a point whose fa∗ -orbit
is bounded away from Ca∗ , then for a sufficiently near a∗, there is a unique point
p(a) with the same symbolic itinerary under fa (see Sect. 4.2 of [WY5]).

(C3) Parameter transversality For each Θ̂ ∈ Ca∗ , let p = fa∗(Θ̂), and let

Θ̂(a) and p(a) denote the continuations of Θ̂ and p respectively. Then

d

da
fa(Θ̂(a)) 
= d

da
p(a) at a = a∗.

(C4) Nondegeneracy at “turns”

∂

∂ξ
Fa∗,0(Θ̂, 0) 
= 0 ∀Θ̂ ∈ Ca∗ .

We summarize below those parts of [WY1] that are relevant for Theorem 2.

Theorem A (Existence of SRB measures and implications [WY1]) Assume
the family {Fa,b} satisfies conditions (C0)-(C4). Then for each b 
= 0 for which |b|
is small enough, there is a subset Δb ⊂ [a0, a1] of positive Lebesgue measure such
that for all a ∈ Δb, the following hold for Fa,b:

(i) Fa,b admits at least one and at most finitely many ergodic SRB measures
ν1, · · · , νr;

(ii) with respect to Lebesgue measure, the orbit starting from almost every
(Θ, ξ) ∈ M has a positive Lyapunov exponent and is generic with respect
to νi for some i.

The parameter selection part of Theorem A borrows ideas from [BC]. It is in
fact proved in [WY1] that with respect to Lebesgue measure, a.e. (Θ, ξ) ∈ M lies
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in a stable manifold of a point that is typical with respect to some νi. Genericity
with respect to νi follows. The positivity of Lyapunov exponents follows also as
SRB measures have positive Lyapunov exponents by definition.

In the rest of the discussion, let us refer to the set of parameters (a, b) for which
the conclusions of Theorem A hold as the set of “good parameters”.

Conditions (C1)–(C4) alone do not imply the uniqueness of SRB measures;
additional assumptions are need. One approach is to mimick conditions for Markov
chains. Let J1, · · · , J� be the intervals of monotonicity of fa∗ , and let P = (pi,j) be
the matrix defined by

pi,j =

{
1 if f(Ji) ⊃ Jj ,

0 otherwise ,

and let Pn = (pni,j) denote the nth power of the matrix P .

Theorem B ([WY1], [WY2]) The setting and hypotheses are as in Theorem A.
Additionally, we assume ec1 > 2 where c1 is as in (C2). Then the following hold
for all “good parameters”:

(i) If for each i, j ∈ {1, · · · , �}, there exists n = n(i, j) such that pni,j > 0, then
Fa,b has a

unique SRB measure ν, which is therefore ergodic.
(ii) If there exists n such that pni,j > 0 for all i, j ∈ {1, · · · , �}, then (Fa,b, ν) is

mixing.

This result can be interpreted to say that when ec1 > 2, the maps Fa,b with
“good” (a, b) have no local complexity, so that their ergodic and mixing properties
can be expressed in terms of sets corresponding to intervals of monotonicity for fa∗ .
In the cited papers, assertion (i) is in fact not explicitly stated, but it follows from
the proof of assertion (ii).

Finally, we remark that [WY1] contains not only the results cited in Theorems
A and B but a comprehensive dynamical profile for the maps Fa,b corresponding
to “good parameters”, including geometric structures of the attractors (such as
approximations by horseshoes) and statistical properties (such as correlation decay
and central limit theorems). The corresponding results in n-dimensions, n ≥ 2, are
proved in [WY4] and in a forthcoming preprint by the same authors. We have
opted to limit the statement of results in the present paper to SRB measures and
Lyapunov exponents, but all aspects of this larger dynamical picture in fact hold
once the requisite conditions are checked.

8.2. Proof of Theorem 3.4

We now fix ρ, μ and ι, and let FT : A → A, T > M0μ
−1, be the family

introduced in Sect. 6.2. To apply the results in the last section, first we put
this family into the form {Fa,b}. Given T , there exist unique a ∈ [0, 2π) and
b ∈ B0 = { 1

n}n∈Z+ such that

T − ι = Θ∗ω̂−1(2πb−1 + a) .

We define FT = Fa,b, and verify (C0)-(C4) for the family {Fa,b} so defined:

Verification of (C0): (C0)(i) is equivalent to FT being C3 as a function of Θ, ξ
and T . This is true because FT = πc ◦ FT ◦ �cT (Sect. 6.2), �cT is C3 (Proposition
7.5), FT is C3 by smooth dependence of solution on initial condition and on T
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(see [H]), and πc is clearly C3. (C0)(ii) is true because FT restricted to Wc is an
embedding, and (C0)(iii) is proved in Proposition 7.4.

Verification of (C1): We claim that the required convergence holds with

Fa,0(Θ, ξ) = φ(Θ, ξ,0) + a+ τ lnψ(Θ, ξ,0)

where φ, ψ are as in (7.9) and (7.10). This is because Fa,b = πc ◦GΘ∗ω̂−1(2πb−1+a) ◦
κ ◦ �cT , and we have proved the following convergence as functions of Θ, ξ and T :
(i) �cT converges in C3 to �c∞ where �c∞(Θ, ξ) = (Θ, ξ, 0) (Proposition 7.5) and (ii)
GΘ∗ω̂−1(2πb−1+a) converges in C3 as b → 0 (Proposition 6.5).

Verification of (C2): Let fa : S1 → S1 be given by fa(Θ) = Fa,0(Θ, 0). Then

(8.1) fa(Θ) = φ(Θ) + a+ τ lnψ(Θ)

where

φ(Θ) = tan−1 sinΘ + γ̃ sin c0
cosΘ + γ̃ cos c0

+O4(ι+
√
μ)

ψ(Θ) =
√
1 + 2γ̃ cos(Θ− c0) + γ̃2 +O4(ι+

√
μ).

When L := |τ |γ is sufficiently large, τ lnψ is the dominating term in fa. As noted
in Lemma 7.3, fa has two critical points, c1 and c2, near c0 and c0 + π.

The following notation is used below: We let C = {c1, c2} be the critical set
of fa and let Cδ denote the δ-neighborhood of C in S1. The following hold for all
L > L0 for some large L0 to be determined.

Proposition 8.1. Let σ = L− 1
4 . Then for any given interval Δ0 ⊂ [0, 2π) of

length = 5σ, there exists a∗ ∈ Δ0 so that {fn
a∗(C)}n≥1 ∩ Cσ = ∅.

Lemma 8.2. Let I = Cδ0 where δ0 = L− 3
4 .

(a) For Θ ∈ S1 \ I, |f ′
a(Θ)| > 2

5L
1
4 .

(b) Let f = fa∗ be as in Proposition 8.1, and let Θ and c ∈ C be such that
|Θ − c| < δ0. Let n(Θ) be the smallest n such that |fn(Θ) − fn(c)| > 1

4σ. Then

|(fn(Θ))′(Θ)| > L
1
6 .

Proofs of Proposition 8.1 and Lemma 8.2 are similar to proofs of analogous
results in [WY2]. They are included in Appendix C for completeness. (C2)

follows with ec1 = L
1
6 .

Verification of (C3): Let a∗ be as in Proposition 8.1, and let p(a) be as in (C3).
We use the following fact proved in Sect. 4.2 of [WY5]: For all c ∈ C, the critical
set of fa∗ ,

d

da
p(a)

∣∣∣∣
a=a∗

= −
∞∑
k=1

[(∂afa)(f
kc)]a=a∗

(fk
a∗)′(fa∗c)

.

Because the functions Θ �→ φ(Θ) and ψ(Θ) do not depend on a, we have ∂afa(Θ) =
1 for all Θ ∈ S1. The result above implies therefore that for c ∈ C,∣∣∣∣ d

da
fa(c)−

d

da
p(a)

∣∣∣∣
a=a∗

> 1−
∞∑
k=1

1

L
k
6


= 0

provided L is large enough.

Verification of (C4): Since |∂ξφ(Θ, ξ, 0)| < 2, |∂ξ lnψ(Θ, ξ, 0)| > 1
10γ and |τ | =

Lγ−1, we have |∂ξFa,0(Θ, ξ)| > 1
10L.
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This completes the verification of the conditions in Theorem A. As for the
hypotheses of Theorem B, clearly we may assume ec1 = L

1
6 > 2. Increasing L

further, one guarantees easily that pi,j = 1 for all i, j.

Proof of Theorem 2: The main steps of the proof are as follows.
(1) First we standardize coordinates by, among other things, blowing up the

phase space by a factor ∼ μ− 1
2 so that the limit cycle is a circle of radius 1; see

Section 4.
(2) For each admissible μ, ρ, ι and T , we show that the time-T map FT of the

forced equation sends V ∩Wc
T into itself, and derive a fairly explicit form of FT for

large T ; see Sects. 5.1–6.1.
(3) We then project FT to the annulus A, obtaining a family FT smoothly

conjugate to FT but defined on A; see Sect. 6.2.
(4) In this section, previous results on rank one maps are applied to the fam-

ily FT , giving, for a positive measure set of T , the existence of SRB measures and
certain properties for Lebesgue-a.e. initial conditions. These properties include pos-
itive Lyapunov exponents and genericity with respect to SRB measures. Moreover,
by the correspondence between T and a, the set of “good parameters” have the
properties asserted in the last line of Theorem 2. These results are easily passed
back to FT |Wc

T∩V .
(5) Finally, via the use of invariant manifolds, we pass the results for FT |Wc

T∩V

to solutions starting from “almost every” initial condition in an open set U in the
phase space, “a.e.” here referring to “a.e. transversal to Wss”; see Section 3,
Proposition 4.5 in particular. �
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CHAPTER 9

Application: The Brusselator

In this section we apply the general results proved in Sections 3–7 to a concrete
model, namely the Brusselator in one physical dimension. The Brusselator is well
known to undergo a Hopf bifurcation when certain parameters are varied; see e.g.
[HKW]. To apply Theorems 3.2 and 3.4, we need an additional piece of information
not known previously, namely that the twist factor τ is sufficiently large. We will
carry out the normal form computation in the Dirichlet case, leaving the Neumann
case (which is straightforward) to the reader.

9.1. The Dirichlet Case

The model is as defined in Sect. 2.4, with d1 = π−2. We let U = u − a,
V = v − ba−1, and study the system

Ut = π−2Uxx + (b− 1)U + a2V + h(U, V ) + ρ sinπx pT,ι(t),

Vt = θπ−2Vxx − bU − a2V − h(U, V ),
(9.1)

where
h(U, V ) = ba−1U2 + 2aUV + U2V

with boundary conditions U(0, t) = U(1, t) = 0 and V (0, t) = V (1, t) = 0.

A. Equations for Fourier coefficients and Hopf bifurcation

Using {sin nπx}n≥1 as a basis of L2(0, 1), we expand U(x, t) and V (x, t) as

(9.2) U(x, t) =

∞∑
n=1

un(t) sin(nπx), V (x, t) =

∞∑
n=1

vn(t) sin(nπx).

Then (9.1) is equivalent to (un, vn) satisfying

(9.3)

(
u̇1

v̇1

)
= L1

(
u1

v1

)
+ 2

(
1
−1

) ∫ 1

0

h(U, V ) sin(πx)dx+

(
ρ
0

)
pT,ι(t),

(9.4)

(
u̇n

v̇n

)
= Ln

(
un

vn

)
+ 2

(
1
−1

) ∫ 1

0

h(U, V ) sin(nπx)dx, n ≥ 2 ,

where

(9.5) Ln =

(
b− 1− n2 a2

−b −a2 − θn2

)
, n ≥ 1.

To put the equations above in the form of (3.3), i.e.

u̇ = Aμu+ fμ(u) + ρΦ(u) pT,ι(t),

we fix a and θ, and let μ = 1
2 (b − 2 − a2 − θ) be our bifurcation parameter. Then

u = (u1, v1, u2, v2, · · · , un, vn, · · · ), Aμ is represented by an infinite matrix whose
diagonal terms are Ln, Φ(u) = (1, 0, 0, 0, · · · ), and so on.

53
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Next we compute the eigenvalues of Aμ. Clearly, λ is an eigenvalue of Aμ if
and only if λ is an eigenvalue of Ln for some n ≥ 1. By a direct computation, we
find that the eigenvalues of Ln are

λ±
n =

1

2

(
ξn ±

√
ξ2n − 4ηn

)
where

ξn = 2μ+ (1 + θ)(1− n2), ηn = a2(n2 + 1)− θn2(2μ+ 1 + θ + a2 − n2).

Lemma 9.1. Assume a ≥ 1 and 0 < θ << 1. When μ = 0, we have that

(i) λ±
1 = ±i

√
(2− θ)a2 − θ2 and

(ii) there exists a constant c > 0 independent of a such that Re(λ±
n ) < −c for

all n ≥ 2.

Moreover, d
dμRe(λ1) = 1 at μ = 0.

Proof: (i) is straightforward, as is d
dμRe(λ1) = 1. For (ii) we let n ≥ 2. At μ = 0

we have (i) ξn < −3 and (ii) ηn > 0 because 0 < θ << 1. If ξ2n − 4ηn, i.e., the term
inside of the square root sign for λ±

n , is negative, then the real part of λ±
n is less

than − 3
2 . Otherwise λ±

n are real and we have

λ−
n < λ+

n =
2ηn

ξn −
√
ξ2n − 4ηn

<
ηn
ξn

.

Using a ≥ 1 and 0 < θ << 1 we have at μ = 0,

ηn
ξn

=
a2(n2 + 1) + θn4 − θn2(1 + θ + a2)

(1 + θ)(1− n2)
≤

1
2a

2n2

2(1− n2)
< −1

4
.

This proves (ii). �
It follows that Ec is the subspace spanned by (u1, v1) while the stable subspace

Es is its orthogonal complement. It remains to compute the normal form of the
unforced flow restricted to its center manifold.

B. Canonical form of linear and high order terms

We first transform equation (9.3) to an equation with a standard linear part.

We introduce new coordinates

(
u
v

)
by

(
u1

v1

)
= P

(
u
v

)
where

P =

(
1 0

−a−2(μ+ a2 + θ) −a−2ω

)
, P−1 = −a2

ω

(
−a−2ω 0

a−2(μ+ a2 + θ) 1

)
,

and

ω =
√
(2− θ)a2 − θ2 − μ2 − 2μθ.

This change of coordinate can be written explicitly as

u1 = u, v1 = −a−2(μ+ a2 + θ)u− a−2ωv .

Then with w = (u2, v2, · · · ), we have

(9.6)

(
u̇
v̇

)
=

(
μ −ω
ω μ

) (
u
v

)
+ 2

(
1

−μ+θ
ω

)
F(u, v, w) + ρ

(
1

−μ+a2+θ
ω

)
pT,ι(t)

(9.7)

(
u̇n

v̇n

)
= Ln

(
un

vn

)
+ 2

(
1
−1

)
Gn(u, v, w),
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F(u, v, w) =

∫ 1

0

h(U, V ) sin(πx)dx, and Gn(u, v, w) =

∫ 1

0

h(U, V ) sin(nπx)dx.

Note that both F(u, v, w) and Gn(u, v, w) are terms of order ≥ 2 in u, v and w.
Next we compute F and Gn. We are going to retain only the terms needed

for the coefficient k1 in (2.4). Let z = u + iv. Note that equations (9.3) and
(9.4) without the forcing has a center manifold given by the graph of a function
w = w(z, z̄) with w(z, z̄) = O(|z|2). In what follows, we regard a term in z, w as
O(|z|m) if, by letting w = O(|z|2), it is O(|z|m). We also set μ = 0. It follows from
a straightforward computation that

F(u, v, w) =
4

3π
(2a−1 − θa−1 − a)u2 − 8

3π
a−1ωuv − 3

8
u2

(
(1 + θa−2)u+ a−2ωv

)
+

∞∑
n=2

In
(
4a−1uun + 2auvn − 2a−1ωvun

)
+O(|z|4),

Gn(u, v, w) = In
((
2a−1 − θa−1 − a

)
u2 − 2a−1ωuv

)
+O(|z|3)

where

In =

∫ 1

0

sin2(πx) sin(πnx)dx =

{
0, n = 2k,
4

πn(4−n2) , n = 2k + 1.

C. Computation of normal forms

To compute the normal form up to the order three we need to retain only the
second order terms in w(z, z̄). The equations for (un, vn), n ≥ 2, are as follows(

u̇n

v̇n

)
= Ln

(
un

vn

)
+ In

(
1
−1

) (
1

2

(
2a−1 − θa−1 − a+ 2a−1ωi

)
z2

+(2a−1 − θa−1 − a)zz̄ +
1

2

(
2a−1 − θa−1 − a− 2a−1ωi

)
z̄2

)
+ · · ·

Let w = w(z, z̄) = (w2(z, z̄), w3(z, z̄), · · · , wn(z, z̄), · · · ) be the function whose
graph is the center manifold where

wn(z, z̄) =
1

2
w20,nz

2 + w11,nzz̄ +
1

2
w02,nz̄

2 + · · · .

We obtain the following equations that determine wn:

(2ωiI − Ln)w20,n = In(2a
−1 − θa−1 − a+ 2a−1ωi)

(
1
−1

)
,

−Lnw11,n = In(2a
−1 − θa−1 − a)

(
1
−1

)
,

(−2ωiI − Ln)w02,n = In(2a
−1 − θa−1 − a− 2a−1ωi)

(
1
−1

)
,

from which we solve for w20,n, w11,n and w02,n. Note that w02,n = w̄20,n. For w20,n

and w11,n let us denote

w20,n =

(
wu

20,n

wv
20,n

)
, w11,n =

(
wu

11,n

wv
11,n

)
.
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Then, we have

Re(wu
20,n) =

In
D20,n

[16a(4a2 − 1− (a2 − 1)n2) +O(θn6)],

Im(wu
20,n) =

In
D20,n

[2
√
2a((10a− a3)n2 − 22a+ 7a3) +O(

√
θn6)],

Re(wv
20,n) =

In
D20,n

[(a3 − 10a)n4 + (10a3 − 4a)n2 − (71a3 − 38a) +O(θn6)],

Im(wv
20,n) =

In
D20,n

[−2
√
2(2(a2 − 1)n4 + (−a4 + 4a2)n2 + (7a4 − 30a2 + 2)) +O(

√
θn6)],

Re(wu
11,n) =

In
D11,n

[(2a−1 − θa−1 − a)θn2],

Im(wu
11,n) = 0,

Re(wv
11,n) =

In
D11,n

[(2a−1 − θa−1 − a)(−1− n2)],

Im(wv
11,n) = 0,

(9.8)

where

D20,n =
(
a2(n2 − 7 + 4θ) + θn4 − θ(1 + θ + a2)n2 + 4θ2

)2
+4ω2(n2 − 1)2(1 + θ)2,

D11,n = a2(n2 + 1) + θn4 − θn2(1 + θ + a2),

and O(θn6) (O(
√
θ)n6) represents a term of magnitude < K(A1)θn

6 (K(A1)
√
θn6)

for all a ∈ [1, A1] and n > 1. We note that for the purpose of proving Proposition
3.8 and Theorem 3.9, there is no need for further explicit details of the O(θn6)
terms. Let us also observe that the effects of θn4 in both D20,n and D11,n are to
increase positively their magnitude.

We are now ready to write the equation of the central flow as

(9.9) ż = iωz +
1

2
c20z

2 + c11zz̄ +
1

2
c02z̄

2 +
1

2
c21z

2z̄ + · · ·

where the functions on the right are obtained by letting u = 1
2 (z+ z̄), v = − i

2 (z− z̄)
in F . Note that we need to replace un and vn by wn(z, z̄) obtained in the last section
in computing c21. For the terms of second order, we easily obtain

c20 =
4

3π
(1− θ

ω
i)

(
2a−1 − θa−1 − a+ 2a−1ωi

)
,

c11 =
4

3π
(1− θ

ω
i)

(
2a−1 − θa−1 − a

)
,

c02 =
4

3π
(1− θ

ω
i)

(
2a−1 − θa−1 − a− 2a−1ωi

)
.

c21 is less straightforward to compute because of the relevancy of the terms in un

and vn. Let us write

c21 = ĉ21 + ˆ̂c21

where

ĉ21 = (1− θ

ω
i)

3

16

(
−3(1 + θa−2) + a−2ωi

)
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is from the third order terms in F . The term ˆ̂c21 is defined by

ĥ3(z, z̄, w) = 2(1− θ

ω
i)

∞∑
n=2

In
(
(2a−1un + avn)(z + z̄) + a−1ωun(z − z̄)i

)

:=
1

2
ˆ̂c21z

2z̄ + · · · .

We now put the equation of the center manifold into (9.9) to compute ˆ̂c21. It follows
that

ˆ̂c21 = 4(1− θ

ω
i)

∞∑
n=2

In

(
a−1wu

20,n +
1

2
awv

20,n

+2a−1wu
11,n + awv

11,n + a−1ω(wu
11,n − 1

2
wu

20,n)i

)
.

(9.10)

Lemma 9.2. For any A1 > 1, there exists θ0(A1) > 0 such that the sum in

( 9.10) converges uniformly on (a, θ) ∈ [1, A1]× [0, θ0(A1)]. Consequently, ˆ̂c21 as a
function of parameters a and θ is continuous on [1, A1]× [0, θ0(A1)].

Proof: First let us show that

I :=

∞∑
n=2

InRe(wu
20,n) =

∞∑
n=2

I2n
D20,n

[16a(4a2 − 1− (a2 − 1)n2) +O(θn6)]

=

∞∑
k=1

16[16a(4a2 − 1− (a2 − 1)(2k + 1)2) +O(θ(2k + 1)6)]

π2(2k + 1)2(1− (2k + 1)2)2D20,2k+1

converges uniformly as claimed. This is because we have

D20,n =
(
a2(n2 − 7 + 4θ) + θn4 − θ(1 + θ + a2)n2 + 4θ2

)2
+4ω2(n2−1)2(1+θ)2 > n4

for large n uniformly with respect to 0 ≤ θ << 1 and a ≥ 1. So the denominator
for the k-th term in I is > k10. On the other hand, the O(θn6) terms in numerators
are < K(A1)θk

6, which can be made < k6 by our letting θ0 < K(A1)
−1. Therefore

on (a, θ) ∈ [1, A1]× [0, θ0(A1)],

I < K(A1)
∞∑
k=1

1

k4
.

Estimates are similar for∑
n>1

InIm(wu
20,n),

∑
n>1

InRe(wv
20,n),

∑
n>1

InIm(wv
20,n).

For terms related to w11,n, we first estimate

II :=
∑
n>1

In
D11,n

Re(wv
11,n) = −

∑
n>1

In
D11,n

[((2− θ)a−1 − a)(1 + n2)]

= −
∑
k≥1

16[((2− θ)a−1 − a)(1 + (2k + 1)2)]

π2(2k + 1)2(4− (2k + 1)2)2D11,2k+1
.

Observe that for a ≥ 1 and 0 ≤ θ << 1,

D11,2k+1 = a2((2k + 1)2 + 1) + θ(2k + 1)4 − θ(2k + 1)2(1 + θ + a2) > k2.

II is obviously bounded by K(A1)
∑

k≥1
1
k6 . Estimates for other sums related to

w11,n are similar. �
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Finally, using the normal form theory, one has that k1 in (2.4) is given by

k1(a, θ) =
i

2ω
(c20c11 − 2|c11|2 −

1

3
|c02|2) +

1

2
c21.

Note that all c20, c11, c02, and c21 are continuous in θ ∈ [0, θ0(A1)]. For θ = 0, we
have

Re(k1(a, 0)) = −
(

4

3π

)2

(2a−2 − 1)− 9

32
(9.11)

+
1

2
Re(ˆ̂c21(a, 0)),

Im(k1(a, 0)) =
−
√
2

3a

(
4

3π

)2

((2a−1 − a)2 + 2) +
3
√
2

32
a−1(9.12)

+
1

2
Im(ˆ̂c21(a, 0)).

D. Proofs of Proposition 3.8 and Theorem 3.9

Proof of Proposition 3.8: Let θ be fixed and satisfy 0 < θ << 1. For fixed
a ∈ [1,∞), Condition (H1) follows from Lemma 9.1. We will show

(i) there exists A0 > 1 such that condition (H2) holds for all fixed a ∈ [1, A0)
at μ = 0;

(ii) Re(k1(0)) = 0 and Im(k1(0)) 
= 0 at a = A0.

Consider first the case θ = 0. Using (9.8) and (9.10), we obtain

Re(ˆ̂c21(a, 0)) =
∞∑

n=2

4I2n
(
( 3
2
a4 + a2 − 16)n4 + (−11a4 + 14a2 + 48)n2

)

a4(n2 − 7)2 + 8a2(n2 − 1)2
,(9.13)

+
∞∑

n=2

4I2n
(
55
2
a4 − 51a2 − 32

)

a4(n2 − 7)2 + 8a2(n2 − 1)2

Im(ˆ̂c21(a, 0)) =
∞∑

n=2

4
√
2I2n(−2(a3 − a)n4 + (a5 + 2a3 + 12a)n2)

a4(n2 − 7)2 + 8a2(n2 − 1)2
.(9.14)

+
∞∑

n=2

4
√
2I2n(−38a+ 12a3 − 7a5)

a4(n2 − 7)2 + 8a2(n2 − 1)2

From (9.11) and (9.13), by an elementary computation, we have

Re(k1(1, 0)) < −
(

4

3π

)2

− 9

32
< 0

and Re(k1(a, 0)) > 0 for a sufficiently large. This implies that there is a A0 such
that Re(k1(a, 0)) < 0 for a ∈ [1, A0) and Re(k1(A0, 0)) = 0. Hence (i) and the
first part of (ii) hold for θ = 0. As for the second part of (ii), we claim that
Im(k1(a, 0)) < 0 for all a ≥ 1. For simplicity, we denote

Bn(a) =
−2(a3 − a)n4 + (a5 + 2a3 + 12a)n2 − 38a+ 12a3 − 7a5

n2(4− n2)2
(
a4(n2 − 7)2 + 8a2(n2 − 1)2

) ,
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and write

Im(k1(a, 0)) =
−
√
2

3a

(
4

3π

)2

((2a−1 − a)2 + 2) +
3
√
2

32
a−1

+ 2
√
2

(
4

π

)2 (
B3(a) +B5(a) +B7(a) +

∞∑
n=9, odd

Bn(a)
)
.

(9.15)

Estimating Bn(a), we obtain

B3(a) ≤
1

2× 32 × 52
a+

100

32 × 52(22 + 83)
a−1,

B5(a) ≤
18

52 × 212 × 182
a+

324

52 × 212(182 + 8× 242)
a−1,

B7(a) ≤
42

72 × 452 × 422
a+

660

72 × 452(422 + 8× 482)
a−1,

Bn(a) ≤
27

(n−
√
7)8

a, for n ≥ 9.

Using an integral estimate, we have

∞∑
n=9, odd

Bn(a) ≤
1

2

∫ ∞

7

27a

(x−
√
7)8

dx =
27

2× 7× (7−
√
7)7

a.

Let

G(a)

=
−
√
2

3a

(
4

3π

)2

((2a−1 − a)2 + 2) +
3
√
2

32
a−1

+ 2
√
2

(
4

π

)2 [(
1

2× 32 × 52
+

18

52 × 212 × 182
+

42

72 × 452 × 422
+

27

2× 7× (7−
√
7)7

)
a

+

(
100

32 × 52(22 + 83)
+

324

52 × 212(182 + 8× 242)
+

660

72 × 452(422 + 8× 482)

)
a−1

]
.

Minimizing G(a) over a ∈ [1,∞), we have for all a ≥ 1

G(a) ≤ − 75

10000
.

Hence, Im(k1(a, 0)) ≤ −75/10000. This completes the proof of (i) and (ii) for
θ = 0.

To prove (i) and (ii) for positive but small θ, we choose 1 < A1 < ∞ such that
Re(k1(A1, 0)) > 0. By Lemma 9.2, we have for (a, θ) on [1, A1] × [0, θ0(A1)], both
Re(k1) and Im(k1) are continuous in terms of a and θ. Thus (i) and (ii) hold for
θ > 0 sufficiently small. �

Proof of Theorem 3.9: With Proposition 3.8 and the fact that Φ(u) = (1, 0, · · · ) ∈
Ec and has norm 1, this theorem is a straightforward application of Theorems 3.2
and 3.4. �
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9.2. The Neumann Case

As mentioned earlier, this case is considerably simpler (see also [HKW]). We
give only results of the main computations: Here we let μ = 1

2 (b − 1 − a2), and
obtain

Re(k1) = −1

2
− a−2, Im(k1) = − 1

3a
(2a2 + 2a−2 +

5

2
),

from which it follows that |τ | = | Im(k1)
Re(k1)

| → ∞ as a → ∞.
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APPENDIX A

Proofs of Propositions 3.1-3.3

As usual, we deduce the desired local results from global versions of these
propositions using cut-off functions for the nonlinear term. Let χ(s) be a C∞

function from (−∞,∞) to [0, 1] with

χ(s) = 1 for |s| ≤ 1, χ(s) = 0 for |s| ≥ 2, sup
s∈R

|χ′(s)| ≤ 2.

For ε > 0, we define

fε(u) = χ

(
|u|
ε

)
f(u).

Clearly, fε : E → Ě is as smooth as f , and maxu∈E ‖fε(u)‖, maxu∈E ‖∂fε(u)‖ → 0
as ε → 0. Writing u ∈ E as u = (v, w), v ∈ Ec, w ∈ Es, we consider the following
modified version of (4.1) with an addition parameter q ∈ R:

v̇ = Acv + fε,v(v, w) + ρΦv(v, w) pT,ι(t+ q)

ẇ = Asw + fε,w̌(v, w) + ρΦw(v, w)pT,ι(t+ q).
(A.1)

Let u(t, u0, q) denote the mild solution of (A.1) with initial condition u0, i.e.
u(0, u0, q) = u0. A family of sets M(q), q ∈ R, of E is said to be equivariant
if

u(t,M(q), q) ⊆ M(q + t), t ≥ 0.

To prove a global version of Proposition 3.1, one shows the existence of an
equivariant family of two dimensional manifolds Wc(q) given by

Wc(q) = {v + hc(v, q) | v ∈ Ec}

where hc(·, q) : Ec → Es is a C1 mapping satisfying hc(v, q + T ) = hc(v, q).
Specifically, let a0 > 0 be such that a(μ) < a0 for all μ < μ0, and fix γ > 0 so that
a0 < γ < 2γ < β0. Following the method of Lyapunov and Perron, we consider the
Banach Space

C−
γ =

{
ϕ

∣∣ ϕ : R− → E is continuous and sup
t≤0

|eγtϕ(t)| < ∞
}

with norm |ϕ|−γ = supt≤0 |eγtϕ(t)|, and let

Wc(q) =
{
u0 | u(t, u0, q) is defined for all t ≤ 0 and u−(·, u0, q) ∈ C−

γ

}
.

Here u−(·, u0, q) denotes the restriction of u(·, u0, q) to R−. One then shows that
given any q ∈ R and η ∈ Ec, there is a unique u0 = (v0, w0) ∈ Wc(q) with v0 = η,

61
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and verifies that

u(t, u0, q) = eA
ctη +

∫ t

0

eA
c(t−τ)

(
fε,v(u(τ )) + ρΦv(u(τ )) pT,ι(τ + q)

)
dτ

+

∫ t

−∞
eA

s(t−τ)
(
fε,w̌(u(τ )) + ρΦw(u(τ )) pT,ι(τ + q)

)
dτ

(A.2)

provided ε ∈ (0, ε0) and ρ ∈ (0, ρ0) for sufficiently small ε0 and ρ0.
A further argument shows that η �→ u(·;u0, q) is differentiable, and η �→

∂ηu(·;u0, q) as a function from Ec to L(Ec, C−
2γ) is continuous. The existence of a

region of Wc(0) invariant under FT is assured by taking μ sufficiently small and T
sufficiently large. We omit details as the proof outlined above is quite standard.

Proof of Proposition 3.2: To estimate hc
ρ(v) − hc

0(v), it is convenient to work
in coordinates in which the center manifold of the unforced system is w = 0. Thus
we let ŵ = w − hc

0(v), and rename ŵ as w. In these new coordinates fε,w̌ has a
special form, namely

fε,w̌(u,w) = Bε,w̌(u,w)w where Bε,w̌ ∈ L(Es, Ěs) with Bε,w̌(0, 0) = 0 .

For more detail, see Sect. 4.1. This in turn implies the following estimates: Let

β̂0 < β0. Then there exists C∗
1 such that for all continuous functions (v̄(·), w̄(·)), if

Ψ(t, s)w0, s ≤ t, denotes the solution of the linear equation

(A.3) ẇ = Asw +Bε,w̌(v̄(t), w̄(t))w

with initial condition Ψ(s, s)w0 = w0, then

(A.4) |Ψ(t, s)w| < C∗
1e

−β̂0(t−s)|w|, |Ψ(t, s)w| < C∗
1

1

(t− s)σ
e−β̂0(t−s)‖w‖, t ≥ s .

Now fix η ∈ Ec, and consider the solution u(t) = (v(t), w(t)) with u(0) ∈ Wc(0)
and v(0) = η. As before,

(A.5) w(t) =

∫ t

−∞
Ψ(t, s)ρΦw(v(s), w(s))pT,ι(s)ds.

Since pT,ι(s) = 0 for s ∈ (−T + ι, 0), we have, for −T + ι ≤ t ≤ 0,

w(t) =

∫ −T+ι

−∞
Ψ(t, s)ρΦw(v(s), w(s))pT,ι(s)ds.

By (A.4), we have |w(t)| < Kρ for all t ≤ 0, and |w(t)| < Kρe−(t+T−ι)β̂0 for

t ∈ (−T + ι, 0]. In particular, |hc(η, 0)| = |w(0)| < Kρe−(T−ι)β̂0 .
For the first derivative, we have

∂ηw(t) =

∫ t

−∞
Ψ(t, s)ρ∂ηΦw(v(s), w(s))pT,ι(s)ds

+

∫ t

−∞
Ψ(t, s)∂ηBε,w̌(v(s), w(s))w(s)ds .

The first integral is treated as above. The norm of the second term is

<

∫ t

∞
C∗

1

1

(t− s)σ
e−β̂0(t−s)‖∂ηBε,w‖|w(s)|ds .
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Substituting in the bound of |w(s)| from above and evaluating at t = 0, this integral
is

< const ·
{∫ T−ι

0

1

sσ
e−β̂0sKρe−(T−ι−s)β̂0ds+

∫ ∞

T−ι

1

sσ
e−β̂0sKρds

}

< K ′ρTe−(T−ι)β̂0 .

�
Proof of Proposition 3.3: Define

C+
γ =

{
ϕ|ϕ : R+ → E is continuous and sup

t≥0
|eγtϕ(t)| < ∞

}

with the norm |ϕ|+γ = supt≥0 |eγtϕ(t)|. For a given solution u(t, u0, q)(t ≥ 0) of
equation (A.1), let

Wss(u0, q) =
{
ū0 : u(·, ū0, q)− u(·, u0, q) ∈ C+

γ

}
We will show that Wss(u0, q) is the graph of a function over Es. We now find all
solutions u(t) of (A.1) such that

z(t) = u(t)− u(t, u0, q) ∈ C+
γ ,

which is equivalent to finding all z(·) ∈ C+
γ satisfying

z(t) = eA
stζ +

∫ t

0

eA
s(t−τ)

(
fε,w̌(z(τ) + u(τ, u0, q))− fε,w̌(u(τ, u

0, q))

+ ρ
(
Φw(z(τ) + u(τ, u0, q))− Φw(u(τ, u

0, q))
)
pT,ι(τ + q)

)
dτ

+

∫ t

+∞
eA

c(t−τ)
(
fε,v(z(τ) + u(τ, u0, q))− fε,v(u(τ, u

0, q))

+ ρ
(
Φv(z(τ) + u(τ, u0, q))− Φv(u(τ, u

0, q))
)
pT,ι(τ + q)

)
dτ,

(A.6)

where ζ = zw(0), the w component of z. We will show that for each (ζ, u0) ∈ Es×E,
equation (A.6) has a unique solution in C+

γ . To see this, let J s(z, ζ, u0, q) be the

right hand side of (A.6). A simple calculation gives that J s : ϕ �→ J s(ϕ, ζ, u0, q)
is well-defined from C+

γ × Es × E× R to C+
γ . For any ϕ, ϕ̄ ∈ C+

γ we have

(A.7) |J s(ϕ, ζ, u0, q)−J s(ϕ̄, ζ, u0, q)|+γ ≤ L(ε, ρ, σ, a0, β0, γ)|ϕ− ϕ̄|+γ ≤ 1

2
|ϕ− ϕ̄|+γ

provided that ε0 and ρ0 are small enough. It is clear that J s is Lipschitz continuous
in ζ. However it is not known that J s is continuous in u0 because of the lack
of compactness. Using the uniform contraction principle, we have that for each
(ζ, u0, q) ∈ Es × E × R, equation (A.6) has a unique solution z(·; ζ, u0, q) ∈ C+

γ

which is Lipschitz continuous in ζ and satisfies

(A.8) |z(·; ζ, u0, q)− z(·; ζ̄ , u0, q)|+γ ≤ 2C|ζ − ζ̄|.

To see that z is C1 in ζ, we first have that J s is a uniform contraction from
C+
γ+ν , 0 ≤ ν ≤ ν0, to itself with respect to the parameters ζ, u0, and q. Thus, J s

has a unique fixed point zν(·; ζ, u0, q) ∈ C+
γ+ν which is a solution of (A.6). Since

C+
γ+ν ⊂ C+

γ , by the uniqueness of solutions of equation (A.6), we have that z = zν .

Hence z(·; ζ, u0, q) ∈ C+
γ+ν . In other words, z(t; ζ, u0, q) decays much faster than
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e−γt as t → ∞. Using the same argument as in Proposition 4.1, we obtain that
ζ �→ z(·; ζ, u0, q) is C1 from Es to C+

γ .

To show z(·, ζ, u0, q) is Lipschitz continuous in u0, we first notice that from the
variations of constants formula, using (4.2) and (4.3) and choosing ε0 and ρ0 to be
small enough, we have

(A.9) ‖∂u0u(t, u0, q)‖L(E,E) ≤ 2max{2, C}e
ν0
2 t, t ≥ 0.

For each u0, ū0 ∈ E, using (A.6), we obtain

|z(·, ζ, ū0, q)− z(·, ζ, u0, q)|C+
γ−ν0/2

≤ L(ε, ρ, σ, a0, β0, γ)|z(·, ζ, ū0, q)− z(·, ζ, u0, q)|C+
γ−ν0/2

+
( 2‖∂2fε‖
γ − ν0/2− a0

+
4ρ‖∂2Φ‖

1− e−(γ−ν0/2−a0)

+
(2− σ)C‖∂2fε‖

(1− σ)(β0 − γ + ν0/2)1−σ
+

2Cρ‖∂2Φ‖
1− e−(β0−γ+ν0/2)

)
|z(·, ζ, u0, q)|C+

γ
|ū0 − u0|,

(A.10)

which yields

|z(·, ζ, ū0, q)− z(·, ζ, u0, q)|C+
γ−ν0/2

≤ 2
( 2‖∂2fε‖
γ − ν0/2− a0

+
4ρ‖∂2Φ‖

1− e−(γ−ν0/2−a0)

+
(2− σ)C‖∂2fε‖

(1− σ)(β0 − γ + ν0/2)1−σ
+

2Cρ‖∂2Φ‖
1− e−(β0−γ+ν0/2)

)
|z(·, ζ, u0, q)|C+

γ
|ū0 − u0|.

(A.11)

Hence, u0 → z(·; ζ, u0, q) is Lipschitz continuous.

Derivative with respect to ζ. Let

ls(u0, ζ, q) := v0 + zv(0; ζ − w0, u
0, q),

where u0 = (v0, w0) and zv is the v-component of z. Then, ls(u0, ζ, q) is C1 in ζ,
Lipschitz continuous in u0, and

ls(u0, ζ, q + T ) = ls(u0, ζ, q).

By (A.6), we have

zv(0; ζ, u
0, q) =

∫ 0

+∞
e−Acτ

(
fε,v

(
z(τ ; ζ, u0, q) + u(τ, u0, q)

)
− fε,v(u(τ, u

0, q))

+ ρ
(
Φv

(
z(τ ; ζ, u0, q) + u(τ, u0, q)

)
− Φv(u(τ, u

0, q))
)
pT,ι(τ + q)

)
dτ.

Using (A.8), we have

‖∂ζ ls(u0, ζ, q)‖L(Es,Ec) ≤ 4C

(
Lipfε
γ − a0

+
2ρLipΦ

1− eγ−a0

)
< K(ρ+ ε) < 1

provided that ε0 and ρ0 are small enough.

Lipschitz continuity with respect to u0. Let Λu0(q) be the stable leave defined by
the graph of ls(u0, ζ, q). For ū0 ∈ E, let the w component of ū0 − u0 be ζ. By the
fact that ū0 ∈ Λu0(q) if and only if z(·, ζ, u0, q) ∈ C+

γ and satisfies (A.6), we have

that ū0 ∈ Wss(u0, q) if and only if ū0 = ls(ζ, u0, q) + ζ. Hence,

Λu0(q) = Wss(u0, q) = {ls(u0, ζ, q) + ζ|ζ ∈ Es}.
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From (A.11), we have that ls(ζ, u0, q) is Lipschitz continuous in u0. It follows that,
for each u0(v0, w0) ∈ E and ζ ∈ Es,

φ(u0, ζ) := Λu0(q) ∩ {ζ + Ec}ls(u0, ζ, q) + ζ.

That η(u0, ζ) is Lipschitz continuous follows from (A.11).

Finally, we prove that this foliation is equivariant for the dynamical system
generated by (A.1). To see this, taking a leaf of the stable foliation Λu0(q), we will
show that u(τ, ·, q) maps it into the leave Λu(τ,u0,q)(q + τ ). Let ū0 ∈ λu0(q). Then(
u(·, ū0, q) − u(·, u0, q)

)
∈ C+

γ , which impliesu(· + τ, ū0, q) − u(· + τ, u0, q) ∈ C+
γ .

Thus, by using the cocycle property, u(t + τ, ū0, q) = u(t, u(τ, ū0, q), q + τ ) and
u(t + τ, u0, q) = u(t, u(τ, u0, q), q + τ ), we have that u(τ, ū0, q) ∈ Λu(τ,u0,q)(q + τ ).
Let G(u,w) = ls(u,w, 0) and Wss

u = Λu(0). Proposition 4.3 then follows from the
above discussion. This completes the proof. �
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APPENDIX B

Proof of Proposition 7.5

Existing results [BLZ] may be cited to give the existence of center manifolds
but not the estimate

(B.1) ‖W(ξ,Θ;T )‖C3(A×(M0μ
−1
0 ,∞)) < Ke−

c
3T ,

which contains uniform C3 bounds for all large T . We will follow the approach in
[BLZ]. To get the estimate (B.1) we first modify the system using bump functions

and show that the manifold W̃ is approximately normally hyperbolic. Then, we
prove that FT has a true invariant manifold nearby it that satisfies the estimate
(B.1) by using the Lyapunov-Perron approach. The existence of such manifold
can also be obtained by Hadamard’s graph transform method, but the proof of
smoothness is much more complicated.

B.1. Extending the Domains of κ and G

We use a cut-off function to extend the domains of κ and G to E. Let σ : R →
[0, 1] be a C∞ function satisfying σ(s) = 1 for |s| < 1; σ(s) = 0 for |s| > 2. We
further assume that σ(s) is such that |σ′(s)| ≤ 2.

B.1.1. Modifications for forcing period: κ.

Recall that κ : V 1
100 ,

1
100

→ V 11
20 ,C0(1+K0) is such that

ξ̂ι =
√
(1 + ξ0)2 + γ̃(γ̃ + 2(1 + ξ0) cos(Θ0 − c0))− 1 +O4(ι+ μ

1
2 ),

tan Θ̂ι =
(1 + ξ0) sinΘ0 + γ̃ sin c0
(1 + ξ0) cosΘ0 + γ̃ cos c0

+O4(ι+ μ
1
2 ),

ŵι = eA
sιw0 + ρ

√
α

a
· 1
ι

∫ ι

0

eA
s(ι−τ)P s

0Φ(0)dτ +O4(ι+ μ
1
2 ),

(B.2)

where tan c0 =
Φy(0)
Φx(0)

and C0 is given by (5.23). We modify κ to obtain a function

κ̃ defined on E by replacing O4(ι+ μ
1
2 ) in (B.2) by O4(ι+ μ

1
2 )σ(100|ξ|)σ(100|w|).

B.1.2. Modified equation for relaxing period: G̃.

From Proposition 6.1, the solutions of equation (6.1) initiated from V 3
5 ,C0(K0+1)

will stay inside of V 31
50 ,C

2
0 (K0+1) for all t > 0. To extend the domain of equation

(6.1) from V 31
50 ,C

2
0 (K0+1) to E, we re-write (6.1) as

ξ̇ = −a(μ)(2 + c1(ξ) +O4(μ))ξ +O4(
√
μ)w,

Θ̇ =
ω̂

Θ∗ + τa(μ)(2 + c2(ξ) +O4(μ))ξ +O4(
√
μ)w,

ẇ = Ãsw +O4(
√
μ)w,

(B.3)

67
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where (i) c1(ξ) = (3ξ + ξ2)σ( 5031ξ), c2(ξ) = ξσ( 5031ξ); (ii) O4(μ),O4(
√
μ) in the

above are obtained from their corresponding terms in equation (6.1) multiplied by
σ( 5031 |ξ|)σ((C2

0(K0 + 1))−1|w|).
Let G̃ be the time-T − ι map of equation (B.3). Then,

(a) G̃ = G on V 3
5 ,C0(K0+1).

(b) Propositions 6.1, 6.2, which we proved in Sect. 6.1 originally for equation
(6.1), remain valid for the modified equation (B.3).

To prove (b) we need to go through the entire proof for Propositions 6.1 and
6.2 for equation (B.3). We caution that, in deriving the equations of variations up
to order four used in the proof of Proposition 6.2, there are additional terms from
derivatives of σ( 5031ξ) and σ((C2

0(K0+1))−1|w|). If one such term is from a term of

O4(μ
k) in (B.3), we would have extra terms in the same form. We, however, can

not absorb terms originated from differentiating c1(ξ) and c2(ξ) in the same way.
These terms do not alter the conclusions of Propositions 6.2 but they will make the
constant K2 in this proposition larger.

B.1.3. Estimates on contraction for unforced system.

Let ûι = (ξ̂ι, Θ̂ι, ŵι), G̃T−ι(ûι) = (ξT−ι,ΘT−ι,wT−ι). Denote the first two of
equation (B.3) as

(B.4)
d

dt
ξ = ζ(ξ,Θ,w),

d

dt
Θ = χ(ξ,Θ,w),

and let

M(1) =

( ∂ξT−ι

∂ξ̂ι

∂ξT−ι

∂Θ̂ι
∂ΘT−ι

∂ξ̂ι

∂ΘT−ι

∂Θ̂ι

)
, M(2) =

( ∂ξT−ι

∂ξ̂ι

∂ξT−ι

∂ŵι

∂ΘT−ι

∂ξ̂ι

∂ΘT−ι

∂ŵι

)
,

M(3) =

(
∂ξT−ι

∂Θ̂ι

∂ξT−ι

∂ŵι
∂ΘT−ι

∂Θ̂ι

∂ΘT−ι

∂ŵι

)
.

By a direct computation, we obtain

(B.5)
d

dt
detM(i)

t =

(
∂ζ

∂ξ
+

∂χ

∂Θ

)
detM(i)

t +W(i)

where

W(1) =
∂ζ

∂w

(
∂wt

∂ξ̂ι

∂Θt

∂Θ̂ι

− ∂w

∂Θ̂ι

∂Θt

∂ξ̂ι

)
+

∂χ

∂w

(
∂wt

∂Θ̂ι

∂ξt

∂ξ̂ι
− ∂wt

∂ξ̂ι

∂ξt

∂Θ̂ι

)
,(B.6)

W(2) =
∂ζ

∂w

(
∂wt

∂ξ̂ι

∂Θt

∂ŵι
− ∂w

∂ŵι

∂Θt

∂ξ̂ι

)
+

∂χ

∂w

(
∂wt

∂ŵι

∂ξt

∂ξ̂ι
− ∂wt

∂ξ̂ι

∂ξt
∂ŵι

)
,(B.7)

W(3) =
∂ζ

∂w

(
∂wt

∂ŵι

∂Θt

∂Θ̂ι

− ∂wt

∂Θ̂ι

∂Θt

∂ŵι

)
+

∂χ

∂w

(
∂wt

∂Θ̂ι

∂ξt
∂ŵι

− ∂wt

∂ŵι

∂ξt

∂Θ̂ι

)
.(B.8)

From (B.5) we obtain

(B.9) detM(i) = e
∫ T−ι
0

( ∂ζ
∂ξ+

∂χ
∂Θ )dt

(
δ1,i +

∫ T−ι

0

W(i)e−
∫ t
0
( ∂ζ
∂ξ+

∂χ
∂Θ )dsdt

)
,
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where δ1,i = 1 if i = 1 and δ1,i = 0 otherwise. We also have from (B.3) and (B.4)
that

(B.10)
∂ζ

∂ξ
+

∂χ

∂Θ
= −a(μ)(2 + c′1(ξ)ξ + c1(ξ)) +O(μ2) +O(

√
μ)w.

We have

Lemma B.1. (i) −10 < 2 + c′1(ξ)ξ + c1(ξ) < 10, (ii) |W(i)| < O4(
√
μ)e−

c
2T .

Proof: (i) follows from a direct computation. (ii) follows from Proposition 6.2 for
equation (B.3). �

B.1.4. A lower bound estimate on the contraction of G̃ ◦ κ̃ in center
directions.

For u0 = (ξ,Θ,w) ∈ R× R× Es
0 , let

ûι = (ξ̂ι, Θ̂ι, ŵι) := κ̃(u0) and (ξT−ι,ΘT−ι,wT−ι) := G̃ ◦ κ̃(u0).

We further denote

M =

(
∂ξT−ι

∂ξ
∂ξT−ι

∂Θ
∂ΘT−ι

∂ξ
∂ΘT−ι

∂Θ

)
.

Proposition B.2. detM > 1
100e

−10a(μ)T .

Proof: From

∂ξT−ι

∂ξ
=

∂ξT−ι

∂ξ̂ι

∂ξ̂ι
∂ξ

+
∂ξT−ι

∂Θ̂ι

∂Θ̂ι

∂ξ
+

∂ξT−ι

∂ŵι

∂ŵι

∂ξ
,

∂ξT−ι

∂Θ
=

∂ξT−ι

∂ξ̂ι

∂ξ̂ι
∂Θ

+
∂ξT−ι

∂Θ̂ι

∂Θ̂ι

∂Θ
+

∂ξT−ι

∂ŵι

∂ŵι

∂Θ
,

∂ΘT−ι

∂ξ
=

∂ΘT−ι

∂ξ̂ι

∂ξ̂ι
∂ξ

+
∂ΘT−ι

∂Θ̂ι

∂Θ̂ι

∂ξ
+

∂ΘT−ι

∂ŵι

∂ŵι

∂ξ
,

∂ΘT−ι

∂Θ
=

∂ΘT−ι

∂ξ̂ι

∂ξ̂ι
∂Θ

+
∂ΘT−ι

∂Θ̂ι

∂Θ̂ι

∂Θ
+

∂ΘT−ι

∂ŵι

∂ŵι

∂Θ
,

we have

(B.11) detM = detM(1)A1 + detM(2)A2 + detM(3)A3

where

A1 =
∂ξ̂ι
∂ξ

∂Θ̂ι

∂Θ
− ∂ξ̂ι

∂Θ

∂Θ̂ι

∂ξ
, A2 =

∂ŵι

∂Θ

∂ξ̂ι
∂ξ

− ∂ŵι

∂ξ

∂ξ̂ι
∂Θ

, A3 =
∂ŵι

∂Θ

∂Θ̂ι

∂ξ
− ∂ŵι

∂ξ

∂Θ̂ι

∂Θ
.

A1, A2 and A3 are contributions from κ̃. From (B.2),

(B.12) A1 >
1

10
, |A2|, |A3| < 1.

From (B.9) and (B.11) we have

(B.13) detM = e
∫ T−ι
0

( ∂ζ
∂ξ+

∂χ
∂Θ )dt

(
A1 +

3∑
i=1

∫ T−ι

0

AiW(i)e−
∫ t
0
( ∂ζ
∂ξ+

∂χ
∂Θ )dsdt

)
.

The assertion then follows from (B.10), (B.12) and Lemma B.1. �
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B.2. 2-D Invariant Manifold

In this section, we show that the modified time-T map F̃T has a two-dimensional
invariant manifold and the manifold satisfies the estimate (B.1).

B.2.1. A canonical form for the modified time-T map.

For the rest of this section we denote

x = (ξ,Θ), y = w.

For u0 = (ξ,Θ,w) = (x, y), we write the modified time-T map F̃T := G̃ ◦ κ̃ as

F̃T (x, y) = (fT (x, y), e
ÃsT y + gT (x, y))

where

fT (x, y) = (ξT−ι(x, y),ΘT−ι(x, y)),

gT (x, y) = wT−ι(x, y)− eÃ
sT ŵι(x, y) + eÃ

sT (ŵι(x, y)− y).

Lemma B.3. For each y ∈ Es
0, fT (·, y) is a C3 diffeomorphism from R

2 onto
itself. Furthermore, there is a positive constant K4 independent μ and T such that

(B.14) | (DxfT (x, y))
−1 | ≤ K4e

10a(μ)T .

Proof: That fT (·, y) is a C3-diffeomorphism follows from (B.14), which is in a
simple rewriting of Proposition B.2. �

Lemma B.4. There is a positive constant K5 independent of μ and T such that

(i) |Dk
ufT (x, y)| ≤ K5 for 1 ≤ k ≤ 3, where u = (x, y);

(ii) |Dk
yfT (x, y)| ≤ O(

√
μ), for 1 ≤ k ≤ 3;

(iii) |Dk
ugT (x, y)| ≤ K5e

− c
2T for 0 ≤ k ≤ 3;

(iv) |Dk
T,ufT (x, y)| ≤ K5(1 + |ξ|+ |y|) for 1 ≤ k ≤ 3;

(v) |Dk
T,ugT (x, y)| ≤ K5(1 + |ξ|+ |y|)e− c

2T for 1 ≤ k ≤ 3.

Proof: These estimates follows from the chain rule in taking derivatives, the ex-
plicit formula for κ̃, and Propositions 6.1 and 6.2 for G̃. �

B.2.2. Existence of invariant manifold.

Let
F̃T = G̃T ◦ κ̃(x, y) = (fT (x, y), e

ÃsT y + gT (x, y))

be the map in the above. For simplicity, we denote X = R
2 and Y = Es

0 . We

note that X is a normally hyperbolic invariant manifold for G̃T due to Lemma
B.3, which is an approximately normally hyperbolic invariant manifold for F̃T in
the sense of [BLZ]. We want to show that for μ sufficiently small, F̃T has a two
dimensional invariant manifold.

Proposition B.5. Assume that f and g are C3. Then, there exists μ0 > 0 such
that for 0 < μ < μ0, there exists T0(μ) sufficiently large such that for T > T0(μ),

F̃T has a C3 invariant manifold

W(T ) = ∪x∈X{x+W(T, x)}
where W(T, x) = W(T, ξ,Θ) is periodic in Θ and WT : (T0,∞)×X → Y is a C3

map and satisfies for 1 ≤ k ≤ 3

(B.15) ||Dk
xW(T, x)|| ≤ K6e

− c
2T
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and

(B.16) ||Dk
T,xW(T, x)|| ≤ K6(1 + |x|)e− c

3T

where K6 is a constant independent of T and μ.

B.3. Proof of Proposition B.5

Let γ > 0. We define the following Banach spaces

Cγ(X) =
{
x = {xn}n≤0 | xn ∈ X, sup

n≤0
|xn|eγn < ∞

}
with the norm

|x|Cγ(X) = sup
n≤0

|xn|eγn

and
Cγ(Y ) =

{
y = {yn}n≤0 | yn ∈ Y, sup

n≤0
|yn|eγn < ∞

}
with the norm

|y|Cγ(Y )
= sup

n≤0
|yn|eγn.

Let μ ∈ (0, μ0) be fixed. In what follows we let α1, γ, σ, and β1 be such that

(B.17) α1 = 4a(μ)T, σ0 =
c

100
T, γ =

c

32
T, β1 =

c

4
T,

where c ∈ (0, β0) is a constant given in Proposition 6.1. We note that γ − σ0 <
γ + σ0 < 1

4β1

Since a(μ) → 0 as μ → 0, we may choose that μ0 > 0 sufficiently small such
that for each μ ∈ (0, μ0), α1 < γ − σ0. We also choose T0(μ) large enough so that

K4e
3a(μ)T < eα1 and 2Ce−β0T < e−β1 ,

where C is from (4.3).

Lemma B.6. Let η ∈ X and ỹ = {ỹn}n≤0 be a sequence in Y . Let x =
{xn}n≤0 = x(T, η, ỹ) be a sequence determined by

xn+1 = fT (xn, ỹn), x0 = η.

Then, there exists T0 independent of η and ỹ such that if T > T0, then

(B.18) yn+1 = eÃ
sT yn + gT (xn(T, η, ỹ), yn), n ≤ 0,

has a unique bounded solution y(T, η, ỹ) given by

(B.19) yn =
n−1∑

i=−∞
e(n−1−i)TÃs

gT (xi(T, η, ỹ), yi).

Proof: Let η ∈ X and ỹ ∈ C0(Y ). We first show that equation (B.18) has a
solution y ∈ C0(Y ) if and only if y ∈ C0(Y ) and satisfies equation (B.19). Suppose
y ∈ C0(Y ) satisfies equation (B.18). Then by the discrete variation of constants
formula, we have

(B.20) yn = e(n−k)TÃs

yk +

n−1∑
i=k

e(n−1−i)TÃs

gT (xi(T, η, ỹ), yi)

Since ||enTÃs || ≤ e−β1n for n ≥ 0, for k ≤ n

|e(n−k)TÃs

yk| ≤ e−β1(n−k)|y|C0(Y ) → 0, as k → −∞,
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which yields (B.19). Clearly, if y satisfies equation (B.19), then y satisfies equation
(B.18). Next, we show that for each η ∈ X, equation (B.18) has a unique solution
y ∈ C0(Y ). Define a map J = {Jn} from C0(Y ) to itself by

Jn(y) =
n−1∑

i=−∞
e(n−1−i)TÃs

gT (xi(T, η, ỹ), yi).

It is easy to see that this is well-defined. Next, we show that J is a contraction.
For y, z ∈ C0(Y ), we have that

|Jn(y)− Jn(z)| ≤
n−1∑

i=−∞
e−β1(n−1−i)Lip gT |y − z|C0

≤ K5e
− c

2T

1− e−β1
|y − z|C0

which is contraction provided that T0 is large enough. Here, we used Lemma B.4.
Hence, equation (B.19) has a unique bounded solution. The proof is complete. �

Lemma B.7. Assume that f and g are C3. Then, there exists μ0 > 0 such that
for each 0 < μ < μ0 there is T0(μ) sufficiently large such that for T > T0 and for
each η ∈ X there exists a unique solution (x(T, η),y(T, η)) of{

xn+1 = fT (xn, yn), x0 = η,

yn =
∑n−1

i=−∞ e(n−1−i)TÃs

gT (xi, yi)
(B.21)

with y(T, ·) ∈ C0(Y ). Furthermore, y : (T0,∞)×X → C3γ(Y ) is C3 and

(B.22) ||Dk
T,ηy|| ≤ K6e

− c
3T , 1 ≤ k ≤ 3,

where K6 is a constant independent of T and μ.

Proof: We prove this lemma in three steps.

Step 1. Existence of a Lipschitz Continuous Solution.

For ξ, η ∈ X, and ỹ, z̃ ∈ Cγ(Y ), let x = x(T, ξ, ỹ) = {xn}n≤0 and x̃ =
x̃(T, η, z̃) = {x̃n}n≤0 be given by

xn+1 = fT (xn, ỹn), x0 = ξ;

x̃n+1 = fT (x̃n, z̃n), x̃0 = η.

Let wn = xn − x̃n. Then

wn+1 = DxfT (τxn + (1− τ )x̃n, ỹn)wn + fT (x̃n, ỹn)− fT (x̃n, z̃n).

Using Lemma B.3, we have that

|wn| ≤ eα1 |wn+1|+ eα1Lip yfT |ỹn − z̃n|.

Then, we have for n ≤ 0

(B.23) |wn| ≤ e−α1n|ξ − η|+ Lip yfT

−1∑
i=n

eα1(−n+i)|ỹi − z̃i|

Hence,

(B.24) |wn| ≤ e−α1n|ξ − η|+
Lip yfT

1− eα1−γ
e−γn|ỹ − z̃|Cγ

.
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We now are ready to show that equation (B.21) has a solution. For η ∈ X, ỹ, z̃ ∈
Cγ(Y ), using Lemma B.6, equation (B.19) has solutions y(T, η, ỹ) and y(T, η, z̃),
respectively. Thus, we have
(B.25)

yn(T, η, ỹ)−yn(T, η, z̃) =

n−1∑
i=−∞

e(n−1−i)TÃs
(
gT (xi(η, ỹ), yi(η, ỹ))−gT (xi(η, z̃), yi(η, z̃))

)
.

Then, using (B.24) and Lemma B.4, we have

|y(T, η, ỹ)− y(T, η, z̃)|Cγ(Y )

≤
(
1− Lip(gT )

1− eγ−β1

)−1 Lip(gT )Lipy(fT )

(1− eα1−γ)(1− eγ−β1)
|ỹ − z̃|Cγ(Y )

≤ 1

2
|ỹ − z̃|Cγ(Y )

(B.26)

provided T0 is sufficiently large. Thus, y(T, η, ·) is a contraction in Cγ(Y ). By
the contraction mapping principle, y(T, η, ·) has a unique fixed point y(T, η) =
{yn(T, η)}n≤0 in Cγ(Y ). Lemma B.6 implies that {yn} is bounded. Therefore,
equation (B.21) has a unique solution (x(T, η),y(T, η)) with y(T, η)) ∈ C0(Y ),
where x(T, η) is given by xn+1 = fT (xn, yn(T, η)). Furthermore, we have

|xn| ≤ e−α1n|η|+
Lipy(fT )e

−γn

(1− eα1−γ)

(
K5e

− c
2T

1− eβ1
+ |fT (0, 0)|

)
,

|yn| ≤
K5e

− c
2T

1− eβ1
.

(B.27)

which together with Lemma B.4 gives that

|x|Cγ(X) ≤ |η|+K5 + |fT (0, 0)|
|y|C0(Y ) ≤ K5

(B.28)

provided μ0 is small enough and T0 is sufficiently large.
Next, we show that y(T, ·) is a Lipschitz continuous from X to Cγ(Y ). Let

ξ, η ∈ X. Using (B.24), we obtain

|yn(T, ξ)− yn(T, η)|

≤
n−1∑

i=−∞
e−(n−1−i)β1Lip(gT )

(
|xi(T, ξ,y(T, ξ))− xi(T, η,y(T, η))|+ |yi(T, ξ))− yi(T, η)|

)

≤
n−1∑

i=−∞
e−(n−1−i)β1−iγLip(gT )

(
|ξ − η|+

(
1 +

Lip yfT

1− eα1−γ

)
|y(T, ξ))− y(T, η)|Cγ (Y )

)

which implies that

|y(T, ξ))− y(T, η)|Cγ(Y ) ≤ 4K5e
− c

2T |ξ − η|,
provided that T0 is large enough.

Step 2. y(T, η) is C1.

We first show that for each fixed T > T0, y(T, η) is C1 in η. Since Cγ1
(Y ) ⊂

Cγ2
(Y ) for 0 < γ1 < γ2, the uniqueness of the fixed point of a contraction mapping

implies that y(T, η) ∈ Cγ−σ(Y ) for all σ ∈ [−σ0, σ0]. We first claim that y(T, ·) :
X → Cγ−σ0/2(Y ) is differentiable. We consider the following equations{
Un+1 = DxfT

(
xn(T, η), yn(T, η))

)
Un +DyfT (xn(T, η), yn(T, η))Vn U0 = I;

Vn =
∑n−1

i=−∞ e(n−1−i)TÃs
(
DxgT (xi(T, η), yi(T, η))Ui +DygT (xi(T, η), yi(T, η))Vi

)
.
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Using the same argument as we used in Step 1, we have that the above equation
has a unique solution (U(T, η),V(T, η)) ∈ L(X,Cγ−σ(X))×L(X,Cγ−σ(Y )) for all
σ ∈ [−σ0, σ0]. Next, we show that V(T, η) is the derivative of y(T, η) in η. We
want to show that

y(T, ξ)− y(T, η)−V(T, η)(ξ − η)o(|ξ − η|), as ξ → η.

As we estimated (B.24), we have

|xn(T, ξ)− xn(T, η)− Un(T, η)(ξ − η)|

≤ e−n(γ−σ0/2)
(
o(|ξ − η|)

(
|U|Cγ−σ0

(X) + |V|Cγ−σ0
(Y )

)
+

Lip y(fL)

1− eα1−γ+σ0/2

∣∣y(T, ξ)− y(T, η)−V(T, η)(ξ − η)
∣∣
Cγ−σ0/2(Y )

)(B.29)

Now, we estimate∣∣yn(T, ξ)− yn(T, η)− Vn(T, η)(ξ − η)
∣∣

≤
∣∣∣ n−1∑
i=−∞

eβ1(n−1−i)
(
‖DxgT ‖ |xi(T, ξ)− xi(T, η)− Ui(T, η)(ξ − η)|

+ ‖DygT ‖ |yi(T, ξ)− yi(T, η)− Vi(T, η)(ξ − η)|

+ o(|ξ − η|)e−(γ−σ0/2)i
(
|U|Cγ−σ0

+ |V|Cγ−σ0

))
(B.30)

which together with (B.29) implies that

|y(T, ξ)−y(T, η)−V(T, η)(ξ−η)
∣∣
Cγ−σ0/2

=o(|ξ−η|)
(
|U|Cγ−σ0

+|V|Cγ−σ0

)
= o(|ξ−η|).

Hence, y(T, ·) is differentiable from X to L(X,Cγ−σ0
(Y )) and Dy(η) = V(η).

Furthermore,
|Dηy(T, η)|Cγ(Y ) ≤ 4K5e

− c
2T .

Similarly, we may show that Dηy(T, η) is continuous from X to L(X,Cγ(Y )).
We now fix η and show that for each T > T0, y(·, η) is differentiable at T in

Cγ−σ0/2(Y ) and DTy(·, η) is continuous at T in Cγ(Y )). In the following, we fix
α1, δ0, γ, and β1 given by (B.17) at T . Since Cγ1

(Y ) ⊂ Cγ2
(Y ) for 0 < γ1 < γ2, the

uniqueness of the fixed point of a contraction mapping gives that y(T̃ , ·) ∈ Cγ(Y ))

for T̃ sufficiently close to T .
We first show that y(T, η) is Lipschitz continuous in T . Let (x,y) and (x̃, ỹ)

denote the solutions of equation (B.21) with T and T̃ . Then, we have

xn+1 = fT (xn, yn), x0 = η;

x̃n+1 = fT̃ (x̃n, ỹn), x̃0 = η.

Let wn = xn − x̃n. Then

wn+1 =DxfT (τxn + (1− τ )x̃n, yn)wn + fT (x̃n, yn)− fT (x̃n, ỹn)

+ fT (x̃n, ỹn)− fT̃ (x̃n, ỹn).

Using Lemma B.3 and B.4, we have that

|wn| ≤ eα1 |wn+1|+ eα1
(
Lip yfT |yn − ỹn|+K5(1 + |x̃n|+ |ỹn|)|T − T̃ |

)
.

As (B.24), we have

(B.31) |wn| ≤
Lip yfT

1− eα1−γ
e−γn|y− ỹ|Cγ

+
K5

1− eα1−γ
e−γn(1+ |x̃|Cγ

+ |ỹ|Cγ
)|T − T̃ |.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

B.3. PROOF OF PROPOSITION B.5 75

From the second equation of (B.21), we have

yn − ỹn =
n−1∑

i=−∞

{
e(n−1−i)TÃs

(
gT (xi, yi)− gT̃ (x̃i, ỹi)

)

+
(
e(n−1−i)TÃs − e(n−1−i)T̃ Ãs

)
gT̃ (x̃i, ỹi)

}
.

Then using (B.31) and Lemma B.4, we obtain

|yn − ỹn|

≤
n−1∑

i=−∞
e−(n−1−i)β1−γiLip(gT )

(
1 +

Lip yfT

1− eα1−γ

)
|y− ỹ|Cγ

+

n−1∑
i=−∞

e−(n−1−i)β1−γiK5e
− c

2
T ( K5

1− eα1−γ
+ 1

)
(1 + |x̃|Cγ + |ỹ|Cγ )|T − T̃ |

+ C∗|T − T̃ |e−
c
2
T

(B.32)

which gives

|y − ỹ|Cγ(Y )

≤ 2K5(2K5 + 1)e−
c
2T (1 + |x|Cγ

+ |y|Cγ
)|T − T̃ |+ C∗|T − T̃ |e− c

2T

≤
(
4K5(2K5 + 1)(1 + |η|+K5 + |fT̃ (0, 0)|) + C∗)e− c

2T |T − T̃ |
(B.33)

provided that μ0 is small enough, T0 is sufficiently large and T̃ is close to T , where
C∗ is a constant independent of μ and T . Here, we used (B.28).

We now show that y(T, η) is differentiable at T . We consider the following
equations with Ū ∈ Cγ(X) and V̄ ∈ Cγ(Y )

Ūn+1 = DxfT
(
xn(T, η), yn(T, η))

)
Ūn +DyfT (xn(T, η), yn(T, η))V̄n

+DT fT
(
xn(T, η), yn(T, η))

)
U0 = 0;

(B.34)

V̄n =

n−1∑
i=−∞

e(n−1−i)TÃs
(
DxgT (xi(T, η), yi(T, η))Ūi +DygT (xi(T, η), yi(T, η))V̄i

)

+

n−1∑
i=−∞

(n− 1− i)Ãse(n−1−i)TÃs

gT
(
xi(T, η), yi(T, η)

)

+

n−1∑
i=−∞

e(n−1−i)TÃs

DT gT
(
xi(T, η), yi(T, η)

)
.

(B.35)

First, by Theorem 1.4.3 in Henry [H], there is a constant C∗
0 independent of t such

that for 1 ≤ k ≤ 3, ∣∣(Ãs)ketÃ
s

w
∣∣ ≤ C∗

0 t
−ke−β0t|w|, t > 0.

Then, for x(T, η) ∈ Cγ(X) and y(T, η) ∈ Cγ(Y ), using Lemma B.4, the above
infinite series are well-defined. Again, using the same argument as we used in Step
1, we have that the above equation has a unique solution (Ū(T, η), V̄(T, η)) ∈
Cγ−σ(X) × Cγ−σ(Y ) for all σ ∈ [−σ0, σ0]. Next, we show that V̄(T, η) is the
derivative of y(T, η) in T . We want to show that

y(T̃ , η)− y(T, η)− V̄(T, η)(T̃ − T ) = o(|T̃ − T |), as T̃ → T.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

76 B. PROOF OF PROPOSITION 7.5

As we estimated (B.24), we have

|xn(T̃ , η)− xn(T, η)− Un(T, η)(T̃ − T )|

≤ e−n(γ−σ0/2)
(
o(|ξ − η|)

(
1 + |Ū|Cγ−σ0

(X) + |V̄|Cγ−σ0
(Y )

)
+

Lip y(fL)

1− eα1−γ

∣∣y(T̃ , η)− y(T, η)−V(T, η)(T̃ − T )
∣∣
Cγ−σ0/2(Y )

)(B.36)

Now, estimating
∣∣yn(T̃ , η)− yn(T, η)− V̄n(T, η)(T̃ − T )

∣∣ we get

|y(T̃ , η)− y(T, η)− V̄(T, η)(T̃ − T )
∣∣
Cγ−σ0/2

= o(|T̃ − T |)
(
1 + |U|Cγ−σ0

+ |V|Cγ−σ0

)
= o(|T − T̃ |),

by choosing μ0 small enough and T0 large enough. Hence, y(T, η) is differentiable
in T and DTy(T, η) = V̄(T, η) and

|DTy(T, ·)|Cγ(Y ) ≤
(
4K5(2K5 + 1)(1 + |η|+K5 + |fT (0, 0)|) + C∗)e− c

2T

≤ K6e
− c

3T
(B.37)

for some constant K6 independent of T provided that T0 is large enough. Here we
use the fact |fT (0, 0)| = O(T ). Similarly, we may show that the derivatives of first
order are continuous in T and η.

Step 3. We show that y(T, η) is C3.

We claim for each fixed T > T0

y(T, ·) : X → Cjγ(Y ) is Cj , Dj
ηy(T, η) ∈ Lj(X,Cjγ−σ0

)(Y ), 1 ≤ j ≤ 3

and

(B.38) ||Dj
ηy(T, η)||Lj(X,Cjγ(Y )) ≤ K6e

− c
2T .

Here Lj(X,Cγj(Y )) is the usual space of bounded j-linear forms. In the case there
is no confusion, we simply use || · || to denote the operator norm.

We prove it by induction. In Step 1 and Step 2, we proved that this is true for
j = 1. Let 2 ≤ m ≤ k − 1. By the induction hypothesis, we have that y(T, ·) is
Cj from X to Cγj(Y ) for all 1 ≤ j ≤ m − 1 and ||Dj

ηy(T, η)||Lj(X,Cγj(Y )) ≤ Kj .

We want to show that y(T, ·) is Cm from X to Cmγ(Y ). Note that Dm−1
η y(T, η)

satisfies the following equation

Dm−1xn+1(T, η) = DxfT (xn(T, η), yn(T, η))(D
m−1xn(T, η)

+DyfT (xn(T, η), yn(T, η))D
m−1yn(T, η) +Rn(T, η);

Dm−1yn(T, η) =

n−1∑
i=−∞

e(n−1−i)TÃs
(
DxgT (xi(T, η), yi(T, η))D

m−1xi(T, η)

+DygT (xi(T, η), yi(T, η))D
m−1yi(T, η)

)
+

n−1∑
i=−∞

e(n−1−i)TÃs

Si(T, η).
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where

Rn(T, η) =
m−3∑
l=0

(
m− 2

l

)
Dm−2−l

η

(
DxfT (xn(T, η), yn(T, η))

)
Dl+1xn(T, η)

−
m−3∑
l=0

(
m− 2

l

)
Dm−2−l

η

(
DyfT (xn(T, η), yn(T, η))

)
Dl+1yn(T, η),

Si(T, η) =

m−3∑
l=0

(
m− 2

l

)
Dm−2−l

η

(
DxgT (xi(T, η), yi(T, η))

)
Dl+1xi(T, η)

+

m−3∑
l=0

(
m− 2

l

)
Dm−2−l

η

(
DygT (xi(T, η), yi(T, η))

)
Dl+1yi(T, η).

Using the induction hypothesis, we have that Rn(T, η) and Sj(T, η) are C1 and

||DRn(T, η)|| ≤ Ke−(m−1)γn and ||DSj(T, η)|| ≤ Ke−(m−1)γje−
c
2T

for some positive constantK independent of n, j. Then, using the same argument as
in Step 2, we show thatDm−1y(T, ·) is differentiable fromX to Lm−1(X,Cmγ−σ0

(Y ))
and Dmy(T, ·) is continuous from X to Lm(X,Cmγ(Y )). Furthermore,

||Dmy(T, ·)||Lm(X,Cmγ(Y )) ≤ K6e
− c

2T ,

where K6 is a constant independent of T . Similarly, we have y(T, η) is C3 in T and
η and for 2 ≤ k ≤ 3

||DT,ηy|| ≤ K6e
− c

3T .

This completes the proof of Lemma B.7. �
Proof of Proposition B.5 Let W(T, η) = y0(T, η). Then, from Lemma B.7, W
is C3 from (T0,∞)×X to Y and |DjW(T, η)| ≤ K6e

− c
3T , for j = 1, 2, 3. Let

W(T ) =
{
(η,W(T, η) | η ∈ X

}
.

We claim that W is an invariant manifold. First, from Lemma B.6 and B.7 we have
that for each η ∈ X the following system

xn = fT (xn−1, yn−1), x0 = η

yn = eÃ
sT yn−1 + gT (xn−1, yn−1)

has a unique solution {(xn, yn)}n≤0 such that {yn} is bounded. Set

η1 = fT (η,W(T, η)),

ζ1 = eÃ
sTW(T, η) + gT (η,W(T, η)).

By Lemma B.6 and B.7, there exists a unique solution {(xn(T, η1), yn(T, η1)}n≤0

for equation (B.21) with x0 = η1. Clearly, y0(T, η1) = W(T, η1) from the definition
of W. On the other hand, {(x̃n, ỹn)}n≤0 with (x̃n, ỹn) = (xn+1(T, η), yn+1(T, η))
for n ≤ −1 and

(x̃0, ỹ0) =
(
fT (η,W(T, η)), eÃ

sTW(T, η) + gT (η,W(T, η))
)

is also a solution for equation (B.21) with x0 = η1. The uniqueness implies that
(xn(T, η1), yn(T, η1)) = (x̃n, ỹn). Thus, ζ1 = W(T, η1). Hence, W is invariant.
Clearly, W(T, η) = W(T, ξ,Θ) is periodic in Θ since the system (B.21) is periodic
in Θ. �
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Restricting to A and using Proposition B.5, we have Proposition 7.5
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APPENDIX C

Proofs of Proposition 8.1 and Lemma 8.2

We assume at the outset that L > 105. 1 The following is from direct compu-
tation:

Lemma C.1. Let f = fa, any a. Then
(a) |f ′| < 3

2L; |f ′′| < 5L;

(b) in C 1
3
: |f ′′| > 2

5L, and |f ′′x|/|f ′′y| < 5
2 for all x, y;

(c) outside of C 1
3
: |f ′| > 2

5L · 1
3 = 2

15L.

Let σ = L− 1
4 . First we note that from Lemma C.1(b)(c) we have, for x 
∈ Cσ,

(C.1) |f ′
a(x)| >

2

5
L

3
4 .

This is because if x ∈ C 1
3
, then |f ′

a(x)| > (minCσ
|f ′′|) · σ > 2

5L
3
4 , and if x 
∈ C 1

3
,

then |f ′
a(x)| > 2

15L > 2
5L

3
4 . Now for a in an interval Δ and k = 1, 2, we define

γ
(k)
0 (a) ≡ ck, and let γ

(k)
i (a) := f i

a(γ
(k)
0 (a)) for i ≥ 1. Then

d

da
γ
(k)
1 (a) ≡ 1, and

d

da
γ
(k)
i+1(a) = f ′

a(γ
(k)
i (a))

d

da
γ
(k)
i (a) + 1.

If we stipulate that γ
(k)
j (a) 
∈ Cσ for all j ≤ i, then we have

(C.2) | d
da

γ
(k)
i+1(a)|/|

d

da
γ
(k)
i (a)| ≈ |f ′

a(γ
(k)
i (a))| > 2

5
L

3
4 > 400.

Lemma C.2. Let Δ be such that the following hold for k = 1, 2 and n > 1:

(i) γ
(k)
i (Δ) ∩ Cσ = ∅ for 0 < i < n;

(ii) |γ(k)
i (Δ)| ≤ 1

4σ for 0 < i < n.
Then for all a, a′ ∈ Δ, ∣∣∣∣∣

d
daγ

(k)
n (a)

d
daγ

(k)
n (a′)

∣∣∣∣∣ < 2.

Proof: Let Θi = γ
(k)
i (a) and Θ′

i = γ
(k)
i (a′). Then

d
daΘn

d
daΘ

′
n

=
f ′
a(Θn−1)

d
daΘn−1 + 1

f ′
a′(Θ′

n−1)
d
daΘ

′
n−1 + 1

≈
f ′
a(Θn−1)

d
daΘn−1

f ′
a′(Θ′

n−1)
d
daΘ

′
n−1

,

so

log
d
daΘn

d
daΘ

′
n

≈
n−1∑
i=1

log
f ′
a(Θi)

f ′
a′(Θ′

i)
≤

n−1∑
i=1

|f ′
a(Θi)− f ′

a′(Θ′
i))|

|f ′
a′(Θ′

i)|
=

n−1∑
i=1

|f ′′
a (Θ̂i)|

|f ′
a(Θ

′
i)|

|Θi −Θ′
i|

1We focus here on explaining the ideas of the proofs; the constants are very far from optimal
due to the repeated use of crude worst-case-scenario estimates.
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where Θ̂i lies between Θi and Θ′
i. We have used f ′

a ≡ f ′
a′ in the last equality.

We estimate (∗) := |f ′′
a (Θ̂i)|/|f ′

a(Θ
′
i)| as follows: If Θi,Θ

′
i ∈ C 1

3
, then |f ′

a(Θ
′
i)| >

|f ′′
a (Θ̌i)| · σ for some Θ̌i between Θ′

i and the critical point, and (∗) ≤ |f ′′
a (Θ̂i)|

|f ′′
a (Θ̌i)|

1
σ <

5
2L

1
4 by Lemma C.1(b). If one of Θi and Θ′

i is not in C 1
3
, then neither is in Cγ where

γ = 1
3 − 1

4σ > 1
3 − 1

60 = 19
60 , and by Lemma C.1(a)(c), (∗) < (5L)/( 25L · 19

60 ) =
750
19 .

Let C = max{ 5
2L

1
4 , 75019 }. Then

log
d
daΘn

d
daΘ

′
n

≤ C

n−1∑
i=1

|Θi −Θ′
i| ≤ C

(
n−1∑
i=0

(
2

5
L

3
4 )−i

)
|Θn−1 −Θ′

n−1| < log 2.

Here (C.2) is used in the second inequality, and |Θn−1 −Θ′
n−1| ≤ 1

4L
− 1

4 in the last
one. �

Proof of Proposition 8.1: We describe below an algorithm that produces, for
n = 1, 2, · · · , a decreasing sequence of parameter intervals Δ0 ⊃ Δ1 ⊃ Δ2 ⊃ · · ·
and for each critical point ck, k = 1, 2, a sequence of times ik,1 ≤ ik,2 ≤ · · · with
ik,n+1 = ik,n or ik,n+1. The sought after parameter a∗ will be in ∩iΔi, and the ik,n

are used to adjust the number of iterates so as to control the lengths of γ
(k)
ik,n

(Δn)

where the map γ
(k)
i is defined above, see the proof of Lemma C.1. If the length of

γ
(k)
ik,n

(Δn) is too short, it may fall into Cσ in the next iterate, and such Δn would

not contain the desired parameter a∗. We also need to adjust i1,n and i2,n to make

sure that length of γ
(1)
i1,n

(Δn) and γ
(2)
i2,n

(Δn) are comparable. This is because if, say,

γ
(1)
i1,n

(Δn) winds around S
1 too many times, all subintervals I of Δn corresponding

to the connected components of S1 \ Cσ may be very short. In this case we would

not be able to control the length of the critical curve γ
(2)
i2,n

(I).

We call (Δn; i1,n, i2,n) an admissible configuration if the following conditions
are satisfied for k = 1, 2:

(A1) γ
(k)
i (Δn) ∩ Cσ = ∅ for all i ≤ ik,n.

(A2) For all a, a′ ∈ Δn, ∣∣∣∣∣
d
daγik,n

(a)
d
daγik,n

(a′)

∣∣∣∣∣ < 2.

(A3) (minimum length one iteration later):
∣∣∣γ(k)

ik,n+1(Δn)
∣∣∣ ≥ 10σ.

To construct an admissible configuration for n = 1, we let ik,1 = 1 for k = 1, 2.

Since d
daγ

(k)
1 (a) = 1, |γ(k)

1 (Δ0)| = 5σ < 1
2 , so each γ

(k)
1 (Δ0) meets at most one

component of Cσ. Now even in the worst-case scenario where the two intervals

(γ
(k)
1 )−1Cσ, k = 1, 2, of length 2σ each, are evenly spaced in Δ0, we can still find

an interval Δ1 ⊂ Δ0 with |Δ1| = 1
3σ such that γ

(k)
1 (Δ1)∩Cσ = ∅ for k = 1, 2. (A3)

holds since |γ(k)
2 (Δ1)| > 2

5L
3
4 |γ(k)

1 (Δ1)| = ( 25L
3
4 )( 13σ) > 10σ.

Assume inductively that we are handed an admissible configuration (Δn; i1,n,
i2,n). For each k, we iterate forward and set ik,n+1 = ik,n + 1 if both (A4) and
(A5) below are satisfied. If one of these conditions fails, we do not iterate, setting
ik,n+1 = ik,n:
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(A4)
∣∣∣γ(k)

ik,n
(Δn)

∣∣∣ ≤ 1
4σ (so our distortion estimation holds for the next itera-

tion);

(A5) γ
(k)
ik,n+1(Δn) meets at most one component of Cσ.

Consider first the case where (A4) and (A5) are satisfied and ik,n+1 = ik,n + 1
for both k = 1, 2. The parameter interval Δn+1 is chosen as follows: By (A3) and

(A5), 10σ < |γ(k)
ik,n+1

(Δn)|, and γ
(k)
ik,n+1

(Δn) meets at most one component of Cσ,

so the fraction of γ
(k)
ik,n+1

(Δn) in Cσ is ≤ 1
5 . By virtue of (A4) and Lemma C.2, we

have

(C.3) |(γ(k)
ik,n+1

)−1Cσ| <
2

4× 1 + 1× 2
|Δn| =

1

3
|Δn|.

(The bound 1
3 is obtained by taking the derivative of (γ

(k)
ik,n+1

)−1 on Cσ to be

twice that outside.) Thus even in the worst-case scenario (as in the n = 1 case),
there exists a subinterval Δn+1 ⊂ Δn of length 1

9 |Δn| with the property that

γ
(k)
ik,n+1

(Δn+1) ∩ Cσ = ∅, k = 1, 2. For this choice of Δn+1, we have (A1) by de-

sign. (A2) is guaranteed by (A4) for step n and Lemma C.2. As for (A3), an-
other application of our distortion estimate together with (A3) from step n gives

|γ(k)
ik,n+1

(Δn+1)| > 1
8×2+1×1 · 10σ = 1

17 · 10σ. One iteration later, such a segment is

guaranteed to have a length > 2
5L

3
4 · 1

1710σ > 10σ.
Next, consider the case where, say, i1,n+1 = i1,n + 1 but i2,n+1 = i2,n. In this

case, even if (γ
(1)
i1,n+1

)−1Cσ is situated exactly in the middle of Δn, we may choose

Δn+1 with |Δn+1| = 1
3 |Δn| so that γ

(1)
i1,n+1

(Δn+1)∩Cσ = ∅. (A1)–(A3) are verified

for this critical curve as above. For k = 2, (A1) and (A2) are inherited from the
previous step, and (A3) is checked as follows: if (A4) fails for k = 2, then

|γ(2)
i2,n+1

(Δn+1)| = |γ(2)
i2,n

(Δn+1)| ≥
1

5
|γ(2)

i2,n
(Δn)| >

1

20
σ.

Notice that the first inequality uses only (A2) from step n. One iteration later, this

curve will have length > 2
5L

3
4 · 1

20σ > 10σ. If (A4) holds but (A5) fails, then the
distortion estimates hold for the next iterate, and

|γ(2)
i2,n+1+1(Δn+1)| ≥

1

5
|γ(2)

i2,n+1+1(Δn)| ≥
1

5
|γ(2)

i2,n+1(Δn)| >
1

5
(2π − 2σ)

which is > 10σ. This completes the construction for step n+ 1 in this case.
Finally, suppose ik,n+1 = ik,n for k = 1, 2. Let Δn+1 be the left half of Δn,

and observe that the new configuration is again admissible: For each k, and verify
(A3) by arguing separately as in the last paragraph the two cases corresponding to
(i) the failure of (A4) and (ii) the failure of (A5) but not (A4). Repeat this process
until one of the critical curves is short enough to move forward. �

Before proceeding to the proof of Lemma 8.2, we state a distortion lemma
similar to Lemma C.2 and easier:

Sublemma C.3. Let Θ, Θ̂ and n ∈ Z+ be such that ωi, the segment between
f i(Θ) and f i(Θ̂), satisfies ωi ∩ Cσ = ∅ and |ωi| < 1

4σ for all 0 ≤ i < n. Then∣∣∣∣∣ (f
n)′(Θ)

(fn)′(Θ̂)

∣∣∣∣∣ ≤ 2.
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Proof of Lemma 8.2: (a) Following the proof of (C.1), we obtain |f ′| > 2
5L

1
4 on

S1 \ I.
(b) For Θ ∈ I, notice first that n(Θ) ≥ 2, since |f(Θ)−f(c)| ≤ 1

2 (maxI |f ′′|)δ20 ≤
1
2 ·5L · (L− 3

4 )2, which is < 1
4σ. Writing n = n(Θ), we estimate |(fn)′(Θ)| as follows.

Since |fnx − fnc| > 1
4σ, it follows from the sublemma above that for some Θ1

between Θ and c,

(C.4)
1

2
|f ′′(Θ1)||x− c|2 · 2|(fn−1)′(fc)| >

1

4
σ .

Reversing the inequality at time n− 1 and using the sublemma again, we have

(C.5)
1

2
|f ′′(Θ2)||Θ− c|2 · 1

2
|(fn−2)′(fc)| ≤ 1

4
σ

for some Θ2 between Θ and c. Substituting the estimate for |(fn−1)′(fc)| from
(C.4) into

|(fn)′Θ| ≥ |f ′′(Θ3)||Θ− c| · 1
2
|(fn−1)′(fc)| ,

we obtain

|(fn)′Θ| ≥ 1

2

|f ′′(Θ3)|
|f ′′(Θ1)|

σ
1

|Θ− c| .

Finally, substituting the estimate for |Θ− c| from (C.5) into the last inequality and
use the lower bounds for |f ′′(Θ2)| and |(fn−2)′(fc)| from Lemma C.1, we arrive at

|(fn)′Θ| >
1

8

|f ′′(Θ3)|
|f ′′(Θ1)|

√
σ |f ′′(Θ2)|

1
2 |(fn−2)′(fc)| 12 > A L

1
2−

1
8 ·

(
1

2
L

3
8

)n−2

.

Here A is a constant independent of L; we have used in the last inequality that the
fn−1-image of the segment between Θ and c is outside of C 3

4σ
. For n ≥ 2, this is

≥ A′( 12L
3
16 )n > L

1
6n for L is large enough. �
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