Easy bounds for \(n! \)

Tyler Neylon

Theorem 1.1

\[n^n \leq e^n n! \leq (n + 1)^{n+1} \]

We can derive this inequality from the simpler

\[x \leq \lceil x \rceil \leq x + 1 \quad (*) \]

using the idea of a product integral.

Define \(\pi \int \) to be \(\exp \int \log f \) for any positive function \(f : \mathbb{R} \to \mathbb{R} \). We can think of \(\pi \int \) as a way of multiplying the values of \(f(x) \) over a range in contrast to the standard \(\int \), which adds these values.

For any positive sequence \((a_k)_{k=1}^n \), we can see that

\[
\pi \int_0^n a_{\lceil x \rceil} dx = \pi \int_0^1 a_1 \cdot \pi \int_1^2 a_2 \cdots \pi \int_{n-1}^n a_n = \prod_{k=1}^n a_k,
\]

so that \(\pi \int_0^n \lceil x \rceil dx = n! \) It is clear from the definition of \(\pi \int \) that

\[
\pi \int_0^y x dx = \left(\frac{y}{e} \right)^y.
\]

We may extend one version of the fundamental theorem of calculus to its product analog: if \(\partial F = f \), then

\[
\pi \int_a^b f = F(b) \div F(a),
\]

where we define the product derivative \(\partial F = \exp \partial \log F \). If \(a = g(c) \) and \(b = g(d) \), then

\[
\pi \int_a^b f(x) dx = \pi \int_c^d [f \circ g(y)]^{\partial g(y)} dy
\]

represents the substitution \(x = g(y) \). Now we can see that

\[
\pi \int_0^y (x + 1) dx = \pi \int_1^{y+1} x dx = \left(\frac{y + 1}{e} \right)^{y+1} \div \left(\frac{1}{e} \right)^1 = \frac{(y + 1)^{y+1}}{e^y}
\]

To prove the theorem, just take \(\pi \int_0^n dx \) of \((*) \) and multiply through by \(e^n \).

\[\square \]