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Abstract. An idealized framework to study the impacts of phase transitions on atmospheric
dynamics is described. Condensation of water vapor releases a significant amount of latent heat,
which directly affects the atmospheric temperature and density. Here, phase transitions are treated
by assuming that air parcels are in local thermodynamic equilibrium, which implies that condensed
water can only be present when the air parcel is saturated. This reduces the number of variables
necessary to describe the thermodynamic state of moist air to three. It also introduces a discontinuity
in the partial derivatives of the equation of state. A simplified version of the equation of state is
obtained by a separate linearization for saturated and unsaturated parcels. When this equation of
state is implemented in a Boussinesq system, the buoyancy can be expressed as a piecewise linear
function of two prognostic thermodynamic variables, D and M , and height z. Numerical experiments
on the nonlinear evolution of the convection and the impact of latent heat release on the buoyant
flux are presented.
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1. Introduction

Water vapor accounts for less than 2 percent of the mass of the atmosphere,
but plays a fundamental role in many atmospheric phenomena, ranging from clouds,
thunderstorms, and hurricanes to the global circulation. This is due to the fact that,
of all atmospheric gases, only water is present in all three phases within the Earth’s
atmosphere. Phase transitions — condensation of water vapor in cloud droplets or
ice crystals, freezing and evaporation of liquid water, and melting and sublimation of
ice — are associated with a conversion between latent energy and sensible (thermal)
energy. The amount of energy involved with the hydrological cycle is considerable:
when averaged globally, condensation is associated with a net release of approximately
75W/m2 in the atmosphere. This energy is initially injected into the atmosphere
through evaporation at the Earth’s surface and is transported by atmospheric motions
to the regions where condensation takes place. Its full impact on temperature and
density is only felt when water vapor condenses so that latent heat of vaporization is
converted into the thermal energy of the air molecules.

Most of the time, water vapor condenses as a result of atmospheric motions. When
an air parcel rises, it expands adiabatically and its temperature and saturation vapor
pressure drop. During its ascent, a parcel might become saturated, in which case,
water condenses and a cloud is formed. Most clouds in the atmosphere occur within
ascending motions on scales ranging from a few hundred meters for cumulus clouds,
to a few thousand kilometers in the case of the weather systems that dominate the
midlatitudes. Atmospheric circulations play a critical role not only in transporting
water vapor, but also in determining when and where condensation occurs.
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Condensation is not simply a response to atmospheric motions, but has a direct
impact on the dynamics itself. Indeed, when water condenses, it releases latent heat
and warms the air parcel, making it lighter. The condensation of 1g of water is
enough to raise the temperature of 1kg of air by 2.5K. Water vapor concentration
in the atmosphere can exceed 20g per kg. If all this latent heat were converted into
thermal energy, the temperature of an air parcel would increase by 50K and its density
would decrease by approximately 15%. These dual feedbacks - atmospheric motions
controlling condensation and latent heat release affecting air density - are the core of
a complex interplay between dynamics and thermodynamics.

Moist dynamics aims at understanding the impacts of phase transitions on atmo-
spheric flows. This includes a wide range of issues, such as microphysical processes
involving cloud drops and ice crystals, turbulent mixing between cloudy air and its
environment, interactions between different clouds, organization of convection on the
meso-scale, various weather systems such as hurricanes or midlatitude storms, and
the global distribution of precipitation. This is an area of active research, with direct
implications for our understanding of the climate system. In its Fourth Assessment
Report, the Intergovernmental Panel on Climate Change assesses that “cloud feed-
backs remain the largest source of uncertainty” in predicting future climate change
[30].

This situation might be changing due to a combination of improvements in our
ability to simulate cloud systems and a renewed theoretical focus on moist dynam-
ics. A new generation of high-resolution Cloud Systems Resolving Models (CSRMs)
offers a new and powerful tool to address the long-standing issue of how convective
systems interact with their environment. General Circulation Models (GCMs) have
a horizontal resolution on the order of 100 km, which is insufficient to resolve con-
vective motions. As a result, convection and the various associated clouds must be
parameterized in GCMs through some semi-empirical closure. In contrast, CSRMs
have a horizontal resolution of the order of 1–2 km, sufficient to explicitly simulate
the processes associated with the organization of convection. These models have been
shown to reproduce the observed behavior of convection much more accurately than
the parameterizations used in GCMs [27]. The development of CSRMs was initially
driven in the 1980s by studies of deep convection over limited areas [13, 16]. However,
a continuous increase in computing resources has greatly expanded their possible ap-
plications, both in terms of domain size and length of simulations [11, 33, 10]. A
global CSRM should be available for climate simulations within the next decade, but
it is already possible today to take advantage of CSRMs to investigate the interactions
between convection and the large-scale circulation.

In parallel with these new modeling capabilities, significant progress has been
made on a wide range of theoretical issues related to the role of water vapor in at-
mospheric circulation, such as midlatitude storms, the energetics of the atmosphere,
turbulent mixing in cloud dynamics, and large-scale dynamics in the tropics. Co-
operation between mathematicians and atmospheric physicists has been particularly
fruitful in developing new tools and techniques, such as a systematic methodology to
derive the reduced dynamics governing different scales of motion, as well as a formal
derivation of the terms leading to the multi-scale interactions [21, 20, 19]. In [2], this
novel approach has already been successfully applied to stress the role of scale inter-
actions in the Madden-Julian Oscillation [17, 18], the dominant mode of variability
on the intra-seasonal scale in the tropical atmosphere. Water vapor and phase tran-
sitions can lead to novel dynamical behavior, such as the so-called precipitation front
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[9, 32, 26]. The precipitation front theory demonstrates that, in an idealized model,
the interface between the precipitating and non-precipitating regions act as a dynam-
ical shock: solutions exhibit a discontinuity in the vertical velocity and precipitation
fields, and move at a speed distinct from the characteristics of the flow [9]. As mod-
els become increasingly complex, there is also an increasing need for new theoretical
framework that can shed light on how dynamics and thermodynamics interact in a
moist atmosphere.

This paper introduces an idealized framework to study the effects of phase tran-
sition on atmospheric dynamics. Our hope here is that the framework could lead
to new mathematical and physical insights on the effects of phase transition on at-
mospheric motions on the cloud scale from a few hundred meters to a few hundred
kilometers, corresponding to a typical CSRM simulation. The framework discussed
here favors mathematical simplicity over physical accuracy. It was originally intro-
duced by Bretherton [5, 6], but has not been systematically studied since. In section
2, we first review the thermodynamic properties of moist air, and show that, under
the assumptions of thermodynamic equilibrium, phase transitions introduce a dis-
continuity in the partial derivatives of the equation of state. Section 3 discusses an
idealized system for a ’moist’ fluid whose equation of state is piecewise linear. Its pri-
mary advantage is that it provides the simplest fluid dynamical framework in which
the impacts of phase transition can be explicitly investigated. Finally, in section 4,
we introduce a moist analog to the Rayleigh-Bénard convection problem, and discuss
some of its properties by means of numerical simulations.

2. The equation of state for moist air

In thermodynamics, the concept of state variable refers to any quantitative prop-
erty that depends on the state of the system only, e.g. its pressure, temperature,
volume, chemical composition or energy content. Not all combinations of state vari-
ables are physically realisable. In general, the state of a fluid can be uniquely defined
by a combination of a finite number of selected variables. For example, the state
of an ideal gas is uniquely determined by its temperature T and pressure p. Once
these specific state variables are known, all other state variables can be derived. The
equation of state refers to the relationship between different state variables that re-
strict the range of possible combinations to those that are physically realizable. In
practice, this is used to infer the value of certain state variables from the knowledge
of others. One of the better-known examples is the equation of state for an ideal gas
which relates the specific volume α of a gas to its temperature T and pressure p by

α=
RT

p
, (2.1)

with R being the specific gas constant.
For most practical applications, moist air can be treated as a mixture of dry air,

water vapor, and condensed water. In meteorology, ‘dry air’ refers to the mixture
of atmospheric gases - mostly oxygen, nitrogen, argon and carbon dioxide - with
the exclusion of water vapor and condensed water. The composition of dry air is
remarkably uniform through the entire atmosphere, except for stratospheric ozone.
The state of a parcel of moist air can be obtained from the knowledge of four of its
state variables, for example the pressure p, temperature T , water vapor concentration
qv and condensed water concentration ql. This means that any other thermodynamic
quantities such as enthalpy or specific volume can be written as a function of these
four variables F =F (T,qv,ql,p).
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Not all combinations of the four state variables can be observed in the atmosphere.
This is due to the fact that water can spontaneously change phases. Evaporation and
condensation act to restore the thermodynamic equilibrium between water vapor and
liquid water. The saturation water vapor pressure es(T ) is the partial pressure of
the water vapor in thermodynamic equilibrium with liquid water at temperature T .
If too much water vapor is present, in the sense that the partial pressure of water
vapor e is larger than the saturation value e>es(T ), some vapor will condense onto
cloud droplets or water crystals. Conversely, when the water vapor pressure is less
than the saturation vapor e<es(T ), condensed water will evaporate. We refer to
unsaturated air, saturated and supersaturated air as air in which the water vapor
pressure is respectively less than, equal to or larger than the saturation value. The
degree of saturation can be measured through the relative humidity H defined as the
ratio between the partial pressure of water vapor to its saturation value H=e/es(T )
so that saturated air corresponds to H=1.

The adjustment to thermodynamic equilibrium is very fast. Observations indi-
cate that there is very little supersaturation in clouds, with the relative humidity
remaining less than 101%, and unsaturated air is only present in the absence of con-
densed water. There are two notable exceptions: the presence of super-cooled water
at temperature as low as −400C, and precipitation falling through unsaturated air
without re-evaporating instantly. Outside these two special cases, atmospheric air
parcels can be treated as being in local thermodynamic equilibrium, i.e., the condi-
tions for thermodynamic equilibrium apply to each parcel separately. For moist air,
this assumption implies that air parcels can be subdivided into two categories: unsat-
urated parcels in which only water vapor is present, and saturated parcels in which
the partial pressure of water vapor is equal to its saturation value.

The requirement that air parcels are in thermodynamic equilibrium introduces
an additional constraint on the state of moist air. It reduces the number of variables
required to describe the state of moist air to three. Here, we introduce a new state
variable, the total water content qT = qv +ql. Once the total water content is known
as well as two other state variables such as pressure and temperature, it is possible
to use the thermodynamic equilibrium assumption to determine how the total water
content is split between the vapor and condensed phase. The concentration of water
vapor at saturation is the amount of water that would be present in a saturated parcel,
and is given by

qs(T,qT ,p)=
Rv

Rd

es(T )

p−es(T )
(1+qT ), (2.2)

where Rv and Rd are the ideal gas constants for water vapor and dry air. If the
total water content qT is smaller than the saturated value qs, then the parcel is
unsaturated and all the water is in the gas phase. Otherwise, the parcel is saturated
with the condensed and gas phases in thermodynamic equilibrium and it follows that

qv =

{

qT for qT ≤ qs(T,qT ,p)
qs(T,qT ,p) for qT >qs(T,qT ,p)

(2.3a)

ql =

{

0 for qT ≤ qs(T,qT ,p)
qT −qs(T,qT ,p) for qT >qs(T,qT ,p).

(2.3b)

Equations (2.3a)–(2.3b) exhibit a key mathematical property of the equation of
state of moist air: the fact that its partial derivatives are discontinuous at saturation.
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Indeed, the partial derivative of the water vapor concentration with respect to the
total water concentration is given by

(

∂qv

∂qT

)

p,T

=

{

1 for qT <qs(T,qT ,p)
qs(T,qT ,p)

1+qT

for qT >qs(T,qT ,p).
(2.4)

Such a discontinuity in the partial derivative is not limited to water vapor concen-
tration, but extends to relationships between a wide range of physical properties,
such as temperature, specific volume, internal energy, or entropy. This property of
the equation of state is the mathematical translation of the fact that saturated and
unsaturated air behave as two very different fluids.

This can be illustrated by one of its repercussions in tropical meteorology. The
lapse rate is defined as negative of the derivative of the temperature with height,
Γ=−∂T/∂z. For a typical tropical sounding, it is roughly 0.01Km−1 near the surface,
but decreases abruptly to a value of the order of 0.004Km−1 above the cloud base,
usually at about 500 m above the ground. In [35] it has been shown that the tropical
lapse rate is close to that of a parcel raised adiabatically from the surface, i.e., Γ=
−∂p/∂z(∂T/∂p)S,qT

, with p being the parcel pressure and S the entropy per unit
mass of moist air. When a parcel is lifted adiabatically, its pressure drops, its volume
increases, and, as a result of this expansion, its temperature drops. For an unsaturated
parcel, such cooling has no effect on the water vapor concentration. In contrast, once
a parcel is saturated, any cooling also reduces the saturation vapor pressure. This
forces some water vapor to condense, and the latent heat released by this condensation
compensates for part of the cooling. Since condensation starts as soon as the parcel
becomes saturated, the lapse rate of an adiabatic ascent drops sharply when the parcel
becomes saturated at the cloud base.

As discussed above, the state of a parcel of moist air in local thermodynamic equi-
librium is uniquely determined by the combinations of any three independent state
variables. The temperature T might be a natural choice for describing a thermody-
namic system at rest. Here, we will rather use the entropy per unit mass of moist air
S, defined as (see [8] for a derivation)

S =[(1−qT )Cpd +qT Cl] ln
T

To

+(1−qT )Rd ln
pd

po

+qv

Lv

T
−qvRv lnH. (2.5)

Here, Cpd and Cl are the specific heat capacities at constant pressure of dry air and
liquid water, pd is the partial pressure of dry air, Lv is the latent heat of vaporization,
and H is the relative humidity. The quantities To and po are arbitrary values for the
reference temperature and pressure. One advantage of using entropy over temperature
lies in that it can often be assumed that atmospheric motions are both adiabatic and
reversible, which implies that the entropy of a parcel is conserved.

All thermodynamic properties of moist air can be expressed as a function of its
entropy S, pressure p, and total water content qT , i.e., F =F (S,qT ,p). In most cases,
the function F can be quite complex, and is rarely analytic. In practice, the properties
of moist air are computed by deriving relations for the temperature T =T (S,qT ,p),
water vapor content qv = qv(S,qT ,p), and liquid water content ql = ql(S,qT ,p). The
most common procedure is to first compute the temperature T by inverting the ex-
pression (2.5) assuming that the parcel is unsaturated qv = qT . One must then check
whether the partial pressure of the water vapor e is smaller than the saturation pres-
sure es(T ). If this is the case, the parcel is indeed unsaturated and the calculations are
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over. Otherwise, the parcel is saturated, and one must recompute the temperature by
inverting (2.5) for a saturated parcel with qv = qs(T,qT ,p). Once the temperature and
water vapor concentration have been computed, it is straightforward to retrieve other
thermodynamic properties. While this procedure can be cumbersome, it is routinely
performed in atmospheric models, and does not present any technical difficulties. Fig-
ure 2.1 shows the value of the temperature T and specific volume α as a function of
the joint distribution of the entropy and total water content at a pressure of 900mb.
The dashed line marks the separation between saturated and unsaturated states, with
the saturated parcels on the high-qT portion of graph. The isotherms and isochores
(lines of constant α) form an angle where they intercept the separation line, which is
evidence of the discontinuity in the partial derivatives of T and α.

Fig. 2.1. Temperature T (left panel) and specific volume α (right panel) as function of the parcel
entropy S and total water concentration qT for a constant pressure p=900mb. Contour intervals
are 10K for the temperature and 0.025m3kg−1 for the specific volume. The dashed line indicates
the boundary between saturated and unsaturated parcels, with the saturated parcels above the line.

3. Boussinesq system with a piecewise linear equation of state

3.1. Boussinesq equations for a moist atmosphere. The Boussinesq
equations [22, 4, 31] have been widely used to study atmospheric motions.1 The
derivation of the Boussinesq approximation for a compressible fluid requires definition
of a reference profile with a uniform entropy Sref and total water content qT,ref .
This reference state is hydrostatic, which implies that the reference pressure pref is
obtained by integrating the hydrostatic balance ∂pref/∂z =−ρ(Sref ,qT,ref ,pref (z))g.
The governing equations are obtained by expanding the momentum and continuity
equations under the assumption that the pressure and density are a small perturbation
from these reference profiles

du

dt
=−∇p′+Bk+ν∇2u, (3.1)

∇·u=0. (3.2)

Here, u is the three-dimensional velocity, p′ is pressure perturbation normalized by
the density of the reference profile, B is the buoyancy, ν is the kinematic viscosity,

1The anelastic approximation [23, 16, 7, 1] is an alternative to the Boussinesq approximation
that allows for vertical variation of density in the reference profile. It is commonly used to study
atmospheric circulations, in particular deep convection. For the purpose of this paper, the Boussinesq
approximation offers a slightly simpler framework.
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and k denotes the unit vector in z direction. The time derivative d/dt in (3.1) is the
so-called substantial (or material) derivative.

The buoyancy is defined in terms of the difference between the specific volume α
of the parcel density and that of the environment

B(S,qT ,z)=g
α(S,qT ,pref (z))−αref (z)

αref (z)
. (3.3)

Note that the specific volume is evaluated at the reference pressure pref (z) rather
than the total pressure pref (z)+p′(z) in equation (3.3). Quantity g is the gravity
acceleration.

Equations (3.1)–(3.3) are however incomplete as one needs to predict the evolution
of the density field. In the case of moist air, this can be done by providing two
prognostics for two state variables. Here, we use the entropy S and total water
content qT . Their dynamics are given by:

dS

dt
= Ṡ +κ∇2S (3.4)

dqT

dt
= ˙qT +κ∇2qT , (3.5)

with κ being the diffusivity, and Ṡ and ˙qT being the production rates of entropy and
water in the atmosphere. While there are other alternatives, the choice of entropy
and total water content for the prognostic variables has the advantage that both are
conserved for reversible, adiabatic motions, i.e dS/dt=dqT /dt=0.

The system of equations (3.1)–(3.5) can be solved once the boundary conditions
are set and the internal sources of entropy Ṡ and water q̇T are determined. It differs
from the traditional Boussinesq system for a single component fluid in that the buoy-
ancy is determined by the equation of state for moist air, and depends on the two
prognostic variables S and qT and the height z. Reference [25] discusses in greater
detail the use of a nonlinear equation of state in the anelastic and Boussinesq approx-
imation and shows that such a system is consistent with both the first and second
laws of thermodynamics. The approach here takes advantage of the conservation law
for the entropy S and total water qT to implicitly include phase transition through
the equation of state, rather than explicitly computing the latent heat release by
condensation as in the early discussions of moist convection [3, 14, 15],

3.2. Piecewise linear equation of state. The equation of state for moist
air is highly nonlinear. In addition to the discontinuity in the partial derivatives
at saturation, other nonlinearities arise from the expression for entropy, from the
dependency on temperature of the saturation vapor pressure es, of the latent heat L,
and of the heat capacities Cpv and Cl. Our purpose here is to further simplify the
equation of state so that the sole nonlinearity remaining in the equation of state is
that associated with phase transitions. In order to do so, we follow [5, 6] by assuming
that the entropy and moisture in the system are close to the reference value Sref and
qT,ref and that the partial derivatives of the buoyancy with respect to the entropy
and to total water content depend only on whether a parcel is saturated or not:

(

∂B

∂S

)

qT ,z

=
g

αref

(

∂α

∂S

)

qT ,p

=

{

BS,u if qT ≤ qsat(S,z)
BS,s if qT >qsat(S,z)

(3.6)

(

∂B

∂qT

)

S,z

=
g

αref

(

∂α

∂qT

)

S,p

=

{

BqT ,u if qT ≤ qsat(S,z)
BqT ,s if qT >qsat(S,z).

(3.7)
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The four quantities BS,u, BS,s, BqT ,u and BqT ,s are taken to be constant throughout
the domain.

Once we have fixed the partial derivatives of the buoyancy in the saturated and
unsaturated regions, the conserved variables qT and S can be combined into two new
variables D and M

D =BS,u(S−Sref )+BqT ,u(qT −qT,ref ) (3.8)

M =BS,s(S−Sref )+BqT ,s(qT −qT,ref ). (3.9)

Note that, by definition, the reference profile corresponds to Mref (z)=0 and
Dref (z)=0. These two variables are such that the variations of the buoyancy are
controlled solely by the ‘saturated’ or ‘moist buoyancy’ M in the saturated regions,
and by the ‘unsaturated’ or ‘dry buoyancy’ D in the unsaturated regions. Indeed, for
an unsaturated parcel, we have then

(

∂B

∂D

)

M,z

=1, and

(

∂B

∂M

)

D,z

=0, (3.10)

while for a saturated parcel, we have

(

∂B

∂D

)

M,z

=0, and

(

∂B

∂M

)

D,z

=1. (3.11)

These two variables D and M can be thought of as the equivalent of the liquid water
potential temperature θl and the equivalent potential temperature θe that are used
in meteorology.

3.3. Saturation condition. The buoyancy of any parcel can obtained by
integrating the partial derivatives (3.10)–(3.11) and by taking advantage of the fact
that the buoyancy of the reference state is zero, i.e., B(Mref =0,Dref =0)=0. How-
ever to do so we must first establish a criterion which determines whether the parcel
is saturated or not. We need a condition of the form

F (M,D,z)≥0, (3.12)

for which a parcel is saturated. When F (M,D,z)=0, the parcels are said to be on
the saturation line, in the sense that such a parcel can be made either saturated
or unsaturated by an infinitesimal change of its current thermodynamic state. The
condition (3.12) can be obtained directly by linearizing the equation of state for moist
air. A more intuitive approach will be discussed here. First, let us consider two parcels
(M1,D1) and (M2,D2) on the saturation line at a given height z, as illustrated in
figure 3.1. The buoyancy difference between the two parcels can be obtained by either
following a saturated path – first increasing the moist buoyancy M and then increasing
the dry buoyancy D – or by following an unsaturated path – first increasing the dry
buoyancy D and then increasing the moist buoyancy M . Given the partial derivatives
(3.10) and (3.11) in the saturated and unsaturated regions, the first path implies that
the buoyancy difference between the two parcels is B2−B1 =M2−M1, while the
second path yields B2−B1 =D2−D1. This means that M2−M1 =D2−D1 or that
the slope of the saturation line has to be one. For the buoyancy to be continuous, the
saturation line must be defined by

F (M,D,z)=M −D−f(z)=0. (3.13)
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Fig. 3.1. Schematic representation for the derivation of the slope of the saturation line (3.13).
Parcels 1 and 2 are on the saturation line. The buoyancy difference between the two parcels, B2−B1,
can be obtained by following a trajectory that lies in the saturated portion of the domain (above the
saturation line), or one that lies in the unsaturated portion (below the saturation line). The unity
slope of the saturation line (3.13) results from requiring that the buoyancy difference is independent
of the path followed.

The expression contains a yet unknown function f(z) which we determine in the
following. We construct a cycle in the vicinity of the saturation line as sketched in
figure 3.2. The four steps of the cycle are partly in an unsaturated and saturated
environment obeying Γu and Γs, the unsaturated and saturated adiabatic lapse rates.
They are defined as

Γu =−
(

∂T

∂z

)

S,qT ,qT <qs

(3.14)

Γs =−
(

∂T

∂z

)

S,qT ,qT >qs

. (3.15)

As stated above, the reference level zref is defined as M =D=0 and thus f(zref )=0.
The temperature is T =Tref . The cycle consists of the following four steps.

• Step I: A saturated parcel rises adiabatically from z =zref (point 1) to z =z1

(point 2) in a saturated environment. The adiabatic phase change leaves
the buoyancy B unchanged and D=M =B =0 at point 2. The temperature
changes to T =Tref −Γs(z1−zref ).

• Step II: D increases to Dsat by removing liquid water from the moist air
parcel while maintaining a constant buoyancy. As changing D in a saturated
region does not change the buoyancy, the parcel has still B =M =0 at point
3. T remains (nearly) unchanged in comparison to point 2.
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Fig. 3.2. Illustration of a cycle for a moist air parcel in a partly saturated and unsaturated
environment.

• Step III: Adiabatic descent from z =z1 back to z =zref is carried out in the
unsaturated region. At point 4, M =0, B =D=Dsat. The temperature in-
creases to T =Tref −Γs(z1−zref )+Γu(z1−zref ). The buoyancy gain results
to

B≈g
T −Tref

Tref

=g

(

Γu−Γs

Tref

)

(z1−zref ), (3.16)

• Step IV: The air parcel is moistened in an unsaturated environment and re-
turns from point 4 to the starting point 1. The temperature remains nearly at
the value at point 4 and M =0 (since the moist buoyancy remains unchanged
if the path is in the unsaturated region). Thus we end with B =−Dsat at the
starting point 1 and the saturation line.

As a consequence of (3.13), we have that Dsat =f(z). This is also the buoyancy
gained by an saturated adiabatic displacement from z1 to zref , i.e., with (3.16) we
obtain

Dsat =f(z)=N2
s (z−zref ), (3.17)

where the quantity Ns corresponds to the Brunt-Vaisala frequency of a moist adiabatic
temperature profile. It is given by

N2
s =

g

Tref

(Γu−Γs). (3.18)

For Earth-like conditions, N2
s is on the order of 10−4s−2.

A similar cycle can be constructed in order to find the expression for Msat. A
parcel becomes then unsaturated as it moves down from the saturation line to z2 <
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zref . When this parcel is brought back to the level zref , its buoyancy is given B =
Msat =N2

s (zref −z2). The definition of Msat and Dsat can be extended above and
below the level zref

Dsat(z)=

{

0 for z≤zref

N2
s (z−zref ) for z >zref

(3.19)

Msat(z)=

{

N2
s (zref −z) for z≤zref

0 for z >zref .
(3.20)

Note that the parcel with (M =Msat(z),D=Dsat(z)) is on the saturation line and
has a buoyancy B =0 at level z. Using the values for Msat and Dsat in the saturation
criterion (3.12) yields the condition for saturation

M −D≥N2
s (zref −z). (3.21)

The buoyancy of a parcel is then given by

B(M,D,z)=

{

D−Dsat(z) if M −D<N2
s (zref −z)

M −Msat(z) otherwise.
(3.22)

Without loss of generality, we can impose the reference state to be saturated at level
zref =0. In this case, the expression (3.22) for the buoyancy can be written as

B(M,D,z)=max(M,D−N2
s z). (3.23)

Figure 3.3 illustrates the dependence of the buoyancy on D and M at a given level.
The saturation line (indicated as dashed line) always has a slope of one and separates
the saturated and unsaturated regions. Lines of constant buoyancy are parallel to the
M -axis in the unsaturated region and parallel to the D-axis in the saturated regions.
The complete system of equations can now be written as follows:

du

dt
=−∇p′+Bk+ν∇2u (3.24a)

∇·u=0 (3.24b)

dD

dt
= Ḋ+κ∇2D (3.24c)

dM

dt
=Ṁ +κ∇2M, (3.24d)

with the buoyancy given by (3.23). By preserving the discontinuity in its partial
derivative, the simplified state equation provides a thermodynamically consistent de-
scription of phase transition. The Boussinesq system (3.23)–(3.24d) provides a very
simple analogue for atmospheric moist convection while still accounting for the effect
of phase transition. The model does not allow for the condensed water to fall out.

The unsaturated and saturated buoyancies D and M are two state variables that
are conserved for reversible adiabatic processes and are such that the density can
be obtained as a function of D and the pressure p for an unsaturated parcel, and
as a function of M and the pressure p for a saturated one. As such, D and M are
nontrivial functions of the entropy and total water content of the moist air. Rather
than providing an exact physical equivalent for D and M we will provide a physical
interpretation to offer some intuition while avoiding the more technical aspects of
moist thermodynamics.
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Fig. 3.3. Buoyancy as a function of the two variables D and M at a given height z. Dotted lines
are lines of constant buoyancy. The saturation line (dashed line) indicates the separation between
the saturated and unsaturated parcels. The saturation line intersects the D-axis at (D =N2

s z,M =0)
corresponding to a parcel on a saturated line with the same buoyancy as the reference state (D =
0,M =0).

First, if we neglect on first order the changes of density due to the changes in the
concentration of water vapor or liquid water content, the buoyancy is proportional to
the temperature fluctuation

B =g

[

T −Tref (z)

Tref (z)
+ǫ(qv −qv,ref )−ql

]

≈g
T −Tref (z)

Tref (z)
, (3.25)

with ǫ=0.608. For a compressible fluid however, temperature is not an adiabatic
invariant. Rather, two quantities, known as the dry static energy s=CpT +gz−Lvql

and the moist static energy h=CpT +gz+Lvqv [8] can be shown to be approximately
conserved for reversible adiabatic motions. Furthermore, for an unsaturated parcel,
there is no liquid water ql =0 and the variations of temperature are directly related
to the variation of dry static energy. This implies that the unsaturated buoyancy D
is related to the changes in dry static energy:

D∼CpT +gz−Lvql. (3.26)

Similarly, for a saturated parcel at a given pressure, the amount of water vapor present
should be a function of temperature alone through the Clausius-Clapeyron relation-
ship. This means that temperature can be obtained for the moist static energy, and
thus that the saturated buoyancy M is related to the moist static energy

M ∼CpT +gz+Lvqv. (3.27)

The difference of M and D is proportional to the total water content of the parcel

M −D∼ qT −qT,ref . (3.28)
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For an unsaturated parcel with M −D≤−N2
s z, only water vapor is present, and we

have thus

qv −qT,ref ∼M −D and ql =0. (3.29)

When a parcel is saturated, the amount of condensed water is proportional to how
much M −D exceeds the saturation condition, i.e.:

ql ∼M −D+N2
s z. (3.30)

The Boussinesq approximation at the basis of the system (3.23)–(3.24d) is based
on an expansion of the governing equation in terms of the density fluctuations. It
is only accurate under the following conditions: (1) the density fluctuations must be
small, i.e., B≪g; (2) the Mach number Uf/cs, defined as the ratio of a typical velocity
scale Uf to the speed of sound cs, is small Uf/cs ≪1; (3) the vertical extent of the
domain must be small in comparison to the density scale height. The latter in the
atmosphere is approximately 8 km, which means that the Boussinesq approximation
is not accurate for simulating atmospheric flow deeper than 2-3 km. Flows on deeper
layers can be handled by the anelastic approximation [23, 16, 7, 1]. The use of the
piecewise linear equation of state introduces an additional limitation. The derivation
of (3.23) assumes that the partial derivatives of the buoyancy depend only on whether
a parcel is saturated or not (equations (3.6)–(3.7)). This neglects, among other things,
variations in the saturated lapse rate Γs and in the saturated Brunt-Vaisala frequency
Ns with water content and temperature. The saturation specific humidity qs is highly
sensitive to temperature, and thus exhibits strong vertical variation. The scale height
for qs is approximately 3 kilometers in the Earth atmosphere. This implies that the
piecewise linear equation of state can only be accurate for shallow flow, for layer
shallower than 1km. For thicker layers, the piecewise linear equation of state (3.23)
still offers a self-consistent description of a ‘moist’ fluid with phase transition, but it
should not be viewed as a quantitative representation of moist air.

4. Numerical studies in idealized moist Rayleigh-Bénard convection

4.1. Stationary solution and dimensionless parameters. An idealized
moist Rayleigh-Bénard problem is presented now which is based on the piecewise
linear Boussinesq system (3.23)–(3.24d) with Ḋ=Ṁ =0. The is similar to the classic
Rayleigh-Bénard system except for the fact that the equation of state used here allows
for phase transitions. Figure 4.1 illustrates the basic configuration. We consider a
laterally extended layer of fluid bounded by two planes at the bottom z =0 and top
z =H. This situation might be similar to the conditions that prevail in regions of
stratiform convection often observed over subtropical oceans: the lower boundary
corresponds to the ocean surface, and the upper-boundary can be interpreted as a
simplified representation of the sharp potential temperature increase at the top of
cloudy layer. The fluid is destabilized by imposing fixed values of D and M at the
upper and lower boundaries

D(0)=D0 (4.1a)

D(H)=DH (4.1b)

M(0)=M0 (4.1c)

M(H)=MH . (4.1d)
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The free-slip (or stress-free) boundary condition holds for the velocity field at both
planes and reads

∂ux

∂z
=

∂uy

∂z
=0 and uz =0. (4.2)

Similar boundary conditions have been used in [14, 15, 5, 6]. Alternative boundary
conditions can be implemented, for example by prescribing constant flux for both
D and M , which in practice are determined by the normal derivatives ∂D/∂z and
∂M/∂z. The influence of the change in boundary conditions on the turbulent heat
(or buoyancy) transport is still a matter of current research. A three-dimensional
numerical study of dry convection in a cylindrical cell with a constant flux boundary
condition at the bottom and a constant buoyancy at the top detected a smaller heat
transport in comparison to two fixed buoyancy boundary conditions for Rayleigh
numbers Ra>109 [34]. However, in a two-dimensional numerical simulation of dry
convection with two fixed flux boundary conditions no differences in the turbulent
heat transport appeared for Ra≥107 [12]. It thus remains to determine how the
geometry or the spatial dimension affects the heat transport.

The problem has a stationary solution where there is no motion (u=0), and the
state variables D and M are linear functions of height

D(z)=D0 +
DH −D0

H
z (4.3a)

M(z)=M0 +
MH −M0

H
z. (4.3b)

This solution may be partially saturated and partially unsaturated. Equation (3.23)
indicates that the interface between the saturated and unsaturated regions follows
from the condition M(z)=D(z)−N2

s z. This interface — the cloud base — is located
at the level z =zCB and given by

zCB =
(M0−D0)H

DH −D0−MH +M0−N2
s H

. (4.4)

The air is saturated wherever M(z)>D(z)−N2
s z, and unsaturated otherwise. In

figure 4.1 this is the case for height zCB ≤z≤H. Cloudy air will fill the upper part of
the layer if MH −M0−DH +D0 +N2

s H >0. It is also possible that the steady solution
is exactly at the saturation point in the entire domain, i.e., M(z)−D(z)=−N2

s z for
all z∈ [0,H]. Any small perturbation yields a saturated or unsaturated parcel then.
This particular situation is exactly the one which has been investigated by Bretherton
[5, 6]. To our knowledge it is the sole investigation of the moist Rayleigh-Bénard
problem under the framework proposed here.

The problem can be made dimensionless. The dry and moist buoyancy fields are
therefore decomposed as

D(x,t)=D(z)+D′(x,t) (4.5)

M(x,t)=M(z)+M ′(x,t). (4.6)

The variations about the mean profiles of both fields have to vanish at z =0 and H,
which imposes the boundary conditions D′ =0 and M ′ =0. A nondimensional version
of the equations is obtained by defining the nondimensional variables (noted by an
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Fig. 4.1. Steady solution for the idealized moist Rayleigh-Bénard problem in an infinitely
extended layer of height H. The vertical profiles for the two state variables D(z) (dash-dotted line),
D(z)−N2

s z (dashed line) and M(z) (solid line) are shown. The interface between the unsaturated
and saturated regions is located at the level z = zCB.

asterisk)

u∗ =[Uf ]−1u

(x∗,y∗,z∗)=H−1(x,y,z)

t∗ =
[Uf ]

H
t

p∗ =[Uf ]−2p′

(B∗,D∗,M∗)= [B]−1(B,D,M)

Here, [B] is the characteristic buoyancy and [Uf ] the free-fall velocity. They are given
by

[B]=M0−MH

[Uf ]=
√

H|M0−MH |.

The dimensionless version of equations (3.24a)–(3.24d) together with the decom-
positions (4.5) and (4.6) is

du∗

dt∗
=−∇∗p

∗+B∗(M∗,D∗,z∗)k+

√

Pr

RaM

∇2
∗u

∗ (4.7a)

∇∗ ·u∗ =0 (4.7b)

dD′∗

dt∗
=

1√
PrRaM

∇2
∗D

′∗+
RaD

RaM

u∗
z (4.7c)

dM ′∗

dt∗
=

1√
PrRaM

∇2
∗M

′∗+u∗
z. (4.7d)

Here, d
dt∗

= ∂
∂t∗

+u∗ ·∇∗ denotes the nondimensional version of the material deriva-
tive, while ∇∗ and ∇2

∗ are the dimensionless gradient and Laplacian operators. These
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equations contain three nondimensional parameters. As the diffusivities of both buoy-
ancy fields are the same there is only one Prandtl number, which is defined as

Pr=
ν

κ
. (4.8)

In our studies, this will take the value of air, i.e., Pr=0.7. This problem is also
characterized by two Rayleigh numbers, RaD and RaM , which quantify the driving
of the unsaturated and saturated fields D and M

RaD =
H3(D0−DH)

νκ
(4.9)

RaM =
H3(M0−MH)

νκ
. (4.10)

Typical values of the Rayleigh numbers for atmospheric flows range from 1018 to
1022. Under most circumstances, the amount of water in the atmosphere decreases
with height. This implies that the moist Rayleigh number should be larger than the
dry Rayleigh number: RaM ≥RaD. Furthermore, it is often observed that the atmo-
sphere is stable for unsaturated parcels, but unstable for saturated parcels. This is
known in meteorology as conditional instability, and corresponds to having a positive
value of the moist Rayleigh number (RaM >0) number, but a negative value of the
dry Rayleigh number (RaD <0).2 Conditional instability is an important aspect of
atmospheric dynamics that is specifically tied to the phase transition.

In addition to the three parameters explicitly present in equations (4.7a)–(4.7d),
two more parameters are implicitly hidden within the definition of the buoyancy B∗.
The dimensional buoyancy (3.23) can be re-written as

B =M(z)+max
(

M ′,D′+D(z)−M(z)−N2
s z

)

=M0 +
MH −M0

H
z+max

(

M ′,D′+(D0−M0)+
DH −D0

H
z− MH −M0

H
z−N2

s z

)

.

Note that the first two terms on the right-hand side are horizontally uniform. This
implies that they can be balanced by a horizontally uniform pressure field given by
p(z)=−M0z− MH−M0

2H
z2. We can thus remove the first two terms from the buoyancy

field without any loss of generality. In this case, the dimensionless buoyancy becomes

B∗ =max

(

M ′∗,D′∗+SSD +

(

1− RaD

RaM

)

z∗−CSAz∗
)

. (4.11)

The two nondimensional parameters here are the Surface Saturation Deficit (SSD)
and the Condensation in Saturated Ascent (CSA) defined as

SSD =
D0−M0

M0−MH

(4.12)

CSA=
N2

s H

M0−MH

. (4.13)

These two new nondimensional parameters respectively measure how close the lower
boundary is to being saturated and how much water can condense within the atmo-
spheric layer. When D0−M0 is positive, the air at the lower boundary is unsaturated

2The reverse case, with RaD >0 and RaM <0, is possible but rather exceptional, corresponding
to situations where mammatus clouds form in the outflow of deep convective towers.
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and D0−M0 is proportional the “water deficit”, i.e., the amount of water vapor that
must be added for the parcel to become saturated. Conversely, if D0−M0 is nega-
tive, the air at the lower boundary is saturated and M0−D0 is proportional to the
amount of condensed water present. A positive value of SSD indicates that the lower
boundary is unsaturated and would occur over the continents. For convection over
the ocean, one can assume that the lower boundary is saturated with SSD =0.

The dimensionless CSA is related to the drop in concentration of water vapor at
saturation between the bottom (z =0) and the top (z =H) of the layer. The quantity
N2

s H, used to define CSA, is proportional to the amount of condensation that takes
place when a parcel is lifted from the bottom. It is also the amount of buoyancy that
can be gained by a saturated parcel. Consider two parcels starting at the bottom
with the same buoyancy. The first parcel is lifted along a saturated trajectory, while
the second parcel is lifting without any condensation taking place (for example, the
first parcel has D=M =0, while the second has D=0,M =−N2

s H). At the top of
the domain, the buoyancy of the first parcel will be larger than of the second parcel
by N2

s H. The CSA can be interpreted as the total amount of latent heat released by
condensation when a saturated parcel ascent from the bottom to the top of the domain
normalized by the difference in moist static energy between the bottom and the top of
the domain. A large value of the CSA implies that the amount of cloud water that can
be formed is large when compared to horizontal fluctuation variations of the water
vapor content. This indicates the presence of an unbroken cloud layer, similar to
the stratocumulus cloud regime found in the Eastern portions of the tropical oceans.
Conversely, a small value of CSA indicates that horizontal fluctuations of water vapor
content are large compared to the cloud water content, i.e., that isolated clouds can
be present.

For a somewhat more intuitive interpretation of these two nondimensional pa-
rameters, one can think in term of the location and shape of the cloud base. A parcel
with given value of M and D is unsaturated below a level z =(D−M)/N2

s , and sat-
urated above. In the moist Rayleigh-Bénard problem, different parcels have different
saturation levels, so that the cloud base varies. One can however use the saturation
level associated with parcels originating from the lower and upper boundary to infer

the location and variability of the cloud base in the convective layer. We define z
(0)
CB

as the levels at which a parcel originating from the lower boundary (with M =M0

and D=D0) first becomes saturated. Notice here that this level is given by

z
(0)
CB

H
=

D0−M0

N2
s H

=
SSD

CSA

and depends only on CSA and SSD . Similarly, if z
(H)
CB is the level at which a parcel

from the upper boundary (with M =M0 and D=D0) becomes unsaturated, then we
have

z
(H)
CB

H
=

DH −MH

N2
s H

=
SSD +1− RaD

RaM

CSA
.

For given values of the two Rayleigh numbers RaD and RaM , the location and fluc-
tuations of the cloud base are thus determined by the SSD and CSA.
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Fig. 4.2. Time traces of the buoyancy fluctuations B′ at two particular grid points, one above
and one below the cloud base. Data are taken from run MRB1.

Fig. 4.3. Clouds, defined as M −D+N2
s z≥0. Data is taken from a snapshot of runs MRB3

(left) and MRB4 (right). The view perspective is from below into the slab V =L2H. The cloud base
is unbroken and cloudy air is found above the shown isosurface.

4.2. Numerical model and results. For sufficiently large Rayleigh num-
bers an initial small perturbation of the static solution leads to turbulent motion
in the layer. This nonlinear evolution is studied in the following by direct numeri-
cal simulations (DNS) of equations (3.23)–(3.24d). In DNS, neither turbulent eddy
viscosities nor subgrid-scale parametrizations are applied, which limits the range of
accessible Rayleigh numbers.

The dry and moist buoyancy fields are decomposed in terms of their perturbations
D′ and M ′ and linear profiles D and M , as defined in (4.5)–(4.6). The same decom-
position follows for the total buoyancy B. The mean buoyancy variations depend
on the vertical coordinate z only. They can be balanced by an additional pressure
contribution (see (4.11)). The combination of (3.23) and B =max(M,D−N2

s z) re-
sults in four different cases for the local buoyancy fluctuation B′(x,t) which enters
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Fig. 4.4. Isosurface of the buoyancy fluctuation B′ =1.2. Data is taken from a snapshot of run
MRB3. The view perspective is again from below into the slab. In addition a greyscale contour plot
of B′ is at the backside of the slab.

the momentum balance. Note, that the field B′ has to be evaluated from D and M
at each time step and for each grid point. Figure 4.2 shows two such time series of
the buoyancy fluctuations, one at a point above the (prescribed) cloud base zCB and
one below.

All turbulent fields are expanded in finite Fourier series with respect to x and y
directions and in sines or cosines with respect to z. Lateral boundary conditions are
periodic. The finite lateral extension introduces a further geometric parameter to the
problem. The simulation volume, V =L2H, has an aspect ratio which is defined as

A=
L

H
, (4.14)

where L is the length with respect to x and y directions. In the context of atmospheric
science A≫1 is a desirable configuration. In the following numerical experiments, it
will be held fixed at A=4. The Fourier expansion of all fields allows the use of
the pseudospectral method [24, 29] with a 2/3 de-aliasing rule for the Fast Fourier
Transforms. The advancement in time is done by a second-order Runge-Kutta scheme.
In Table 1, we summarize the parameters of the different runs. We list two dry
reference runs DRB1 and DRB1a. The moist convection runs MRB1, MRB2 and
MRB3 differ in the cloud base zCB and the Surface Saturation Deficit SSD. Runs
MRB3 and MRB4 have the same set of parameters, except for both Rayleigh numbers
RaD and RaM . The increase of RaD and RaM by a factor of 10 requires a doubling
of the number of grid points in each space direction.

Clouds in the simulations occur whenever a parcel is saturated for M −D+N2
s z≥

0. Figure 4.3 shows the bases of the cloud layer in simulations MRB3 (left) and
MRB4 (right). The larger the Rayleigh numbers, the smaller the height variations
of the cloud base. Saturated parcels are located in the upper portion of the domain.
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Run RaD RaM Pr SSD zCB/H CSA Uf A 〈u2
i 〉V,t

DRB1 7.0×105 – 0.7 – – – 2.63 4 1.00
DRB1a 9.5×105 – 0.7 – – – 3.06 4 1.22
MRB1 7.0×105 9.5×105 0.7 0.05 0.2 0.53 3.06 4 1.16
MRB2 7.0×105 9.5×105 0.7 0.10 0.4 0.53 3.06 4 1.13
MRB3 7.0×105 9.5×105 0.7 0.18 0.7 0.53 3.06 4 1.03
MRB4 7.0×106 9.5×106 0.7 0.18 0.7 0.53 3.06 4 0.83

Table 4.1. Parameters of the direct numerical simulations. The computational grid contains
Nx×Ny ×Nz =256×256×65 grid points for all cases except MRB4. Run MRB4 is conducted on
a Nx×Ny ×Nz =512×512×129 grid. In this series of simulations we have varied the surface
saturation deficit SSD of the convective layer only. The CSA is constant. Run DRB1a is conducted
for a comparison of the buoyancy statistics. The free-fall velocity for the dry convection runs is given
by Uf =

p

H|D0−DH |. Note that 〈u2
i 〉V,t is a volume and time average of the velocity magnitude

square.

In all moist simulations, the upper portion of the domain is entirely saturated. In
other words, our simulations are similar to the stratocumulus regime, where the cloud
layer is not broken into individual cumulus clouds. All simulations are within the so-
called soft-turbulence regime of thermal convection which holds for Rayleigh numbers
RaD .107−108. Note that Rayleigh numbers in the atmospheric boundary layer
exceed the ones of our model by about 10 order of magnitude. Nevertheless, figure
4.4 illustrates a complex three-dimensional structure for the buoyancy fluctuations.

Figure 4.5 (left) compares the turbulent kinetic energy Ekin(t)=1/(2V )
∫

V
u2

i dV
for the dry Rayleigh-Bénard convection reference run (DRB1) with the moist cases
MRB1 – MRB3, which differ in the SSD with respect to each other. After the
initial growth of the infinitesimal perturbations about the linear buoyancy profiles,
the system passes through a phase of strong relaxation oscillations before reaching a
statistically stationary state of turbulent convection for t≥75. It is found that the
time average of the turbulent kinetic energy is increasing with decreasing SSD (see
figure 4.5 and the values in the table). It can therefore be concluded that the phase
changes have an impact on the velocity fluctuations, since a smaller SSD increases
the fraction of cloudy air. The inset of the panel of figure 4.5 shows that the growth
rate toward a turbulent state increases for increasing Ra.

The two buoyancy fields are advected by the same turbulent flow and follow linear
equations. Therefore, they can be combined to a new scalar field

φ(x,t)=H

(

M ′(x,t)

MH −M0
− D′(x,t)

DH −D0

)

. (4.15)

The field has a dimension of length, φ∗(x∗,t∗)=φ(x,t)/H. In dimensionless form the
scalar is given by

φ∗(x∗,t∗)=

(

RaM

RaD

D′∗(x∗,t∗)−M ′∗(x∗,t∗)

)

. (4.16)

Equations (3.24c) and (3.24d) consequently yield an advection-diffusion equation for
a decaying passive scalar φ

∂φ

∂t
+(u ·∇)φ=κ∇2φ. (4.17)
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Fig. 4.5. Left: Turbulent kinetic energy Ekin(t) for the three moist convection runs and the
dry reference run DRB1. The mean square turbulent velocities were determined for t>75 and are
listed in table 1. The inset compares the initial growth phase of the turbulence for runs MRB3 and
MRB4 starting with exactly the same form of the small perturbation of the static equilibrium. Right:
Scalar variance Eφ(t) for the three moist convection runs (see equation (4.18)). For comparison we
add the graph of the variance of the dry buoyancy field ED(t) which is defined the same way as
Eφ(t) (see equation (4.18)).

In other words, the dynamics of both buoyancy fields gets synchronized with advance-
ment in time. The right plot of figure 4.5 indeed shows that the corresponding scalar
variance for the moist runs, which is given by

Eφ =
1

2V

∫

V

φ2dV, (4.18)

decays to zero while the scalar variances of M and D remain statistically stationary.
The decay is found to be exponential with two different slopes. A very steep decay is
connected with the initial growth of the small perturbation for D and M . A less steep
decay takes over when the growth of both buoyancy fields saturates and relaxes into
the statistically stationary turbulent state. This continues until the (single precision)
noise level is reached. The dynamics of φ is altered when additional volume forcing
terms are added to the model. Those can mimic radiative cooling effects. Further
complexity arises if we allow different scalar diffusivities of D and M . Then the
dynamics of so-called differential diffusion comes into play [28]. Both aspects are
interesting extensions of the present model and will be studied elsewhere.

Figure 4.6(a) reports our findings for the turbulent transport properties across
the convection layer. The buoyancy flux 〈uzB

′(z)〉 is plotted for the different runs.
The profiles are obtained from 31 statistically independent samples where the fields
are averaged in lateral planes. The corresponding time interval is again t≥75 (see
figure 4.5). The presence of cloudy air and latent heat release causes a flux increase
in the upper region of the layer. In the moist simulation, the buoyancy flux profile
shows a sharp increase near the middle of the domain. Indeed, when all the parcels in
a layer are unsaturated, the buoyancy flux is given by the flux of the ‘dry buoyancy’:
〈uzB

′(z)〉= 〈uzD
′(z)〉. In contrast, in a layer where all the parcels are saturated, it is

equal to the flux of ‘moist buoyancy’: 〈uzB
′(z)〉= 〈uzM

′〉(z). In our simulations, the
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Fig. 4.6. (a) Vertical profiles of the mean buoyancy flux 〈uzB′〉. (b) Vertical profiles of the
mean buoyancy fluctuations 〈B′〉. (c) Vertical profiles of the mean square of the turbulent velocity
component 〈u2

z〉. (d) Vertical profiles of the mean square turbulent velocity 〈u2
i 〉. The symbol 〈·〉

denotes an average over x−y planes at fixed z and over a sample of statistically independent turbu-
lence snapshots in all four panels. The line styles are the same for all figures. The horizontal lines
in (b), (c) and (d) have been added as a guide to the eye in order to highlight the asymmetry of the
profiles.

flux of moist buoyancy is larger than the flux of dry buoyancy, 〈uzM
′(z)〉> 〈uzD

′(z)〉,
and the increase of the buoyancy flux corresponds to the location of the average
saturation level. As illustrated in figure 4.3, individual parcels become saturated
at different levels so that the buoyancy flux increases gradually with height as the
atmospheric layer becomes increasingly saturated. The asymmetry is also manifest
in the mean vertical profiles of B′ as can be seen in figure 4.6(b). As a further dry
reference run, we added data from simulation DRB1a to both panels (see the table).
This dry convection run was conducted at the Rayleigh number value RaM and we
can see that the corresponding profile provides the envelope to the moist data. Panels
(c) and (d) show profiles of the velocity fluctuations. Again we can detect asymmetry
which is particularly pronounced for the vertical velocity fluctuations. Above the
cloud base z >zCB , the fluctuations are increased. Slightly stronger vertical updrafts
in the saturated part are in line with the enhanced buoyancy flux. However, this
enhancement is significantly smaller than the buoyancy flux enhancement.

Figure 4.7 compares the transport properties as a function of the Rayleigh num-
ber. We compare the buoyancy flux for runs MRB3 and MRB4. Table 1 showed that
the global mean square of velocity fluctuations decreases with increasing Rayleigh
number. This is also observed for the vertical mean profiles which are qualitatively
similar to those of figure 4.6 (c) and (d), but have a smaller maximum amplitude
(not shown). The Reynolds number of the turbulent flow grows with approximately
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Fig. 4.7. (a) Vertical profiles of the buoyancy flux 〈uzB′〉. The inset displays the local slope of
the profile in order to quantify the width of the crossover of the profile. The dashed line indicates
the cloud base for both runs. (b) Vertical profiles of the buoyancy fluctuations 〈B′〉. The average is
conducted as in figure 4.6. The line styles are the same for all figures.

√
Ra in turbulent convection. With growing Ra the flow and buoyancy field struc-

tures become more filamented since the thickness of the thermal boundary layers at
the bottom and top — the main source of coherent thermal plumes in convection —
shrinks. This is in line with a smaller mean square amplitude of the velocity. The
same trend holds for the buoyancy flux. The profiles for both Rayleigh numbers agree
qualitatively, however the amplitudes are smaller and the transition from the unsat-
urated to the saturated fraction is sharper (see inset of the left panel). The latter
property confirms our observations for the cloud base in figure 4.3.

5. Conclusions

Water vapor has a profound impact on atmospheric dynamics through its phase
transition and the associated latent heat release. Many atmospheric phenomena from
clouds and hurricanes to the planetary-scale circulation can only be fully understood
by addressing the role played by phase transition. While significant progress has been
made over the last few decades, there remains a need for more theoretical insights on
how dynamics and thermodynamics interact in a moist atmosphere. This paper has
presented an idealized framework in which the dynamical impacts of phase transitions
can be studied while dramatically reducing the complexity of the equation of state.

At the core of our approach lies the fact that a parcel of cloudy air can be treated
as being in local thermodynamic equilibrium. In practice, this means that liquid
water can only be present if the parcel is saturated. The thermodynamic equilibrium
assumption has two important consequences: it reduces the number of state variables
necessary to describe the thermodynamic state of moist air to three. The partial
derivatives of the equation of state are discontinuous at saturation. Arguably, this
discontinuity in the partial derivatives is the key feature of the equation of state that
distinguishes moist dynamics from the behavior of a single phase fluid.

To study the dynamic implications of phase transition, we propose an idealized
framework that combines a Boussinesq system where buoyancy is a piecewise linear



318 IDEALIZED MOIST RAYLEIGH-BÉNARD CONVECTION

function of two independent state variables. This framework was initially proposed
by [5, 6] but has not been further explored since then. Our approach is to separately
linearize the equation of state for saturated and unsaturated parcels. The saturation
line, i.e., the boundary between the saturated and unsaturated portion of the state
space, must be re-derived to ensure thermodynamic consistency, which in this case
boils down to linearizing it. The procedure retains the discontinuity in the partial
derivatives along a saturation line, but otherwise simplifies the equation of state such
that the buoyancy can be expressed as a piecewise linear function of two prognostic
thermodynamic variables.

This framework is used here to study a moist analog to the Rayleigh-Bénard
convection. An atmospheric slab is destabilizing by imposing the temperature and
water content at both the upper and lower boundaries. It is shown that this problem
is characterized by five different dimensionless parameters: two Rayleigh numbers
corresponding respectively to the saturated and unsaturated environment, a Prandtl
number, a Surface Saturation Deficit (SSD) and the Condensation in Saturated As-
cent (CSA). For certain regimes, for example when the slab is fully saturated or
fully unsaturated, this problem reduces to the traditional Rayleigh-Bénard convec-
tion. However, when the atmospheric slab is partially saturated, new behaviors can
emerge such as a conditional instability which occurs when the slab is stable for un-
saturated parcels but unstable for saturated parcels. The direct numerical simulations
demonstrate the variation of the buoyant flux profiles compared to the dry convection
case. Further investigations of the parametric space are under way.
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