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ABSTRACT

The dynamics of convectively coupled gravity waves traveling over a precipitating region are analyzed in an
idealized model for the large-scale atmospheric circulation. The model is composed of a shallow water system
coupled to an advection equation for moisture through the convection term, utilizing a quasi-equilibrium
relaxation to moisture closure. Here the authors investigate the model in the strict quasi-equilibrium (SQE)
of infinitely short relaxation time. This framework is applied to study the behavior of a disturbance propa-
gating along a narrow precipitation band, similar to the intertropical convergence zone (ITCZ). For an ITCZ
width on the order of the equatorial Rossby radius, Kelvin waves propagate at the moist gravity wave
speed (about 15 m s21), whereas for a narrow ITCZ, the propagation speed is comparable to the dry gravity
wave (about 50 m s21). It is also shown that a Kelvin wave propagating along a narrow precipitation region
exhibits a meridional circulation that modulates the precipitation rate and affects the propagation speed of
the wave.

1. Introduction

The propagation of tropical disturbances is strongly
affected by the interactions among atmospheric circu-
lation, moisture transport, and convection. These in-
teractions are at the core of many atmospheric issues
such as hurricanes, the Madden–Julian oscillation, and
planetary circulation (Emanuel 1986; Madden and Julian
1971; Pauluis 2004). The present study focuses on the
interaction between deep convection in the intertropi-
cal convergence zone (ITCZ) and equatorial waves and,
in particular, on how the width of the ITCZ impacts the
propagation speed and structure of equatorial Kelvin
waves.
In the tropics, energy absorbed at the surface over the

tropical oceans is transferred to the lower troposphere
through evaporation and then transported to higher al-
titudes through convection and latent heat release. The
ascending branch of the Hadley circulation corresponds
to a region of low-level convergence, the ITCZ. The
ITCZ is characterized by a region of increased convec-
tion, cloudiness, and precipitation; therefore, fluxes of
heat, moisture, and momentum vary dramatically inside
andoutside the ITCZand impact the tropical circulation.

A number of observational works have been un-
dertaken to clarify the interaction between clouds and
atmospheric disturbances. By means of wavenumber–
frequency spectral analysis of satellite data, studies
such as Wheeler and Kiladis (1999) obtained consider-
able success in quantifying the relationship between the
dynamical structure of equatorial waves and moist con-
vection. These convective propagating disturbances are
called convectively coupled equatorial waves (CCEWs)
because they present characteristics similar to the equa-
torially trapped shallow water modes found in Matsuno
(1966); however, there are some important differences.
Wheeler and Kiladis (1999) found that these modes
propagate more slowly than they would in the absence
of precipitation and that low-wavenumber Kelvin
modes propagate faster than the corresponding high-
wavenumber mode. In Straub and Kiladis (2002), evi-
dence is shown of convective activity propagating along
the mean axis of the eastern Pacific ITCZ with the
spatial structure, propagation speed, and dispersion char-
acteristics of the equatorially trapped Kelvin waves. It is
also shown that the coupled Kelvin wave, unlike the
traditional Kelvin wave, has a nonnegligible meridional
component in regions of deep convection. Moreover, in
Wheeler et al. (2000), convectively coupled Kelvin waves
are shown to be weakly dispersive.
The theory for equatorial trapping of large-scale wave-

like disturbances was discovered byMatsuno (1966), who
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derived a complete set of linear wave mode solutions of
the shallow water equations on the equatorial b plane.
Since then, shallow water analytical models have been
extensively used to gain basic insight into the response
of the tropical atmosphere to heating. For instance, Gill
(1980) utilized a linear shallow water model forced by a
stationary heat source concentrated in specific areas to
study how equatorial propagating modes are affected by
diabatic heating. Although these models provide rele-
vant simulations of tropical anomalies, they have the
limitation that the active role of tropical convection is
not resolved.
The quasi-equilibrium (QE) theory is a convective

closure that was originally proposed by Arakawa and
Schubert (1974) and assumed that convective motions
act to eliminate convective instability over an adjust-
ment time scale of a few hours. Based on the time scale
separation between the convective adjustment time and
synoptic or planetary circulation, they find that the rate
of change of convective instability, quantified in terms of
the cloud work function, remains small in convectively
active regions. Under similar assumptions, Emanuel
et al. (1994) argue that the effect of convection on the
large-scale circulation is to reduce the effective static
stability of the atmosphere (or the equivalent depth)
and therefore gravity waves must slow down. Moreover,
based on studies such as Betts (1986) that suggest a con-
vective adjustment time between 2 and 24 h, Emanuel
et al. (1994) proposed the strict quasi-equilibrium (SQE)
theory, in which the atmosphere is instantaneously re-
laxed toward a moist adiabatic profile in convective
regions. This assumption greatly simplifies theoretical
investigations of the interaction of convection and the
planetary scale because it eliminates the need for a
description of the behavior of individual clouds.
However, the original derivation of the SQE theory

has an important limitation: the requirement of an at-
mosphere in which precipitation is active everywhere.
In Frierson et al. (2004, hereafter FMP04), the QE
framework is applied to the study of the interface be-
tween precipitating and nonprecipitating regions (the
precipitation front), assuming SQE and in one space
dimension. Utilizing a similar model, Pauluis et al.
(2008) found stationary precipitation fronts in an ide-
alized Walker circulation background flow, in both one
and two dimensions. In Stechmann and Majda (2006),
the precipitation front theory in one space dimension is
extended to finite convective adjustment time; they
show that for a small convective adjustment time their
results are in agreement with the SQE theory.
The present work is an extension of FMP04 and

Pauluis et al. (2008) for a particular version of the two-
dimensional problem in which, assuming SQE, the be-

havior of large-scale waves propagating along a narrow
precipitation band (the ITCZ) is investigated. The main
advantage that the SQE framework offers in this case is
the simplicity of analysis of the interaction between a
precipitating region and propagating disturbances.
However, the results have to be carefully interpreted
because the applicability of the QE (and SQE) as-
sumption is certainly incorrect at the scale of individual
clouds. Nonetheless, the present approach can give in-
sight into dealing with the roll of moisture in the tropics
and, because general circulation models are frequently
based on QE concepts, it can also be used to explain
some of the behavior of these models.
The paper is organized as follows: In section 2, we

present the model equations and review the main im-
plications of the SQE assumption. This framework is
then applied in section 3 to study the propagation of
CCEWs along a precipitating band parallel to the equa-
tor. First, we obtain stationary solutions (i.e., the sta-
tionary precipitating band, associated with an idealized
Hadley circulation). In this model, both the location and
width of the ITCZ are controlled by imposing the surface
temperature. We then derive the disturbance equations
to investigate the behavior of perturbations. In section 4,
the analytical and numerical results are presented, in-
cluding the convectively coupled Kelvin and Rossby
waves propagating on precipitating bands of distinct
width and location. The effects of the ITCZ on both the
meridional flow and the propagation speed of the
CCEW, as well as the interaction between the coupled
waves and the displacement of the precipitation front,
are discussed in section 5. The main results are summa-
rized in section 6, and the analytical and numerical so-
lutions are described in the appendixes.

2. Model description

The model used here is based on a Galerkin trunca-
tion of the equations of motion into a finite set of ver-
tical modes, equivalent to the quasi-equilibrium tropical
circulation model (QTCM) from Neelin and Zeng
(2000). There are a number of versions of models sim-
ilar to the QTCM and in this paper we utilize the model
from FMP04, in which a detailed derivation and dis-
cussion of its mathematical aspects is presented.
In the QTCM the barotropic and first baroclinic

modes are retained; however, in the present work, for
mathematical simplicity, we only consider the first baro-
clinic mode on the b plane, coupled to a vertically av-
eraged moisture equation. The first baroclinic vertical
structure (winds in the lower troposphere of equal mag-
nitude and opposite signal to those in the upper tro-
posphere) is a fairly good approximation in regions of
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deep convection (Takayabu 1994) and has been used in
several studies of the tropics. Moreover, because deep
convection is known to play a key role in the interac-
tion between water vapor and large-scale dynamics, the
vertically averaged moisture is a reasonable approxi-
mation for the purposes of this work. The governing
equations are

›tu! ›xT ! yy5!ku, (1a)

›ty ! ›yT1 yu5!ky, (1b)

›tT != " u5P! R, and (1c)

›tq1
~Q= " u5!P1E, (1d)

where the main variables are the horizontal velocity
U 5 u(x, y, t)Cu(z), the potential temperature T 5
T(x, y, t)CT(z), the vertical velocityW5 w(x, y, t)Cw(z),
and the height-averaged moisture q 5 q(x, y, t). In non-
dimensional units, the height of the tropopause isHT5 p
and the vertical velocity is assumed to be zero at the
surface and tropopause. The vertical structure is then
given by Cu(z) 5 cos(z) and CT(z) 5 Cw(z) 5 sin(z).
Thus, the first baroclinic vertical structure and conser-
vation of mass imply that

w5 != " u,

where the horizontal gradient is =5 (›x, ›y) and (x, y, z)
represent the zonal, meridional, and upward distances,
respectively.
Note that there is no baroclinic advection term in (1),

which is consistent with the model presented in FMP04.
We neglect not only the barotropic–baroclinic interac-
tion but also, because of the Galerkin truncation, the
baroclinic–baroclinic interaction as well.
The variables are nondimensionalized using the fol-

lowing units: the internal gravity wave speed c5 50m s21,
the Coriolis parameter b 5 2.28 3 10211 m21 s21, the
typical equatorial length scaleLE5

ffiffiffiffiffiffiffi
c/b

p
’ 1500 km, and

the equatorial time scale TE 5 LE/c ’ 8.3 h. The pre-
scribed gross moisture stratification is denoted ~Q. In this
formulation, as in Neelin and Held (1987), Emanuel et al.
(1994), and Sobel and Bretherton (2003), the gross moist
stratification determines the moist phase speed of the
waves. This relationship is also supported by studies with
both idealized (e.g., Frierson 2007) and comprehensive
GCMs (e.g., Lin et al. 2008).
The friction dissipation is parameterized by relaxa-

tion of velocities to zero with k 5 (10 days)21. Evapo-
ration is parameterized by a drag formulation with fixed
wind speed:

E5
qs ! q

te
,

where a typical value for the evaporative time scale is
te 5 10 days. The saturation mixing ratio at the surface
is denoted qs and can depend on the zonal and meridi-
onal direction. The parameterization for the radiative
processes is a Newtonian cooling, that is, a relaxation to
a specified radiative equilibrium profile over a certain
damping time (tr 5 10 days):

R5
T ! T

tr
.

The precipitation parameterization is based on the
Betts and Miller (1986) formulation. In this model,
convection is active when moisture exceeds a reference
saturation profile and it is then relaxed to the saturation
value over a certain time scale. In regions where mois-
ture is below saturation, convection is inactive and the
precipitation vanishes. Mathematically,

P5

q! q̂

tc
, if q. q̂;

0, if q# q̂:

8
><

>:
(2)

In this formulation, tc is the convective adjustment time
and q̂ is the moisture saturation profile and will be
treated as a constant. In FMP04 it is shown that a sat-
uration profile that is a linear function of the potential
temperature—q̂ 5 q̂0 1aT in (1)—is analogous to the
case in which q̂ is constant.
The spatial domain is a channel around the equator.

A dry region is defined as a region where precipitation is
inactive (q, q̂) whereas a moist region is defined as a
region where precipitation is active (q $ q̂). Variables
are periodic in the zonal direction and tend to zero at
the meridional boundary.
In FMP04, solutions of (1), as well as its gradient

formulation, are shown to be bounded; moreover, their
estimates do not depend on the convective adjustment
time tc. Because the inequality holds for any finite tc,
the solutions will be bounded when tc / 0, in agree-
ment with the results presented by Stechmann and
Majda (2006). This asymptotic limit in our model cor-
responds to the strict quasi-equilibrium from Emanuel
et al. (1994). Physically, it means that moisture is in-
stantaneously relaxed toward the moisture saturation
profile; that is, in regions where convection is active,
moisture must satisfy q 5 q̂. A remarkable simplifica-
tion of the SQE assumption is that (1) decouples into
two shallow water systems propagating at distinct
gravity wave speeds. To obtain these equations, note
that when P . 0 and in SQE
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q5 q̂0 ›tq5 00P5E! ~Q= " u. (3)

Substituting (3) into (1c) gives the following shallow
water system:

›tu! ›xT ! yy5!ku, (4a)

›ty ! ›yT1 yu5!ky, and (4b)

›tT ! c20(= " u)5E! R, (4c)

where

c0 5
cm, if q. q̂;

cd, if q# q̂.

"

The moist gravity wave speed is cm 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! ~Q

q
; the dry

gravity wave speed is cd 5 1. In dimensional units they
correspond to cm 5 ;15 m s21 and cd ; 50 m s21.
This model allows for the study of the evolution of the

interface between dry and moist regions and its inter-
actions with the large-scale circulation. The theory is
simpler in one dimension (in a line above the equator)
because there is no meridional wind component and the
free boundary can be interpreted as a propagating shock
along the equator (the precipitation front). The pre-
cipitation front theory is developed in FMP04 and
Pauluis et al. (2008) where, assuming SQE, the interface
displacement and the transfer of signals between the dry
and moist regions are investigated. The theory is then
extended to a finite convective adjustment time in
Stechmann and Majda (2006), again in one space di-
mension. In two dimensions, the interface between
precipitating and nonprecipitating regions is more
complex because it is no longer a single location, as it is
in the one-dimensional case.

3. Methodology

Here, the SQE modeling framework is applied to de-
velop an extension of the precipitation front theory to the
study of equatorial waves on a b plane propagating along
a precipitating band parallel to the equator (the ITCZ).
The leading-order solution consists of a stationary and
zonally independent flow. In this problem, the width of
the precipitating region is controlled by the saturation
mixing ratio at the surface, which we choose to be

qs(y; s)5s exp(!s2y2),

where s is the nondimensional control parameter. The
background flow resulting from this forcing corresponds

to a Hadley circulation and a precipitating band cen-
tered at the equator. The equations, properties, and an
outline for the analytical solution for the background
state are presented in the appendixes.
Figure 1 shows the relation between the parameter s

and the ITCZ width; in Fig. 2, the surface background
flow for two distinct choices of s is displayed. Because
of the choice of qs, the precipitating region is located at
(2y0, y0) and is surrounded by a region where precipi-
tation is inactive, (2‘, 2y0) and (y0, ‘), as can be seen
in the bottom right of Fig. 2. The top panels show the
Hadley circulation wind pattern at the surface and the
bottom left panel shows that the potential temperature
is higher nearby the equator.
In this model the idealized Hadley circulation is

characterized by an inflow of air at the surface toward
the precipitating region; because of the baroclinic
structure, the flow moves toward the poles with the
same amplitude at the top of the troposphere. The zonal
wind amplitude is symmetric with respect to the equator
with the maximum values in the subtropics, where the
flow is westward at the surface and eastward at the
tropopause with the same amplitude. The total imposed
forcing is given by

Qs 5
ð‘

!‘
qs dy

and is kept constant; therefore, when the surface mixing
ratio is concentrated close to the equator (larger s), the
meridional circulation is stronger than when the forcing
is more spread (smaller s), as Fig. 2 indicates.
For obvious reasons, the Hadley circulation in our

highly idealized models differs in many ways from ob-
servation. For instance, the Galerkin formulation used
here does not enforce angular momentum conservation,
which is a key aspect of the Hadley circulation (Held
and Hou 1980). However, for the purpose of this study,
the only feature of the basic flow that impacts the
CCEWs is the location and width of the precipitating

FIG. 1. Relationship between the ITCZ width and the variance
(s) of the forcing due to evaporation (qs).
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region. Thus, the first baroclinic structure of the basic
flow seems adequate.
To investigate thepropagationofwaves along thebasic

flow, the solution is decomposed as the sum of the steady
zonally symmetric circulation and a small disturbance:

U(x, y, t)5 Û(y)1 eu(x, y, t), (5a)

V(x, y, t)5 V̂(y)1 ey(x, y, t), (5b)

T(x, y, t)5 T̂(y)1 eT(x, y, t), and (5c)

Q(x, y, t)5 Q̂(y)1 eq(x, y, t). (5d)

The solution to the basic flow (see appendixes) is
stable for our choice of forcing qs; therefore, this as-
sumption is consistent with equations in (1) in which we
assumed no barotropic wind. Moreover, because the
system of Eqs. (4) is linear, there is no advection of the
perturbation by the mean flow; that is

›tu! ›xT ! yy5 0, (6a)

›ty ! ›yT1 yu5 0, and (6b)

›tT ! c20(›xu1 ›yy)5 0, (6c)

where the gravity wave speed corresponds to

c0 5
cm, if jyj, y0,

cd, if jyj$ y0;

"

also, in Eq. (6) we neglected the terms on the rhs of (4)
that only add linear damping to the solution and do not
change the dynamics of the waves. The perturbation of
moisture is determined by

q5 q̂ if jyj, y0, and (7)

›tq1
~Q$ " u5 0 if jyj$ y0, (8)

and the perturbation of precipitation is

P5 ! ~Q$ " u if jyj, y0. (9)

In FMP04 it is shown that smooth initial conditions
for Eqs. (4) cannot develop discontinuities in u, y,T, and
q in a single space dimension. In the appendixes we
show that the interface between the precipitating and
nonprecipitating regions must be continuous and the
displacement of the interface has a second-order effect.
As a result, in this formulation only the width of the
ITCZ affects the disturbance equations and it is con-
trolled exclusively by the parameter (from the forcing
term) s:

y0 5 y0(s).

FIG. 2. Low-level stationary flow for s5 14 (solid) and s5 6 (dashed–dotted), normalized by
their maximum value of the zonal wind; U is the zonal wind, V is the meridional wind, T is the
potential temperature, and Pr is the precipitation rate.
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The convectively coupled modes in this model are so-
lutions of (6) when the ITCZ occupies a limited portion
of the domain. That is, when the entire domain is dry
(y05 0) or moist (y05‘), solutions of the shallow water
equations [(6a)–(6c)] are known and correspond to the
modes obtained in Matsuno (1966) (e.g., Kelvin,
Rossby, Yanai, and gravity waves); these are denoted
here the free modes. Conversely, solutions in the pres-
ence of an interface between active and inactive pre-
cipitation regions—that is, when y0 2 (0, ‘)—are the
convectively coupled gravity waves. The convectively
coupledmodes are denoted according to their asymptotic
limits when precipitation is active or inactive every-
where. For example, a convectively coupled Kelvin wave
is a solution of Eq. (6) such that when y0 / 0 it ap-
proaches the dry Kelvin wave and when y0 / ‘ it ap-
proaches the moist Kelvin wave. Particularly, the
CCEWs are solutions of the form

C(x, y, t; y0)5!
k
exp ik[x! c(k; y0)t]

$ %
ck(y; y0), (10)

where k is the zonal wavenumber and the speed of
propagation must satisfy Cm # c# Cd and the following
asymptotic limits:

s ! 00 y0(s) ! ‘0 c(k;s) ! Cm(k), and (11)

s !‘0 y0(s) ! 00 c(k;s) ! Cd(k), (12)

where Cm and Cd are the speed of the corresponding
free moist and dry mode. In the subspace corresponding
to convectively coupled Kelvin waves (cmk , v , cdk),
we did not find any evidence of bifurcation at the pa-
rameter s. However, it is possible that there are bifur-
cations in other regions of the spectrum.
In the traditional shallow water formulation from

Matsuno (1966), equatorial trapped waves correspond to
different modes of the form F 5 exp[ik(x 2 vt)]fn(y),
where (fn)

‘
0 are the elements of the orthonormal para-

bolic cylinder basis and v is the frequency (c 5 v/k).
Although in this formulation the gravity wave speed is
not constant, one can still look for a single plane wave
solution of system (6) and therefore they can be com-
bined into a single second-order ordinary differential
equation (ODE) for the meridional velocity:

c0k(y; y0)1
v2

c20
! k2 ! k

v

& '
! y2

c20

( )
ck(y; y0)5 0,

(13)

where c0 5 c(y0), ck is the meridional amplitude of the
wave, and

yk(x, y, t)5 exp[i(kx! vt)]ck(y; y0).

The solution for a fixed y0 2 (0,‘) is derived in the
following manner: First, the two linear independent
solutions in each region (jyj , y0 and jyj $ y0) are ob-
tained. Second, they must satisfy two constraints: solu-
tions must vanish at infinity and must obey the matching
condition at the interface that requires variables (u, y, T)
to be continuous. Utilizing these two constrains, the
complete solution is obtained; that is, the dispersion
relation v 5 v(k; y0) and the meridional amplitude of
the waves are determined. For a detailed derivation and
discussion of the analytical solutions in SQE, see the
appendixes.
Figure 3 shows the analytical dispersion relation for

antisymmetric solutions of (13), where for simplicity
only two coupled modes are displayed. On the right side
of the plot, the dispersion curve corresponds to con-
vectively coupled Kelvin waves for two distinct ITCZ
widths. When the ITCZ is wider, the curve is closer to
the moist theoretical curve (v 5 cmk), whereas for a
narrower ITCZ, it lies closer to the dry theoretical
curve (v5 cdk). Analogous results are found for Rossby
M 5 1 waves, displayed on the left side of the plot.
These results are further discussed in the next section.
To validate these solutions, we compare them to nu-

merical solutions that are obtained utilizing the non-
oscillatorybalanced scheme, introducedbyKhouider and
Majda (2005a,b). Their scheme solves the full equations
in (1); thus, in the appendix we describe the method to
obtain the CCEW along the ITCZ that corresponds to
the analytical solution. Furthermore, to understand how
the location of the ITCZ affects these modes, we uti-
lize the numerical scheme to extend the theory of CCEW
to the case in which the ITCZ is shifted to the Northern
Hemisphere—that is, qs 5 s exp[2s2(y 2 a)2], where a
is the location of the ITCZ. We then obtain propagating
modes along the off-equatorial ITCZ that are similar to
the traditional equatorial modes.

4. Results

In this section the dynamical structure of some
CCEWs are illustrated for various ITCZ widths and
locations. First, the ITCZ is centered at the equator and
a Kelvin wave disturbance propagating along a narrow
ITCZ (y0 ; 250 km) is described. This case is then
compared to a Kelvin wave along a wider ITCZ (y0 ;
1000 km). Wavenumbers 1 and 6 are tested and nu-
merical and analytical solutions are discussed. Next, the
Kelvin wave disturbance propagating along an ITCZ off
the equator is compared to the symmetric ITCZ case.
The section ends with a comparison between a Rossby
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wave M 5 1 disturbance along a narrow and wide
symmetric ITCZ.

a. Kelvin waves along a symmetric ITCZ

Many interesting features can be seen in the disper-
sion diagram in Fig. 3. The right-hand side (i.e., for
positive wavenumbers) shows that the convectively
coupled Kelvin waves propagate eastward and its phase
speed (cp 5 v/k) lies in the region cm , cp , cd. The
dispersion curve when y0 5 250 km (thin line) is closer
to the dry curve than with y0 5 1000 km (thick line), as
previously predicted. Remarkably, the convectively
coupled Kelvin waves are only weakly dispersive; the
dispersion curve is very close to a straight line in the
frequency–wavenumber diagram.
Figure 4 shows a convectively coupled Kelvin wave

for wavenumber 6 and y05 250 km. The left (analytical)
and right (numerical) panels indicate that the solutions
are in close agreement. The zonal wind and potential
temperature are both (top) in phase and then (bottom)
out of phase with respect to the disturbance of the
precipitation rate. The precipitation rate maximum oc-
curs in the same region as the maximum wind conver-
gence and the precipitation bandwidth and location

remain unchanged. The structure of the potential tem-
perature and zonal wind disturbance is similar to the
free dry and moist modes (i.e., with opposite signs and a
single maximum amplitude at the equator); however,
they are not exactly proportional to each other, as they
are for the free mode. Moreover, the meridional circu-
lation is noticeable in this case, whereas for free modes,
it is absent; in the next section we argue that these
features are necessary to distribute the latent heat as-
sociated with the ITCZ.
In Fig. 5 we plot the phase speed of the Kelvin mode

with respect to the ITCZwidth for wavenumbers 1 and 6.
In agreement with Fig. 3, the disturbance propagates
faster for longer waves. Note that observed Kelvin
waves (e.g., Wheeler and Kiladis 1999) show a similar
faster propagation speed at smaller wavenumbers and
also develop a meridional circulation (Wheeler et al.
2000, their Fig. 5). In the absence of the ITCZ, the mode
propagates at the gravity wave speed (50 m s21). As the
ITCZ becomes wider, the speed of the Kelvin coupled
mode decreases; for an ITCZ width of about 1000 km, it
propagates at the free moist speed (15 m s21). To fur-
ther investigate the sensitivity of the dispersion relation
to the ITCZwidth, Fig. 6 shows the relation between the

FIG. 3. Analyticaldispersion relation for convectively coupledKelvin andRossbyM5 1 waves,
for y0 5 250 km (thin lines) and y0 5 1000 km (thick lines). The dashed lines correspond to the
free dry and moist modes. The nondimensional zonal wavenumber is scaled by 1/LE and
nondimensional frequency is scaled by 1/TE.
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ratio between the meridional flow and the zonal flow
and the location of the interface, once more for wave-
numbers 1 and 6. The ratio shown was computed using
the analytical solution and we found a good agreement
with the numerical result (not shown). For both wave-
lengths, the ratio is zero if there is no ITCZ (corre-
sponding to the free dry Kelvin mode) and increases
until the ITCZ width is about 400 km, when it starts to
decrease with increasing ITCZ width. For narrower
ITCZwidths, it is noticeable that the shorter wave (k5 6)
develops a more intense meridional circulation. In the
next section, we argue that the meridional wind increases
with wavenumber.

b. Kelvin waves along an ITCZ off the equator

The analytical solutions used so far rely on the sym-
metry of the background state. Without this assumption,
the disturbance response to the background state can-
not be split into linear independent symmetric and an-
tisymmetric components, as shown in the appendixes.
We do not compute this analytical solution; instead,
we show numerical results for the Kelvin wave distur-
bance propagating along a precipitating band off the
equator (for details of this computation, see the ap-
pendixes). We test the same widths and wavenumbers

from the last section, but now the ITCZ is centered
at 108N.
Figure 7 shows the potential temperature contour

with the wind fields overlaid for a Kelvin wave k5 1 and
ITCZwidth y05 250 km. The overall structure is similar
to the case in which the ITCZ is centered at the equator;
that is, the zonal wind and potential temperature are in
phase (top plot), both are out of phase with respect to
the disturbance of the precipitation rate (bottom plot),
and its peak coincides with the maximum wind conver-
gence zone. In agreement with Straub and Kiladis (2002,
e.g., their Fig. 16), the inflow toward the precipitating
region in regions of wind convergence is noticeable and,
because the amplitude of the waves is very small at the
northern interface, we observe a considerable stronger
inflow at the southern interface. In Fig. 8 the amplitude
of the disturbance is displayed for the Kelvin wave
propagating along the symmetric ITCZ (dashed line)
and along the off-equatorial ITCZ (solid line). Although
no longer symmetric, the general structure of zonal wind
and potential temperature meridional amplitude is fairly
close to the ‘‘free’’ dry Kelvin wave and to the equatorial
coupled mode. Importantly, these results suggest that
the maximum precipitation rate (Fig. 8, bottom right) is
smaller when the ITCZ is away from the equator; in the

FIG. 4. Comparison between (left) analytical and (right) numerical solutions for a Kelvin
wave (k5 6) with y05 250 km (ITCZ centered at the equator). Overlaid are (top) a snapshot of
contours of potential temperature and lower-level velocity profiles and (bottom) contours of
the precipitation rate and lower-level velocity profiles. Dark contours correspond to negative
values; the thick solid line corresponds to the ITCZ width. All variables are nondimensional.
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next section we argue that this is a consequence of the
fact that the off-equatorial coupled mode propagates
faster than the symmetric coupled mode for the same
ITCZwidth, as shown in Fig. 5. For instance, if the ITCZ
width is y05 250 km, the Kelvin mode when the ITCZ is
centered at the equator propagates at about 28 m s21; in
contrast, when the ITCZ is centered at 108N, it propa-
gates at about 35 m s21.
It is also worth noting that the meridional flow in

Fig. 8 (right and left) has a sharp peak at the interface
that indicates that the vertical velocity is discontinuous
at the precipitation front, in agreement with the results
from FMP04.

c. Rossby wave M 5 1 along a symmetric ITCZ

Here we investigate the propagation of Rossby
waves along a symmetric ITCZ. Analogous to the
Kelvin wave experiment, the solution is known when y0
5 0 and y0 5 ‘ because in both cases the equivalent
depth is uniform in the whole domain and linear theory
is valid. We examine the Rossby M 5 1 mode, which
propagates westward; it is dispersive and the zonal
wind and potential temperature are symmetric across
the equator. For small wavenumbers this mode prop-
agates at about one third of the gravity wave speed;
therefore, for long waves it determines the region in

the dispersion diagram where we look for solutions:
2cmk/3 , v , 2k/3.
Figure 9 is similar to Fig. 4, but for RossbyM5 1 and

wavenumber k 5 1. The analytical and numerical so-
lutions are again in good agreement and the overall
structure of this mode is similar to the free Rossby
mode. Once more, potential temperature is out of phase
with precipitation rate and convergence in the ITCZ is
located at the peak of precipitation rate. However, wind
also converges at higher latitudes, whereas for Kelvin
waves it converges only at the ITCZ.
As can be seen on the left side of Fig. 3, the dispersion

curve for the convectively coupled Rossby wave indeed
lies between the dry and moist curves and exhibits a
similar behavior to the free modes; that is, the dispersion
relation is approximately linear for small wavenumbers
and it decreases for large wavenumbers. However, the
dispersion curves for both a narrow and a wide ITCZ are
closer to the dry curve than for Kelvin waves, which in-
dicates that Rossby waves are less affected by the ITCZ.
Further evidence of this fact can be seen in Fig. 5, which
shows a smoother and slower transition between the free
dry and moist Rossby modes than the corresponding
Kelvinmode (solid lines). That is, it is necessary to have a
wider ITCZ to achieve the moist speed than for Kelvin
waves. One explanation for this behavior is that because

FIG. 5. Relationship between phase speed and ITCZ width for some of the coupled modes.
The solid lines correspond to Kelvin and Rossby M 5 1 modes along an ITCZ centered at the
equator and wavenumber k5 1. The dotted–dashed line corresponds to a Kelvinmode along an
ITCZ at the equator and wavenumber k5 6; the diamonds correspond to a Kelvin mode, k5 1,
along an ITCZ centered at 108N.
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Rossby modes are strongly affected by the earth’s rota-
tion, the maximum convergence–divergence is located
off the equator, in contrast to Kelvin waves.

5. Meridional circulation and modulations of the
precipitation on the ITCZ

The propagation of convectively coupled waves along
the ITCZ provides a useful framework to study the in-
teractions between moist convection and the atmo-
spheric dynamics. Here, we focus on some of the key
aspects of the propagation of a Kelvin wave along the
ITCZ. First, in contrast to the classic equatorial Kelvin
wave on an equatorial beta plane, the Kelvin wave ex-
hibits a meridional circulation. We argue that this cir-
culation acts to redistribute the latent heat released in
the ITCZ to the dry regions. This circulation modulates
both the amount of precipitation and the width of the
ITCZ itself, playing an important role in setting the
propagation speed of the Kelvin wave.

a. The meridional circulation

In the previous section, convectively coupled Kelvin
waves propagating along an ITCZ develop a meridional
flow. This flow is stronger for short waves, but it is
present even for long waves. Unlike most basic theo-
retical predictions, Kelvin wave composites in Wheeler
et al. (2000) and Straub and Kiladis (2002) clearly show

meridional velocities in both the upper and lower tro-
posphere. To justify the existence of such meridional
flow, let us focus on the equatorial ITCZ and suppose
that the coupled modes satisfy y 5 0. First, we compare
the potential temperature tendency at the interface
between the moist and dry regions in a region where the
disturbance is associated with convergence at low level
(›xu , 0). In this case, we have

›tTd 5 ›xu, c2m›xu5 ›tTm. (14)

The subscript m is used if jyj , y0 and the subscript d if
jyj $ y0 to denote the flow in the moist and dry regions,
respectively. Because the flow is continuous, we must
have Td 5 Tm at the interface. This also applies for the
time tendency of the temperature. In particular, at the
interface, we must have

›tTm(y0)5 ›tTd(y0). (15)

However, in the absence of a meridional circulation
y 5 0, the inequality in (14) shows that ascending mo-
tion would cool the dry region faster than the moist
region. Convectively coupled Kelvin waves must de-
velop a meridional flow in order for the temperature
tendencies to match at the edge of the ITCZ (15).
In regions where the atmosphere is cooling down, the

flow at low levels must be into the ITCZ and toward the

FIG. 6. Ratio between meridional and zonal wind at the interface [jy(y0)/u(y0)j] for Kelvin wave
k 5 1 (crosses) and k 5 6 (diamonds).
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equator. To assure that, we use (15) and subtract the po-
tential temperature equation [(6c)] at the dry side of the
interface from the same equation in the moist side:

›yy
d ! ›yy

m 5 ! (1! c2m)

c2m
›tT. (16)

We then estimate the meridional velocity at y0:

›yy
d ’!

y(t, x, y0)

L! y0
, and (17a)

›yy
m ’

y(t, x, y0)

y0
, (17b)

where L is the meridional extent of the Kelvin wave;
and we used that y(t, x, 0)5 0. Combining (16) and (17),
we obtain

(1! c2m)

c2m
›tT’

1

L! y0
1

1

y0

& '
y(t, x, y0). (18)

Thus, when the atmosphere is cooling down (›tT , 0),
the meridional flow is toward the equator. A similar
argument shows that

!
y(t, x, y0)

L! y0
! c2m

y(t, x, y0)

y0
; ›yy

d ! c2m›yy
m

5!(1! c2m)›xu.

Therefore, the meridional circulation associated with
the convectively coupled Kelvin wave in regions of
convergence is such that air flows toward the equator at
the interface, rises in the area where precipitation is
active, and then flows toward the poles at the tropo-
pause, in agreement with Figs. 4 and 7. This meridional
circulation cools the ITCZ by increasing the ascent and
warms up the dry region.

b. The displacement of the interface

Because the zonal flow and potential temperature are
continuous at the interface, there must be a disconti-
nuity in the gradient of the meridional flow; accordingly,
in the vertical velocity and from the temperature
equation at the interface, we find that the discontinuity
in the vertical velocity must satisfy

wd(y0)5 c2mw
m(y0). (19)

Hence, if at the edge of the moist region the flow is
ascending, it has to be ascending at edge of the dry

FIG. 7. Convectively coupled Kelvin wave (k 5 1) along an ITCZ off the equator. Overlaid
are (top) contours of potential temperature and velocity profiles and (bottom) contours of
precipitation rate and velocity profiles. The ITCZ is centered at 108N and y0 5 250 km. Darker
contours correspond to negative values. All variables are nondimensional.
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region, but its amplitude is reduced by c2m. In FMP04 the
discontinuity in the vertical velocity at the interface is
related to the propagation speed of the precipitation
front, and we now argue that in regions of ascending
motion, the interface moves toward the dry region, in
agreement with FMP04.
The perturbation of moisture in a dry region satisfies

›tqd 5
~Qwd. (20)

Thus, using the estimate for the interface displacement
(A17) in regions of motion, we obtain

›td 5 ~Q
wd(x, y0, t)

j›yQd(y0)j
. 0 if y0 . 0. (21)

The ITCZ expands during the ascent phase of the
Kelvin wave. Conversely, the ITCZ becomes narrower
during the subsidence phase. It ensues that the varia-
tions of the ITCZ width by the Kelvin waves are out of
phase by a quarter of a period with the variations of
precipitation.

c. The speed of propagation

In section 4, we obtained a relation between the width
of the ITCZ (y0) and the speed of propagation of Kelvin

and Rossby waves. Moreover, we found that this curve
is in agreement with the numerical results. Because
Kelvin waves have a simple structure, we focus our
analysis on this mode. To better understand how the
ITCZ affects this wave, it would be useful to relate its
phase speed to the meridional circulation and the total
precipitation rate in the ITCZ. To carry on this analysis,
we average the equations in the meridional direction.
Here we assume that u5 Û(x! ct, y), y 5 V̂(x! ct, y),

and T 5 T̂(x! ct, y), where c is the constant speed of
propagation (from now on, we drop the hats). The me-
ridional average is hfi 5

Ð ‘
!‘ f(y) dy; the prime used

below denotes the derivative with respect to the first
variable. We also define the meridional average in the dry
and moist region: hfid 5

Ð y0
!‘ f(y) dy1

Ð ‘
y0
f(y) dy and

hfim 5
Ð y0
!y0

f(y) dy, respectively. Utilizing this notation,
we define the parameter a as a measure of the ratio be-
tween the total latent heating and adiabatic cooling:

a5 ! hPi
hU9i

. (22)

In the absence of precipitation a 5 0, whereas when
precipitation is active everywhere a 5 ~Q. To relate a to
the phase speed of theKelvin coupled wave, we compute
the meridional average of (6):

FIG. 8. Meridional structure for the convectively coupledKelvin wave (k5 1) along the ITCZ
centered at the equator (dashed line) and at 108N (solid line), both with y0 5 250 km. All
variables are normalized by the maximum of the meridional velocity.
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!chU9i ! hT9i5 hyVi, (23a)

!chT9i ! c2dhU9i5 hPi, (23b)

where hVi5 0 and hVyi5 0. Neglecting the rotation term
on the right-hand side of (23a), the propagation speed
becomes

c2 5 c2d ! a. (24)

The quantity c2d 2 a can be thought as an equivalent to
the effective stratification N2

eff in Emanuel et al. (1994)
averaged over the meridional cross section of the Kelvin
wave. The parameter a measures how much the latent
heat release along a longitude circle slows down the
coupled mode. Averaging (9), the mean precipitation is
given by

hPi5 hPim 5 ! ~Q(hU9im 1 hVyim). (25)

Neglecting the meridional velocity and substituting (25)
into (23b) yields an estimate for the propagation speed
of the couple modes:

f(y)5
!k

v
g(y)1 i

y

v
c(y). (26)

Moreover, ifwe look for a single propagatingmode—that
is,U5U (y)eik(x2ct)—the estimate above is equivalent to

c2 5
c2mhUim 1 c2dhUid
hUim 1 hUid

. (27)

If there is nomeridional flow, the averaged coupledmode
propagates at a speed that is the weighted average of
the zonal wind amplitude in the moist and dry regions. In
Fig. 10 this estimate is computed using the solution pre-
sented in the previous section. Comparing this estimate
to the relation obtained in section 3 (Fig. 10), we find that
although it has the correct limits when y0 / 0 and when
y0 / ‘, the speed of propagation in (26) is considerable
larger than the analytical speed of propagation.
We now compute an alternative estimate of the

propagation speed that accounts for the meridional
transport of temperature and moisture but neglects the
Coriolis term yV in (23a). In this case, averaging the
momentum equation over the moist regions yields

!chU9im !hT9im 5 0. (28)

Similarly, averaging the temperatureequation in themoist
regions gives

!chT9im ! c2dhU9im ! c2dhVyim 5 hPim. (29)

Using Eq. (25), we can now obtain an expression for the
meridional velocity at the edge of the ITCZ:

FIG. 9. As in Fig. 7, but for convectively coupled Rossby M 5 1 wave (k 5 1) along the ITCZ
centered at the equator. The thick solid lines correspond to the ITCZ width.

AUGUST 2009 D IA S AND PAULU I S 2249



2V(y0)5 hVyim 5
c2 ! c2m

c2m
hU9im. (30)

The identity above relates the meridional flow to the
average zonal flow and clarifies the balance between
these quantities and the phase speed of the Kelvin mode.
It is consistent with the estimate from the previous sec-
tion in that it shows that if the zonal wind is convergent
there is an inflow of air toward the ITCZ. In addition, for
a single propagating mode, it is equivalent to

V(y0)5
1

2

c2 ! c2m
c2m

khUim (31)

and indicates that the meridional flow is stronger for
larger wavenumbers, in agreement with Fig. 6 and with
observations.
Substituting (30) into (25) yields an expression for a:

a5 (c2d ! c2m)
hU9im 1 hVyim

hU9i

5 c2
c2d ! c2m

c2m

hU9im
hU9i

. (32)

Injecting this in (24), we can obtain a newestimate for the
propagation speed,

c2 5
hU9i

hU9im
c2m

1
hU9id
c2d

5
hUi

hUim
c2m

1
hUid
c2d

, (33)

and Fig. 10 shows that the second estimate (33) is con-
siderable more accurate than the first one (26).
The precipitation is related to the total zonal wind

convergence in the moist region using (32) and (22):

hPim 5! c2

c2m
~QhU9im, (34)

where the propagation speed c2 in (33) is always larger
than the moist speed cm. This implies that the precipi-
tation anomaly hPim is always larger than what one
would infer based solely on the advection of moisture by
the zonal wind. In sum, in regions of enhanced zonal
wind convergence, the meridional flow advects moisture
into the ITCZ, which increases the precipitation and
slows down the propagation of the Kelvin wave.

6. Conclusions

We presented an extension to the SQE theory for
convectively coupled gravity waves to cases in which the
precipitating region only occupies a fraction of the

FIG. 10. Relationship between phase speed of the coupled Kelvin wave (k5 1) and the ITCZ
width; comparison between the analytical phase speed (solid line) and the two approximations.
The crosses correspond to the estimate in (26) and the diamonds to the estimate in (33).
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domain. In particular, the conceptual simplification
inherent in the SQE assumption leads us to build a
simplified theory for CCEWs propagating over a pre-
cipitating band.
The key implication of the SQE within our model is

that moisture is instantaneously adjusted to the satura-
tion values in regions where precipitation is active;
consequently, the problem was reduced to matching
solutions of two shallow water systems, with distinct
equivalent depths. Fundamentally, the matching comes
from the requirement of the tendency in potential
temperature to be continuous at the interface, and the
discontinuity in the equivalent depth translates to a
discontinuity in the vertical velocity.
This study is focused on convectively coupled Kelvin

and Rossby waves propagating along the ITCZ, and we
found that the propagation speed of the coupled waves is
between the dry andmoist speed, depending on thewidth
and locationof the precipitating band.Kelvinwaves have
speeds comparable to the moist case (15 m s21), except
for narrow (less than 1000 km) precipitating regions;
they propagate faster as the ITCZ moves away from the
equator, they are weakly dispersive, and shorter waves
propagate slower than long waves. The results also in-
dicate that the ITCZmust be wider to have an impact on
Rossby waves.
It has been shown that a meridional circulation, pres-

ent even for Kelvin waves (Figs. 4, 6 and 8), plays an
important role in redistributing energy between the dry
and moist regions. At the surface and where the zonal
wind converges, the meridional wind flows toward the
ITCZ at the interface, ascends inside the precipitating
region, and then flows toward the poles (Fig. 11). We
proposed some interpretation of the mechanisms in-

volved in this process by deriving a direct relationship
among zonal wind convergence inside the ITCZ, total
precipitation, and the speed of the coupled waves [(33)
and (34)], which indicates that enhanced wind conver-
gence is correlated with an increase in the precipitation
rate and with the slowdown of waves.
In keeping with the secondary meridional circulation

due to precipitation and in agreement with the theory of
precipitation fronts presented in FMP04, we found that
for temperature to match at the interface there must be
a discontinuity in the vertical velocity that is propor-
tional to the prescribed gross moisture stratification.
Moreover, upward motions at the interface are related
to the displacement of the ITCZ toward the poles;
conversely, the interface moves toward the equator
during the subsidence phase, as shown in Fig. 11.
Some key features of observed convectively coupled

waves were well captured by the model: Kelvin waves
propagate more slowly when convection is active; they
are weakly dispersive and develop a meridional circu-
lation. Because relatively few vertical modes seem to
participate in many tropical phenomena involving the
ensemble mean effects of deep convection, we believe
that the extension of the method used here to other
configurations (e.g., Rossby waves propagating over an
off-equatorial ITCZ or a double ITCZ) can provide
further insight into the coupling between convection
and large-scale phenomena.
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FIG. 11. Sketch of a cross section of the secondary circulation due to the ITCZ. The thick
dotted–dashed vertical lines mark the two interfaces separating the dry regions and the moist
(shaded) region; the thin dashed line represents the displacement of the interface. The arrows
indicate the circulation pattern in a region where the zonal wind converges toward the equator.
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APPENDIX A

Analytical Solutions for a Symmetric ITCZ

a. Stationary Hadley circulation

We use the assumptions from sections 2 and 3 to
outline a stationary solution of (1) that depends only on
the meridional distance. For simplicity, we also assume
that te 5 tr 5 k21 and that q̂ 5 0 and we then rewrite
(4) as a single second-order ODE for each region. In the
moist region we have

›yy !
(k2 1 y2)

c2m

( )
V5! k

c2m
›yqs, if

P5 k qs !
~Q

k
›yV

 !

. 0. (A1)

Similarly, in the dry region a solution of (4) must satisfy

[›yy ! (k2 1 y2)]V5 0, if Q5 qs !
~Q

k
›yV # 0.

(A2)

Equations (A1) and (A2) are known as the quantum
harmonic oscillator and their solutions are expressed in
terms of either parabolic cylinder equations—Dn(y)[n 5
n(k)], in which case there are two linear independent
solutions, but only one of them vanishes at infinity
(Bender and Orzag 1978)—or odd and even solutions
related to the confluent hypergeometric function of
the first kind (F1

1) (Abramowitz and Stegun 1964). The
forcing in (A1) is antisymmetric with respect to the
equator and because we are interested in a stationary
Hadley circulation solution, we seek a solution in which
the meridional wind (V) points toward the equator.
Therefore, in the moist region the solution is propor-
tional to the odd linear independent solution, plus a
particular solution due to the forcing term. In the dry
region, we chose the solution that decays to zero for
y / ‘ and its odd extension for y / 2‘.

It was shown in FMP04 that solutions of (4) have to
obey some smooth properties. In particular, when the
initial condition is smooth, solutions can only develop
discontinuities due to planetary rotation; that is, the
forcing term qs can generate baroclinic instability.
However, its development has a time scale much longer
than the convective adjustment time, so in our formu-
lation we choose qs such that (U, V, T, Q) are contin-
uous in the entire domain (including the interface). As a
consequence, (›yV, ›yT) are also continuous. Indeed,
the following identities hold for y , y0 and y . y0:

›yT5 yU1kV, and (A3)

›yV5
R! E

c2m
. (A4)

The interface is determined by y0 2 (0, ‘) such that

Q(y0)5 qs(y0)! b1

~Q

k
›yVd(y0)5 0. (A5)

This equation in SQE guarantees that Q is continuous
at the interface. The variable b1 is the free parameter
that comes from the fact that the homogeneous solu-
tion of (A1) is well defined and unique up to a multi-
plicative constant. Similarly, in the moist region the full
solution is Vm(y) 5 b2V

h
m(y) 1 Vp

m(y), where b2 is an-
other free parameter. Therefore, we have three un-
knowns (y0, b1, b2) and one equation [(A5)]. The two
other equations come from the requirement that solu-
tion must be continuous:

b1Vd(y0)5Vm(y0), and (A6)

b1Td(y0)5Tm(y0). (A7)

We still have to show that in fact there will be a unique
(b1, b2, y0) that satisfy Eqs. (A5), (A6), and (A7). Be-
cause the dependence in b1 and b2 is linear, we can find a
single equation only depending on y0 that has the form
F(y0, s) 5 0 (recall that s is fixed and comes from the
forcing term), and then the width of the precipitating
band is well defined as long as we can define y0 5 f(s)
such that F[s, f(s)] 5 0. The particular choice of qs in-
dicates that this is indeed the case. However, for sim-
plicity, we obtain this solution numerically (it will be
described later) and we verify that it satisfies the prop-
erties shown in this section.

b. Convectively coupled waves

Recall that we look for a plane wave solution of (6):

yk(x, y, t)5 exp[i(kx! wt)]ck(y; y0), (A8a)

yk(x, y, t)5 exp[i(kx! wt)]fk(y; y0), and (A8b)

Tk(x, y, t)5 exp[i(kx! wt)]gk(y; y0). (A8c)

Substituting (A8) into (6),wefind thatck solves theODE
in (13) and we obtain gk and fk using the following
relations:

g(y)5
ic2

v2 ! c2k
[vc9(y)! kyc(y)], (A9)

2252 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 66



f(y)5
!k

v
g(y)1 i

y

v
c(y), (A10)

where, for simplicity, we dropped the subscript k and the
parameter y0.
Note that (13) is, up to the coefficients, the same equa-

tion as (A2); likewise, the full solution canbe decomposed
into its symmetric and antisymmetric components. Par-
ticularly, the antisymmetric solution is

cd(y)5Dn!1/2(
ffiffiffi
2

p
y), and (A11)

cm(y)5G2(y/em), (A12)

where

n5
bk
2

ffiffiffi
a

p , and

em 5
ffiffiffiffiffiffi
cm

p

2
,

G2(y)5 ye!y2F1
1 !n

2
1

3

4
;
3

2
;
y2

2

& '
,

a5
1

c20
, and bk 5

v2

c20
! k2 ! k

v
.

The function Dv21/2 is the parabolic cylinder function
and it is chosen so that solutions decay at infinity. The
function F1

1 is the confluent hypergeometric function of
the first kind and G2 is an antisymmetric solution of
(13). Recall that y depends on c0 and therefore it takes
distinct values in the moist and dry region.
As in the Hadley circulation solution, the estimates

from section (2) imply that the solutions must be con-
tinuous at the interface. Because the parameter e is small,
we assume that the interface will be a perturbation of the
stationary interface from the background flow:

y 5 y0 1 ed(x, t), (A13)

with matching conditions given by

and using the fact that V, T, Q, ›yV(y) and ›yT(y) are
continuous, we obtain

d(x, t)›yQd(y0)1 qd(x, y0, t)5 0s, (A14)

yd(x, y0, t)5 ym(x, y0, t), and (A15)

Td(x, y0, t)5Tm(x, y0, t). (A16)

Because Qd is zero at the interface and negative for
y . y0, from (A14) we obtain an estimate of the dis-
placement on the interface:

d(x, t)5
qd(x, y0, t)

j›yQd(y0)j
, (A17)

where moisture is computed using (8). The matching
conditions are given by (A15) and (A16), which are
equivalent to

A(k,v)5cm(y0)gd(y0)! cd(y0)gm(y0)5 0, (A18)

and we solve for v(k; y0); that is,

A[k, v(k; y0)]5 0, (A19)

where y0 is fixed. There are several branches of solutions
of (A19), each corresponding to a different convectively
coupled mode. In Fig. 3, we show only the dispersion
relation for the Kelvin and Rossby M 5 1 coupled
mode for two different values of y0. Modes such as
Rossby M 5 2 and Yanai waves can be obtained com-
puting the solution that corresponds to c symmetric with
respect to the equator.

APPENDIX B

Numerical Solutions

Numerical solutions are obtained utilizing the non-
oscillatory balanced scheme introduced by Khouider

Qd[y0 1 ed(x, t)]1 eqd[x, y0 1 ed(x, t), t] 5 0,

Vd[y0 1 ed(x, t)]1 eyd[x, y0 1 ed(x, t), t] 5 Vm[y0 1 ed(x, t)]1 eym[x, y0 1 ed(x, t), t], and

Td[y0 1 ed(x, t)]1 eTd[x, y0 1 ed(x, t), t] 5 Tm[y0 1 ed(x, t)]1 eTm[x, y0 1 ed(x, t), t].

Next, we Taylor expand the above equations around y0 and neglect the terms of O(e2):

Qd(y0)1 ed(x, t)›yQd(y0)1 eqd(x, y0, t) 5 0,

Vd(y0)1 ed(x, t)›yVd(y0)1 eyd(x, y0, t) 5 Vm(y0)1 ed(x, t)›yVm(y0)1 eym(x, y0, t), and

Td(y0)1 ed(x, t)›yTd(y0)1 eTd(x, y0, t) 5 Tm(y0)1 ed(x, t)›yTm(y0)1 eTm(x, y0, t).
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andMajda (2005a,b). The convective adjustment time is
set to 30 min so that numerical and analytical solutions
can be compared. First, a family of stationary solutions
is obtained by varying the parameter s. The width of the
ITCZ [y0 5 y0(s)] is then defined as the region parallel
to the equator where precipitation is active. The basic
flow solution corresponding to s is given by

[U(y; s), V(y; s), T(y; s), Q(y; s), P(y; s)].

For each fixed mean state, we need to obtain the CCEW
solution.We first chooses such that precipitation is active
everywhere; that is, y0(s) is of the size of the domain. In
SQE, an asymptotic solution of the governing equations is
given by a mode solution of (6); hence, we integrate the
model with the initial condition given by the means state
superimposed to an analytical solution of (6), where c 5
cm everywhere in the domain. Then, we average the dis-
turbance along the path: (x 2 cmt 5 0). To obtain a con-
tinuous spectrum of modes between the free dry and free
moist solution, the parameter s is then incremented in
such a way that precipitation is active in almost the entire
domain. The model is integrated with the new initial
condition given by the mean state corresponding to the
incremented s, superimposed to the filtered disturbance.
At this point the speed of propagation of the strongest

signal of the disturbance needs to be estimated; next,
to filter out any signal that propagates at a different speed,
thedataare averagedalong thepath: (x2 c(s)t5 0). This
process needs to be repeated a few times until the dis-
turbance corresponds to a single propagating mode with
a speed given by c(s). In addition, at each iteration the
disturbance is amplified by ekt because the modes decay
at the reciprocal of this rate due to linear damping.
Because the solutions are continuous as long as the

increment of the ITCZ width is small compared to the
size of the domain, the transition between the distur-
bance in one equilibrium state to the next one is smooth.
Thus, we successively increase s and repeat the method
described above until the ITCZ width is close to zero.
In the limit y0 / 0, the disturbance must converge to
the free dry mode; that is, c(s) / cd. As a result, for
each s, a solution of the form (10) is obtained.
To understand how the location of the ITCZ affects

thesemodes, the locationof the ITCZcanbe shifted to the
Northern Hemisphere. This is done by adding a new pa-
rameter to the saturationmixing ratio at the surface—qs5
sexp[2s2(y 2 a)2]—and the result is a solutions of the
form

C(x, y, t) 5 A[x! c(s, a)t]c(y; s, a), (A20)

where the case a5 0 corresponds to the ITCZ centered
at the equator.

The transition between the ITCZ centered at the
equator to one centered at a higher latitude is done in
small steps and s is fixed; hence, the propagating mode
obtained for the new ITCZ location is denoted by the
original mode corresponding to the ITCZ centered at
the equator. That is, if one begins with a convectively
coupled Kelvin wave disturbance along an ITCZ cen-
tered at the equator of width y0(s), the mode obtained
after shifting the ITCZ to a higher latitude is also de-
noted a convectively coupled Kelvin wave. In fact, it was
numerically verified that these modes converge to the
corresponding free dry mode when y0 / 0.
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